Skip to main content
. 2024 Apr 19;14:9013. doi: 10.1038/s41598-024-59248-4

Table 2.

DenseNet161 model validation performance from 2-class hyperparameter tuning experiments following fourfold cross-validation and 5 independent repetitions.

Validation Rank Hyperparameters Validation Performance (μ±95CI)
Input Shape Num. Epochs Batch Size AUC Accuracy F1 Score Sensitivity/Recall Specificity Precision
1 128 × 128 300 32 0.913 ± 0.005 0.840 ± 0.008 0.763 ± 0.02 0.774 ± 0.020 0.874 ± 0.013 0.758 ± 0.023
2 128 × 128 300 64 0.900 ± 0.006 0.813 ± 0.007 0.750 ± 0.016 0.841 ± 0.014 0.800 ± 0.008 0.677 ± 0.015
3 256 × 256 600 64 0.894 ± 0.008 0.811 ± 0.011 0.737 ± 0.020 0.753 ± 0.022 0.854 ± 0.025 0.732 ± 0.036
4 128 × 128 300 64 0.892 ± 0.006 0.807 ± 0.008 0.732 ± 0.016 0.773 ± 0.016 0.831 ± 0.014 0.700 ± 0.025
5 256 × 256 300 32 0.888 ± 0.010 0.810 ± 0.011 0.732 ± 0.028 0.730 ± 0.023 0.868 ± 0.016 0.741 ± 0.033
6 128 × 128 100 64 0.884 ± 0.010 0.794 ± 0.011 0.732 ± 0.020 0.844 ± 0.016 0.769 ± 0.013 0.648 ± 0.021
7 128 × 128 300 128 0.870 ± 0.008 0.802 ± 0.012 0.717 ± 0.019 0.749 ± 0.017 0.827 ± 0.020 0.693 ± 0.032
8 256 × 256 300 64 0.866 ± 0.009 0.802 ± 0.009 0.700 ± 0.027 0.706 ± 0.032 0.849 ± 0.016 0.709 ± 0.030
9 256 × 256 300 64 0.866 ± 0.009 0.802 ± 0.009 0.700 ± 0.027 0.706 ± 0.032 0.849 ± 0.016 0.709 ± 0.030
10 512 × 512 600 64 0.862 ± 0.010 0.779 ± 0.023 0.682 ± 0.032 0.709 ± 0.042 0.813 ± 0.047 0.696 ± 0.057
11 256 × 256 300 128 0.830 ± 0.012 0.775 ± 0.009 0.657 ± 0.028 0.658 ± 0.035 0.834 ± 0.018 0.672 ± 0.027
12 256 × 256 300 128 0.830 ± 0.012 0.775 ± 0.009 0.657 ± 0.028 0.658 ± 0.035 0.834 ± 0.018 0.672 ± 0.027
13 512 × 512 300 64 0.824 ± 0.010 0.734 ± 0.011 0.661 ± 0.020 0.778 ± 0.017 0.712 ± 0.012 0.576 ± 0.020