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Abstract

Microbial communities of the human microbiota exhibit diverse effects on human health and 

disease. Microbial homeostasis is important for normal physiological functions and changes to 

the microbiota are associated with many human diseases including diabetes, cancer, and colitis. 

In addition, there are also many microorganisms that are either commensal or acquired from 

environmental reservoirs that can cause diverse pathologies. Importantly, the balance between 

health and disease is intricately connected to how members of the microbiota interact and affect 

one another’s growth and pathogenicity. However, the mechanisms that govern these interactions 

are only beginning to be understood. In this review, we outline bacterial-fungal interactions in 

the human body, including examining the mechanisms by which bacteria govern fungal growth 

and virulence, as well as how fungi regulate bacterial pathogenesis. We summarize advances 

in the understanding of chemical, physical, and protein-based interactions, and their role in 

exacerbating or impeding human disease. We focus on the three fungal species responsible for the 

majority of systemic fungal infections in humans: Candida albicans, Cryptococcus neoformans, 

and Aspergillus fumigatus. We conclude by summarizing recent work in mining microbes for 

novel antimicrobials and antivirulence factors, highlighting the potential of the human microbiota 

as a rich resource for small molecule discovery.

Introduction

Microbial communities are ubiquitous throughout nature, occupying diverse ecosystems and 

exhibiting a range of interactions within and between species, from symbiosis to competition 

and predation1. One ecological niche of particular interest is the human body, as diverse 

collections of bacteria, fungi, archaea, and viruses living on and within this mammalian host 

interact to govern diverse aspects of human health2–5. Specifically, these communities of 

microbes play pivotal roles in maintaining normal physiological functions, as dysbiosis of 

the microbiota is associated with many diseases, including inflammatory bowel disease6, 
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irritable bowel syndrome7, diabetes8, obesity9, and cancer10,11, as well as allergies12,13. 

Such commensal organisms can be acquired through birth, food consumption, and exposure 

to diverse environments, and thus can have a profound impact on human development 

and health throughout an individual’s lifetime14,15. Importantly, members of the microbiota 

interact with each other as well as with the host to influence diverse phenotypic traits. Yet, 

despite the importance of these communications, our understanding of how these players 

interact remains in its infancy.

In addition to those members of the microbiota that play important roles in maintaining 

human health, there are also many microorganisms capable of causing diverse 

pathologies. While traditionally human microbiome studies have focused on bacterial 

species, advancements in sequencing technology have facilitated the identification and 

characterization of other members of these microbial communities in the human gut3,16,17, 

and other anatomical sites18–20. Among these commensal organisms are opportunistic 

fungal pathogens. These eukaryotic pathogens are reported to infect over 1 billion 

people annually, leading to approximately 1.5 million deaths worldwide21,22. Most fungal 

pathogens of humans take advantage of local or systemic suppression of the immune system 

to cause diverse maladies, including but not limited to: superficial skin, hair, and nail 

infections; chronic fungal lung infections; and systemic infections with mortality rates 

as high as 90%23. The three main opportunistic invaders capable of causing systemic 

disease in humans include species of Candida, Cryptococcus, and Aspergillus. Humans 

are exposed to some of these organisms through an environmental reservoir, including 

Aspergillus fumigatus and Cryptococcus neoformans24. Other fungal infections are caused 

by constituents of the human microbiota, including Candida albicans, which colonizes 

the gastrointestinal tract, urogenital tract, and skin24. Not surprisingly, bacterial pathogens 

capable of residing within a human host are also responsible for significant morbidity and 

mortality in humans, including but not limited to Pseudomonas aeruginosa in the lungs25, 

Staphylococcus aureus in the nasopharyngeal cavity26, and Clostridioides difficile in the 

gut27. While recent work has begun to elucidate the role of bacterial-fungal interactions 

in opportunistic infections25,28,29, the mechanisms by which these interactions contribute 

to pathogenesis remain largely unknown. Several recent publications have also reviewed 

bacterial-fungal interactions in the context of the human host3,30–38.

The scope of this review will focus on bacterial-fungal interactions and their role in 

microbial pathogenesis in the context of human health and disease (Figure 1). In recent 

years, bacterial-fungal interactions have been reviewed. We provide an overview of current 

work evaluating bacterial-fungal interactions in the human body, including examining 

the mechanisms by which bacteria govern fungal growth and virulence, as well as how 

fungi regulate bacterial pathogenesis. We summarize advances in understanding chemical, 

physical, and protein-based interactions, and their role in exacerbating or impeding human 

disease. We conclude by exploring the potential of bacterial-fungal interactions as a rich 

source for antimicrobial discovery and the identification of anti-virulence strategies to thwart 

infectious disease.
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Modulation of fungal proliferation and virulence by bacteria

Fungal pathogens of humans employ a range of adaptive mechanisms and virulence factors 

to facilitate growth and survival during infection of the host (Figure 2A). These include 

secretion of proteases and toxins, as well as switching between diverse morphological 

states that assist with adhesion, penetration of host tissue, and evasion of the host immune 

system39–42. By affecting the virulence of fungal pathogens, commensal and pathogenic 

bacteria can modulate the ability of fungi to thrive and cause disease in the host, as well as 

influence the host-response to the fungus.

Candida albicans

C. albicans is a natural member of the human mucosal microbiota and is a commensal 

in approximately 50% of healthy adults43. As an opportunistic pathogen, C. albicans is 

responsible for mucosal infections such as oral and vaginal candidiasis, as well as life-

threatening systemic disease in immunocompromised individuals23,44,45. In its host niche, 

C. albicans interacts with bacterial commensals, which influence diverse fungal phenotypic 

traits25. Many bacterial species inhibit C. albicans growth, while others secrete factors 

that inhibit fungal virulence traits, including filamentation and biofilm formation (Figure 

2A)34,46. In contrast, some bacteria promote fungal growth or enhance C. albicans virulence 

attributes. Naturally, a thorough understanding of the factors and conditions that govern C. 
albicans commensalism and pathogenesis is critical to understand how this organism can 

cause disease.

Proliferation—The ability of C. albicans to proliferate in the host relies on the fungus’ 

ability to adapt to various environmental perturbations including exposure to elevated 

temperatures, alternative carbon sources, reactive oxygen species, cell wall stressors, and 

diverse pH ranges47. These responses can all be influenced through interactions with 

commensal and pathogenic bacteria. In the oral and vaginal microenvironments, C. albicans 
interacts with Lactobacillus spp., which secrete lactic acid and other weak organic acids 

that inhibit C. albicans proliferation48,49. Additionally, Lactobacillus spp. secrete cyclic 

dipeptides that inhibit the growth of the fungus50. This particular inter-kingdom interaction 

appears to be important in maintaining a healthy physiological state as individuals with 

reduced colonization by key Lactobacillus spp. are at increased risk for vulvovaginal 

candidiasis51,52. Beyond Lactobacillus spp., other commensal bacteria found in the oral 

mucosa inhibit C. albicans growth in co-culture assays, including Actinomyces israelii and 

P. aeruginosa, as well as high concentrations of Prevotella nigrescens and Porphyromonas 
gingivalis53. In the gut, C. albicans interacts with bacteria and other members of the 

microbiota that also influence its ability to proliferate. Recent work explored interactions 

between C. albicans and the gut commensal Escherichia coli (strain MG1655) in vitro. 
E. coli was found to secrete a soluble factor that directly kills the fungus in a magnesium-

dependent manner54, as depletion of magnesium in a C. albicans-E. coli co-culture rescued 

growth of the fungus54. Notably, the authors indicate that the magnesium levels present in 

serum of healthy humans are well above the depleted levels used in the study. Therefore, for 

the inter-kingdom interaction to be physiologically relevant in vivo it would need to occur in 

microenvironments with depleted magnesium, which may occur at the sites of infection.
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Morphogenesis—C. albicans undergoes a transition from yeast to filamentous 

morphologies in response to a variety of host-relevant cues including exposure to serum, 

nutrient limitation, neutral pH, and elevated temperature55. This transition is important for 

virulence as C. albicans mutants locked in either morphological state are largely avirulent 

in mouse models of infection56,57. The current paradigm is that the filamentous, hyphal 

morphology is important for tissue invasion and adherence, whereas the yeast morphotype 

is imperative for dissemination. The filamentous form is also associated with additional 

virulence factors, including secretion of the cytolytic peptide candidalysin, as well as 

proteases41,58. Importantly, previous work demonstrated an inverse relationship between 

filamentous growth and commensalism, as mutations in key regulators of the yeast-to-

filament transition lead to enhanced fitness in the mouse gut58. Finally, in addition to 

filamentous states and the standard ‘white’ round-to-oval yeast morphology, C. albicans can 

also transition into several elongated yeast-like cell types (opaque, grey, and GUT) that 

exhibit distinct in vitro properties and interactions with the host56. Thus, modulating the 

diverse morphological states adopted by C. albicans can have a profound consequence on its 

ability to cause disease.

Commensal and pathogenic bacteria play key roles in regulating the C. albicans yeast-

to-hyphal transition, with both inhibitors and enhancers of filamentation identified. One 

key bacterial-fungal interaction occurs between P. aeruginosa and C. albicans in the 

human lung (Figure 3A). Previous work found that P. aeruginosa can physically adhere 

to C. albicans filaments in response to the quorum sensing molecule N-(3-Oxododecanoyl)-

L-homoserine lactone, leading to fungal cell death59,60. Notably, production of this 

quorum sensing molecule increases resistance of C. albicans to the most widely deployed 

antifungal, fluconazole, by upregulating efflux pump expression and activating stress 

response pathways61. The secretion of additional compounds with antifungal activity by 

P. aeruginosa is also well characterized, including the production of phenazines, which 

inhibit C. albicans growth at high concentrations62, and inhibit hyphal morphogenesis 

at sub-inhibitory concentrations63. Phenazine production is at the core of the chemical 

interaction between C. albicans and P. aeruginosa and elicits a myriad of effects on the 

host. During growth, C. albicans secretes ethanol as a by-product of fermentation, which 

enhances the production of phenazine compounds, such as pyocyanin, by P. aeruginosa63. 

Increased phenazine production further increases fungal ethanol secretion in a positive 

feedback loop by compromising mitochondrial function64. To add further complexity to 

this interaction, the production of phenazines and ethanol affect the host response to both 

pathogens, as ethanol reduces the ability of macrophages to clear P. aeruginosa65, while 

phenazines cause direct damage to epithelial tissues66. Finally, the host detects phenazines 

through the aryl hydrocarbon receptor (AhR), upregulating antimicrobial defences and 

proinflammatory cytokines, which lead to the degradation of virulence factors and eventual 

clearing of the microorganisms67. Interactions between P. aeruginosa and C. albicans are 

also important upon phagocytosis by host immune cells. Co-infection of macrophages 

with P. aeruginosa and C. albicans decreases fungal survival, reduces fungal escape from 

macrophages, and reduces C. albicans filamentation in response to host cells relative to 

macrophage infection with C. albicans alone68. This is dependent on the presence of 
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phenazines, as P. aeruginosa strains defective in compound production are unable to enhance 

fungal killing by macrophages.

Over time, C. albicans and P. aeruginosa have evolved to adapt to the negative pressures 

each pathogen exerts on one another. For example, clinical isolates of C. albicans from 

the lungs of cystic fibrosis patients have been identified that are resistant to the filament-

repressive effects of P. aeruginosa69. Genome sequencing of the C. albicans clinical isolates 

revealed that most of the constitutively filamentous strains harbored mutations in the 

transcriptional repressor gene NRG1; such mutations were necessary and sufficient for 

the filamentous phenotype. Six independent nrg1 mutations arose in Candida isolates from 

different cystic fibrosis patients69, providing a poignant example of parallel evolution in the 

context of the human host.

In the oral cavity, C. albicans interacts with the oral commensal and opportunistic pathogen, 

Streptococcus mutans. This microbe along with other Streptococcus spp. secrete trans-2-

decenoic acid, a small molecule that inhibits C. albicans hyphal morphogenesis without 

affecting fungal growth70. S. mutans also secretes mutanobactin A, another small molecule 

that blocks C. albicans hyphal morphogenesis71.

Another mucosal site frequently colonized by C. albicans is the human vagina18,72. Within 

this environment, C. albicans is the leading cause of vaginal candidiasis73 and interacts with 

commensal bacteria on the vaginal mucosa, including Lactobacillus spp. (Figure 3B).74,75. 

The ability of Lactobacillus spp. to affect C. albicans morphogenesis is dependent on 

white-opaque cell type switching. The white cell morphology has been best studied for its 

interaction with Lactobacillus spp. Cellular proteins secreted by this genus include major 

secreted protein 1 (Msp1), which is readily produced by Lactobacillus rhamnosus GG and 

acts as a chitinase to break down the fungal cell wall, blocking filamentous growth in 

white cells76. In addition to chitinase, other factors resistant to protease and heat treatment 

within Lactobacillus-conditioned medium inhibit C. albicans hyphal morphogenesis in 

white cells77–79, although the molecular entity responsible for this effect remained elusive 

for some time. Fortunately, recent work identified a component of the Lactobacillus 
secretome, 1-acetyl-beta-carboline, that inhibits C. albicans hyphal morphogenesis and 

biofilm formation via inhibition of the DYRK1-family kinase, Yak180. However, the same 

conditions that block filamentation in white cells do not block morphogenesis in opaque 

cells, highlighting the broad phenotypic plasticity C. albicans displays in response to both its 

environment and inter-kingdom interactions81.

Streptococcus agalactiae is another bacterium found in the vaginal microenvironment that 

is commonly isolated from individuals with recurrent vulvovaginal candidiasis82. Similar to 

Lactobacillus, S. agalactiae-conditioned medium inhibits C. albicans hyphal morphogenesis. 

However, co-inoculation of mice with C. albicans and S. agalactiae increased fungal burden 

in a mouse model of recurrent vulvovaginal candidiasis due to a decreased Th17 immune 

response 82, highlighting the complex connections between the fungus, bacterium, and host 

in governing pathogenesis.
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C. albicans also resides in the human gut83 where it interacts with commensal and 

pathogenic bacteria, including E. coli, Salmonella enterica, and Enterococcus faecalis. 
Previous work found that secretory products found during culture of E. coli biofilms 

were able to inhibit C. albicans hyphal morphogenesis and the expression of key hyphal-

associated genes84. Additionally, S. enterica serovar Typhimurium was able to inhibit C. 
albicans filamentation in a Caenorhabditis elegans model of infection and directly kill 

C. albicans hyphae through a mechanism that relied on the inositol phosphatase, sopB85. 

Interestingly, C. albicans-conditioned medium increased the expression of sopB and other 

genes important for S. enterica-mediated hyphal-killing85, highlighting a compensatory 

mechanism adopted by the bacterium to regulate fungal virulence. Finally, the interaction 

between E. faecalis and C. albicans has been well studied, where early work found that 

co-infection with both organisms resulted in attenuated virulence in a C. elegans model86. 

E. faecalis secretes EntV, a bacteriocin with antifungal and anti-filamentation activity, 

which protects C. elegans from infection with C. albicans87. Recent work found that post-

translational modifications are important for the regulation of EntV, including identifying the 

requirement for gelatinase activity to cleave EntV into its active form88. Many other bacteria 

have also been reported to produce soluble factors that govern C. albicans morphogenesis, 

including the opportunistic pathogens C. difficile and Burkholderia cenocepacia, which 

secrete para-Cresol89, and cis-2-dodecnoic acid (BDSF)90, respectively.

More broadly in the gut, short-chain fatty acids (SCFAs) are metabolites produced in 

the colon by bacterial fermentation of dietary fibers, and these lipids play a key role 

in maintaining a healthy microbiota. SCFAs inhibit growth, filamentation, and biofilm 

formation of C. albicans in vitro91. Consequently, antibacterial-treated mice susceptible to 

C. albicans gut infection exhibit significantly reduced levels of SCFAs in the cecum and 

higher fungal loads in the feces91, providing in vivo evidence that SCFAs are important 

in controlling C. albicans overgrowth. Additionally, recent work assessed the role of 

C. albicans in governing pathogenicity in a chemical-induced colitis mouse model, and 

observed that vaccination with the Candida NDV-3A vaccine protected mice from fungal-

induced damage during colitis92. In the future, it will be interesting to see if these protective 

effects are also observed in a bacterial-induced colitis model.

In contrast to the examples highlighted above, commensal bacteria are also implicated in 

enabling C. albicans morphogenesis in the mammalian gut93. Serial passage of C. albicans 
through the gastrointestinal tracts of antibiotic-treated mice led to the rapid generation 

of low-virulence strains unable to form hyphae due to mutations in a gene encoding a 

transcription factor that positively regulates filamentation, FLO893. These evolved lineages 

stimulated proinflammatory cytokines and conferred transient cross-protection against 

several other gut inhabitants. However, if an intact microbiota was present, only the virulent 

hyphal form persisted, suggesting that bacterial commensals play a critical role in promoting 

the filamentous or virulent form. The reason for this contradiction remains unclear but may 

be due to the commensal status of organisms as opposed to inter-kingdom interactions in 

disease contexts.

Biofilm Formation—Another important C. albicans virulence trait is its ability to form 

intrinsically drug-resistant biofilms, or surface-associated communities, which colonize 
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medical devices such as catheters in healthcare settings94. While the yeast-to-filament 

transition is intricately linked to the ability of C. albicans to form these structures, there are 

numerous other facets that contribute to their formation. C. albicans is frequently isolated in 

polymicrobial biofilms that are also comprised of Streptococcus spp., P. aeruginosa, and S. 
aureus95–97. These primarily occur on healthcare devices such as catheters and pacemakers, 

as well as in the oral cavity, where co-colonization with bacteria is associated with dental 

cavities, periodontitis, and denture stomatitis98. In the mouth, C. albicans adheres to oral 

Streptococcus spp., providing additional surface for fungal colonization99. Streptococcus 
gordonii, a common commensal of the oral mucosa, exerts physical force and produces 

chemical signals that lead to enhanced fungal morphogenesis and biofilm formation in 

C. albicans100. Additional work found that the competence regulation system ComDE 

in S. gordonii is important in the early stages of dual-species biofilms, but inhibits C. 
albicans biofilm formation in later stages101. Streptococcus oralis colonization of the oral 

mucosa also leads to increased biofilm formation, enhanced dissemination of C. albicans 
in mice, and increased expression of proinflammatory cytokines that result in enhanced 

tissue inflammation and immunopathogenesis102. Other bacterial members of the oral 

microbiota also enhance C. albicans virulence in early stages of biofilm formation, including 

Streptococcus sanguinis, Actinomyces odontolyticus, and Actinomyces viscosus103.

In contrast, the opportunistic pathogen and oral commensal Aggregatibacter 
actinomycetemcomitans secretes the quorum sensing molecule autoinducer-2 that inhibits 

C. albicans biofilm formation by blocking filamentation104. As well, P. aeruginosa secretes 

factors that inhibit C. albicans biofilm formation, although through a mechanism that is 

independent of morphogenesis105. Using a strain of P. aeruginosa that does not secrete 

homoserine lactone, it was discovered that the bacterial supernatant could inhibit biofilm 

formation in the constitutively filamentous tup1 deletion strain of C. albicans, implying an 

effect beyond inhibition of hyphal morphogenesis105.

Cryptococcus neoformans

While studies examining fungal–bacterial interaction have mainly been performed with C. 
albicans, the impact of bacteria on C. neoformans growth and virulence has also been 

investigated. C. neoformans is an opportunistic human fungal pathogen and causative 

agent of cryptococcosis106. While immunocompromised individuals are most vulnerable to 

cryptococcal infections, there are also reports of C. neoformans causing systemic infections 

in immunocompetent hosts107,108. An estimated 223,100 cases of cryptococcal meningitis 

occur globally each year, leading to 181,100 deaths109. These staggeringly high mortality 

rates are due to numerous factors including a limited antifungal arsenal, the frequent 

development of antifungal resistance, and the fact that these infections predominantly occur 

in resource-poor settings where proper medical care is inadequate. As a human fungal 

pathogen, C. neoformans relies on several unique virulence traits to survive in a human 

host including the ability to proliferate at mammalian body temperature, as well as the 

capacity to form a polysaccharide capsule, produce melanin, and form the atypical titan cell 

morphology (Figure 2)110. Titan cells are cryptococcal cells with enormous dimensions and 

clinical relevance due in part to being refractory to phagocytosis by human immune cells111.
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Proliferation—Given the diverse environmental niches that C. neoformans is capable of 

inhabiting, there are many reports of diverse bacterial species exerting anti-cryptococcal 

activity31. C. neoformans is commonly isolated from pigeon guano suggesting that its 

gastrointestinal tract is at least temporarily colonized with this fungus, despite this species 

being recalcitrant to cryptococcal infection112. Early work that co-incubated C. neoformans 
with seven species of bacteria found within the pigeon microbiota observed a complete 

inhibition of C. neoformans growth, speculating that a specialized avian microbiota may at 

least partially protect birds from infections by C. neoformans113. Follow-up investigations 

found that the growth-inhibitory activity was mainly exerted by only two bacterial species, 

P. aeruginosa and Bacillus subtilis114. P. aeruginosa can inhibit C. neoformans growth 

through both a contact-dependent mechanism as well as contact-independent mechanisms 

that include the secretion of pyocyanin and other phenazine derivatives115. S. aureus is 

also reported to kill C. neoformans through a mechanism that involves attachment to the 

capsule116 as the anti-proliferative effects are specific to C. neoformans and not to other 

fungal pathogens that do not produce the polysaccharide layer. While these examples all 

highlight inter-kingdom interactions that impair C. neoformans growth, the soil bacterium 

Acinetobacter baumanii was observed to increase C. neoformans survival in biofilms and 

stimulate the formation of capsule117. The exact molecular mechanism of this interaction 

remains to be determined; however, physical contact was not required, at least for the 

biofilm-inducing activity, suggesting that A. baumanii likely secretes specific factors that 

affect the fungus either at the cell surface or inside the cell. Overall, the impact of these 

inter-kingdom interactions on C. neoformans proliferation is highly complex and dependent 

on the organism involved.

Virulence—C. neoformans melanization is an important virulence trait to help protect 

the fungus from oxidative damage, antifungal assault, and high temperature, while 

also functioning to modulate host immune responses118. To better understand how 

bacteria regulate C. neoformans melanin production, a screen was performed using 40 

microorganisms found in environmental niches occupied by the fungus119. This work 

identified several species of the Bacillus genus that were able to inhibit melanization 

without affecting growth. Bacillus safensis was further investigated and found to inhibit 

other virulence traits including capsule production and biofilm formation, in part via the 

action of chitinase activity119. There are also examples of bacteria enhancing C. neoformans 
virulence. The opportunistic bacterial pathogen Klebsiella aerogenes promotes melanization 

of C. neoformans cells during co-cultivation through the bacterial production of dopamine, 

a precursor for cryptococcal melanin biosynthesis120. Finally, it was recently shown that 

the mouse microbiota has the capacity to induce titan cell formation by C. neoformans121. 

The in vivo significance of the microbiota in promoting titan cell formation was established 

by observing that mice pre-treated with antibiotics prior to infection with C. neoformans 
had significantly less fungal cells with the titan morphology compared to antibiotic-free 

mice121. Further analysis of the titan cell-inducing mechanisms revealed that bacteria such 

as E. coli, and Streptococcus pneumoniae trigger cryptococcal titanization via shedding of 

peptidoglycan, a component of the bacterial cell wall121.
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Aspergillus fumigatus

Aspergillus fumigatus is a saprotrophic fungus ubiquitous in the environment and a leading 

cause of invasive aspergillosis122. A. fumigatus is a significant cause of invasive infections 

in individuals with impaired immune function, including those with neutropenia, solid 

organ transplant recipients, and patients on immunosuppressive therapies, such as high-dose 

corticosteroids. It is estimated that more than 200,000 cases of invasive aspergillosis occur 

each year, with staggering mortality rates of up to 50% with treatment and 100% if left 

undiagnosed24. A. fumigatus relies on several virulence traits during infection of a human 

host, including the production of gliotoxin and germination of conidia into hyphae123.

One of the most consequential bacterial-fungal interactions occurs between A. fumigatus 
and P. aeruginosa, which can be deadly in individuals with chronic lung conditions, such as 

cystic fibrosis97,124. It is well established that P. aeruginosa secretes antifungal compounds 

with activity against A. fumigatus, including pyocyanin and other phenazines125,126. 

Expanding beyond these well-characterized secreted compounds, Sass et al. evaluated 24 

P. aeruginosa mutants with deletions in genes important for virulence127. The authors 

found that the P. aeruginosa siderophore pyoverdine was effective at inhibiting A. 
fumigatus biofilm formation. By capturing extracellular iron, the authors predicted that 

pyoverdine limits A. fumigatus growth and biofilm formation by creating a nutrient-limited 

environment127. Pyoverdine was later found to work synergistically with the Pseudomonas 
quinolone signal (PQS) quorum sensing molecule that is also responsible for iron chelation 

and inhibition of biofilm formation under low iron conditions128. Paradoxically, under 

high iron conditions, PQS enhances A. fumigatus biofilm formation and this process 

is dependent on the A. fumigatus iron siderophore, ferricrocin128. Finally, P. aeruginosa 
produces volatiles that stimulate A. fumigatus to invade the lung parenchyma when the two 

organisms are physically separated129. However, as soon as the organisms come into direct 

contact, their relationship becomes antagonistic as they compete for nutrients, including 

iron129. This highlights the complex inter-kingdom interactions displayed between these two 

opportunistic pathogens that have a profound impact on the human host, as well as the key 

role of iron in modulating this dynamic relationship.

In other mucosal sites of the human body, an important fungal-bacterial interaction occurs 

between A. fumigatus and S. aureus. During polymicrobial biofilm formation, S. aureus 
inhibits A. fumigatus conidiation, filamentation, and biofilm maturation130. Another study 

found that E. coli DH5α secretes a 60 kDa protein with activity against A fumigatus. This 

activity was then linked to a siderophore-based inhibition of fungal growth via limitation of 

iron acquisition131.

Overall, these studies demonstrate that different bacteria have disparate effects on C. 
albicans, C. neoformans, and A. fumigatus either promoting or preventing growth, and 

either enhancing or blocking the production of virulence factors. As further studies continue 

to explore the inter-kingdom interactions that occur in the human host, more mechanistic 

insights will be gleaned as to how fungal pathogenesis is impacted by other inhabitants of 

the human microbiota.
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Modulation of bacterial proliferation and virulence by fungi

Similar to fungi, bacteria employ a range of virulence traits to facilitate infection in the host, 

including the use of secretion systems for the release of toxins and other effectors132,133. 

Some fungi exhibit broad effects on the virulence of multiple bacterial pathogens. For 

example, C. albicans biofilms create a hypoxic microenvironment that facilitates the growth 

of anaerobic bacteria including Clostridium perfringens and Bacteroides fragilis134. Here, 

we summarize current research efforts to evaluate the effect of fungi on bacterial growth and 

virulence in the context of the human host.

Pseudomonas aeruginosa

P. aeruginosa is a leading cause of hospital-acquired infections, including pneumonia and 

urinary and wound infections135, and is frequently detected in the lungs of cystic fibrosis 

patients97. In fact, over 75 % of CF patients over 18 years of age are chronically colonized 

with P. aeruginosa, which often persists throughout the life of the patient. Previous work 

found that C. albicans impacts P. aeruginosa virulence, biofilm formation, and secretion 

of antifungal compounds. Specifically, C. albicans produces the quorum sensing molecule 

farnesol, which inhibits transcription from the pqsA–E operon, blocks production of the 

quinolone signal PQS, and ultimately inhibits the expression of phenazine biosynthetic 

genes136. However, in P. aeruginosa–C. albicans biofilms, where P. aeruginosa and PQS 

concentrations are high, the presence of the fungus leads to increased production of 

phenazines through an uncharacterized pathway, suggesting that the effects of C. albicans 
on P. aeruginosa are complex62,137. Interestingly, C. albicans can also impact P. aeruginosa 
virulence by inhibiting iron acquisition. C. albicans-secreted proteins inhibit the expression 

of P. aeruginosa genes important for iron acquisition and virulence, including pyochelin 

and pyoverdine138. Oral administration of C. albicans secreted proteins was sufficient to 

protect mice from P. aeruginosa infection and oral iron supplementation rescued bacterial 

virulence in the presence of C. albicans. P. aeruginosa and A. fumigatus are also frequent co-

colonizers in the lungs of cystic fibrosis patients97 and gliotoxin produced by A. fumigatus 
inhibits P. aeruginosa growth and biofilm formation139. Other work found that A. fumigatus 
secretes isocyanides that bind copper and exhibit broad-spectrum antimicrobial activity, 

including activity against P. aeruginosa140.

Staphylococcus aureus

S. aureus and C. albicans are frequently co-isolated in biofilm-associated diseases such 

as keratitis and urinary tract and wound infections141. S. aureus adheres to C. albicans 
hyphae through the adhesins FnpB, SasF, and Atl to facilitate tissue penetration and seed 

dissemination of the bacteria142. In a mouse model of oral candidiasis, co-infection of 

C. albicans and S. aureus results in the establishment of systemic infection as opposed 

to symptoms of oral candidiasis with the fungus alone or no symptoms with the bacteria 

alone142. A mouse model of intra-abdominal infection also found that coinfection with C. 
albicans and S. aureus results in synergistic lethality143,144. Interestingly, this synergism 

is not dependent on the ability of C. albicans to undergo hyphal morphogenesis and 

non-albicans species of Candida also enhance infection145,146. Additionally, recent work 

established that during polymicrobial growth of C. albicans and S. aureus, the fungus 
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elevates extracellular pH to enhance the production of alpha toxin, the major cytotoxic agent 

released by the bacterium147. As well, when exposed to the C. albicans quorum sensing 

molecule farnesol, S. aureus exhibits enhanced tolerance to antimicrobial agents due to 

increased expression of drug efflux pumps148.

Other Examples—S. mutans and C. albicans are frequently co-isolated in plaques 

and biofilms in the oral mucosa, contributing to caries and other tooth decay and 

damage, particularly in children. While high levels of farnesol can inhibit S. mutans 
growth, lower concentrations that are found in S. mutans-C. albicans conditioned medium 

actually increase growth and enhance biofilm formation in S. mutans149. Farnesol also 

increases the expression of glucosyltransferases in S. mutans that contribute to the robust 

exopolysaccharides found in the extracellular matrix of biofilms149. Thus, there is a dynamic 

relationship between farnesol production and S. mutans growth and virulence.

To investigate the mechanisms underlying the high rate of mucosal and systemic candidiasis 

in cancer patients receiving chemotherapy150, Bertolini et al. developed a chemotherapy-

immunosuppressed mouse model of oral and gut mucosal breach by C. albicans151. The 

authors showed that infection with C. albicans led to changes in the oral mucosa that 

contributed to disease151. These changes in the microbial community led to an increase in 

prevalence of Enterococcus spp., which reduced the integrity of the epithelial barrier and 

promoted invasion of C. albicans and immunopathology associated with candidiasis.

In contrast to most of the mechanistic studies published over the past decade, recent work 

established that positive interactions between microbes were much more common than 

previously predicted. This was determined by using a high-throughput co-culture platform 

that examined over 180,000 different interactions between 20 soil-dwelling bacteria in 40 

different environment conditions152. It would be interesting to use a similar platform in the 

future to examine bacterial-fungal interactions in a high-throughput manner to systemically 

evaluate both positive and negative effects on proliferation and virulence.

Targeting Virulence as an Antimicrobial Strategy

Microbe-derived biomolecules, including natural products, are a rich source of antimicrobial 

compounds153,154. About 70% of antibacterial agents used in the clinic are of natural 

product origin, and 97% of these compounds originate from either fungi or bacteria155,156. 

However, a vast majority of these antimicrobials target essential gene products or processes 

required for pathogen viability. A relatively underexplored area of study is the therapeutic 

potential of anti-virulence compounds to thwart infectious disease157,158. A challenge 

of canonical antimicrobial agents is their relatively non-selective inhibition of microbial 

growth. This leads to negative effects on commensal microbes in the human body and 

contributes to antimicrobial resistance159–161. One of the exciting possibilities of anti-

virulence strategies to combat disease is the ability to specifically prevent organisms from 

causing infections, as opposed to directly killing microbes. This reduces selective pressure 

on the organism to evolve resistance as cells are still able to grow and survive, without 

employing virulence factors that damage the host162. Inhibiting virulence factors also 

extends potential drug targets beyond those involved in essential processes in pathogens. 
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This is especially important in fungi, as these eukaryotic pathogens share many essential 

processes with their human hosts. However, there are limitations to anti-virulence strategies, 

as elimination of the pathogen is necessary in the case of many infections. Anti-virulence 

strategies alone could be employed for common opportunistic infections such as oral 

and vaginal candidiasis. However, for bloodstream infections or complicated disease, 

combination therapy could be employed that uses both an antimicrobial and anti-virulence-

based strategy163.

While this review has described several secreted compounds produced by members of the 

human microbiota that modulate key virulence attributes, thus far, the only FDA-approved 

anti-virulence therapeutic to date has used antibodies to bind and neutralize toxins in 

bacterial pathogens. The first study to demonstrate efficacy of an anti-virulence strategy 

against a pathogen involved treatment of infant botulism with antibodies purified from adult 

donors that neutralize the botulism toxin164. Building on the success of this approach, a 

separate study successfully employed an anti-virulence treatment in stage three clinical 

trials to combat recurrent C. difficile infection165. The authors administered two monoclonal 

antibodies, actoxumab and bezlotoxumab, that bind and neutralize the C. difficile toxins 

A and B, respectively. Treatment with both antibodies was associated with a significant 

reduction in recurrent C. difficile infection in at-risk patients165. Additionally, another 

monoclonal antibody, raxibacumab, binds and neutralizes a component of the anthrax 

toxin and confers improved survival and clinical outcomes following anthrax exposure 

in rabbits and monkeys166. Probiotic bacteria have been extensively investigated for their 

ability to treat infections that lead to microbial dysbiosis, including diarrheal disease and 

vaginal candidiasis167,168. However, only one fungal species is established as a treatment for 

bacterial infection, including diarrhea caused by C. difficile in adults and children. Previous 

work found that Saccharomyces boulardii CNCM I-745 secretes a 54-kDa protease which 

digests the C. difficile toxin A169. Oral administration of the probiotic fungus has no effect 

on the microbiota of healthy humans, but it can rescue eubiosis of the intestinal microbiota 

following diarrheal disease170 and infection with Helicobacter pylori171. These examples 

highlight the potential of targeting virulence factors to combat C. difficile infections, 

including the potential application of microbiota-derived factors.

A relatively unexplored and exciting area of current focus is the potential of small molecules 

to target virulence traits of human fungal pathogens. Several small molecule inhibitors 

of C. albicans hyphal morphogenesis have been described (Figure 4)60,77,172–174. This 

includes small molecules secreted by bacteria, such as 1-acetyl-beta-carboline secreted 

by Lactobacillus spp.80 and the C. albicans quorum sensing molecule, farnesol175. Other 

work has screened collections of small molecules for activity against C. albicans hyphal 

morphogenesis. Specifically, a collection of 30,000 small molecules was assessed for their 

ability to inhibit adhesion of C. albicans to polystyrene plates, identifying a single molecule, 

filastatin, that inhibits C. albicans adhesion, hyphal morphogenesis, biofilm formation, and 

fungal virulence in a nematode model of infection172. Analogous screens also identified 

biaryl amide compounds that inhibit C. albicans hyphal morphogenesis and prevent 

virulence in oral and invasive murine models of candidiasis176, as well as diazaspiro-

decane analogs as inhibitors of C. albicans biofilm formation, hyphal morphogenesis, and 

virulence in both an oral and invasive model of mouse candidiasis173. Additionally, a screen 
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of 678 compounds pre-selected based on bioactivity against Saccharomyces cerevisiae 
identified Tri-Chloro-Salicyanilide (TCSA) as a top compound that blocks C. albicans 
hyphal morphogenesis and biofilm formation. Through transcriptional profiling, this activity 

was linked to fungal mitochondrial protein import177. However, none of these compounds 

have advanced to a clinical trial. The only anti-virulence strategy to combat fungal infection 

that is under clinical development is the NDV-3A C. albicans vaccine178. It was developed 

using the Als3 adhesin protein that is critical for C. albicans adherence, invasion, and 

virulence in the host179. The vaccine has demonstrated efficacy against both systemic and 

oral candidiasis in murine models180–182, as well as recurrent vulvovaginal candidiasis 

in women in a double-blind, placebo controlled clinical trial178. Thus, although targeting 

virulence traits represents a promising therapeutic strategy to mitigate infectious diseases, 

future study is necessary to develop microbiome-derived compounds with efficacy against 

fungal pathogens.

Bacteria and fungi alike have been mined for the secretion of antimicrobial compounds, 

including many front-line anti-infective agents used clinically183,184. However, the current 

mining of antimicrobials is neither systematic nor comprehensive, and the re-discovery of 

antimicrobial agents is a significant hurdle that is yet to be overcome185. Current work is 

trying to establish efficient pipelines coupled with modern ‘omics’ technology to facilitate 

natural product discovery in diverse microbial backgrounds. Such advancements could be 

applied to those organisms living in the environment as well as those found within a human 

host. Bioinformatics now facilitates the discovery of silenced or cryptic biosynthetic clusters 

responsible for natural product production in both fungi and bacteria186–188. This includes 

recent work that developed a pipeline for identifying natural products from anaerobic 

fungi using genomics, transcriptomics, proteomics, and metabolomics, highlighting the 

untapped potential of anaerobic gut fungi as producers of natural products189. Whole-

genome sequencing to identify unexplored biosynthetic gene clusters has also led to the 

identification of a known antibacterial complestatin and a new antibacterial corbomycin, 

that bind to bacterial peptidoglycan and inhibit autolysin activity to prevent essential 

bacterial cell wall remodelling190. Both compounds were effective in a murine model of 

skin infection and decreased methicillin-resistant S. aureus burden190. Finally, leveraging the 

microbiomes of marine animals and cutting-edge metabolomics and genomic tools, a novel 

antifungal turbinmicin was discovered that displays potent in vitro and in vivo activity 

against multidrug-resistant fungal pathogens through a fungal-specific mode of action, 

targeting Sec14 of the vesicular trafficking pathway191. Continued advances in antimicrobial 

discovery will help scientists and clinicians realize the potential of anti-virulence strategies 

to thwart infectious disease.

Conclusion

Dissecting the mechanisms underlying inter-kingdom interactions is important for furthering 

our understanding of human health and disease. The literature outlined in this review 

demonstrates that microbial interactions, including both antagonistic and synergistic 

interactions, have important implications for opportunistic infections and beyond. We 

highlight the extensive literature that describes the effects of bacteria on fungal growth 

and virulence in the mammalian host, as well as the effect of fungi on bacterial proliferation 
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and virulence. By focusing on opportunistic fungal and bacterial pathogens that colonize 

the human body, we highlight key microbial interactions that contribute to the onset 

and severity of diverse infections. Studies highlighted in this review that investigate the 

synergistic interactions between bacteria and fungi identify their important implications 

for polymicrobial infections and disease susceptibility. Additionally, work describing 

antagonistic interactions between bacteria and fungi demonstrate their potential for the 

identification of novel antimicrobial compounds and strategies to thwart infectious disease. 

These novel antimicrobial compounds offer a promising reservoir of untapped chemical 

diversity that remains largely unexplored. Beyond the medical applications of inter-kingdom 

interactions, characterizing these communications is important for our understanding of the 

development and maintenance of the human microbiota. Similar to studying other ecological 

environments, examining the microbial composition of healthy and disease states can further 

our understanding of these complex communities.

With the rising threat of antimicrobial resistance, the need for novel antibacterial and 

antifungal agents is reaching a critical point. Improved strategies for mining bacteria and 

fungi for natural products now enable researchers to revisit ecological bacterial-fungal 

interactions as a source of novel antimicrobials. Given that many microbes are opportunistic 

pathogens that rely on virulence traits to cause disease in a human host, small molecules 

that inhibit microbial virulence represent an exciting area of antimicrobial discovery. With 

antibody and vaccine-based anti-virulence strategies beginning to gain approval for clinical 

use, further research is required to expand the available repertoire of microbial virulence 

inhibitors.
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Figure 1: Bacterial-fungal interactions in the human body.
While this is not a comprehensive list of organisms found in the human microbiota, 

it highlights the key bacterial-fungal interactions summarized in this review, sorted by 

anatomical site. Figure made with biorender.com.
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Figure 2: Microbial traits modulated by inter-kingdom interactions.
A/ Bacteria influence the ability of C. albicans, C. neoformans, and A. fumigatus to 

proliferate and modulate antifungal susceptibility, with certain inter-kingdom interactions 

enhancing these phenotypic traits and others impeding proliferation or compound 

susceptibility. This is examined in vitro by culturing fungi on solid (shown) or liquid 

medium in the presence or absence of bacteria or bacterial supernatants. It is also examined 

using mouse models, where the microbiota has been altered. Finally, the impact of bacteria 

on antifungal susceptibility can be assessed using a variety of approaches, including disc 

diffusion assays where the ability of bacterial supernatants to increase the efficacy (zone 

of inhibition) of antifungals can be assessed. Bacteria also modulate diverse virulence 

traits including C. albicans hyphal formation, A. fumigatus germination, and C. neoformans 
capsule formation, melanization, and titan cell induction. Finally, bacteria can modulate 

biofilm formation in C. albicans and A. fumigatus. Displayed are the developmental stages 
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of C. albicans biofilm formation, including adhesion to a solid surface, induction of hyphal 

morphogenesis, and maturation and dispersal where an extracellular matrix is produced and 

yeast cells are released. B/ Fungi can influence the ability of P. aeruginosa and S. aureus to 

proliferate and can modulate antibacterial susceptibility through increasing the expression of 

efflux pumps in S. aureus. This has been determined through both in vitro co-culture assays 

on solid or liquid medium (shown) and through in vivo co-culture models of infection. Fungi 

can also modulate diverse bacterial virulence traits including inhibition of iron acquisition 

and quorum sensing in P. aeruginosa, as well as alpha toxin production in S. aureus. Finally, 

fungi can inhibit mono and polymicrobial biofilm formation in both P. aeruginosa and 

enhance biofilm formation in S. aureus. Figure made with biorender.com.
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Figure 3: Interactions between bacteria and C. albicans modulate virulence of the fungus.
A/ Interactions between C. albicans and P. aeruginosa on the lung epithelium. P. aeruginosa 
secretes phenazines such as pyocyanin that inhibit C. albicans growth and biofilm formation, 

as well as the yeast-to-hyphal transition at concentrations below those inhibiting growth. 

Through a positive feedback loop, the production of ethanol by C. albicans stimulates 

phenazine production in P. aeruginosa, and phenazines then further increase ethanol 

production in the fungus through compromising mitochondrial function. P. aeruginosa 
quorum sensing (QS) molecules, including N-3-oxo-dodecanoyl-L-homoserine lactone, also 

inhibit the C. albicans yeast-to-hyphal transition. This QS molecule also upregulates efflux 

pumps in C. albicans leading to increased resistance to the antifungal, fluconazole. Finally, 

P. aeruginosa can adhere to C. albicans hyphae and directly kill them through the secretion 

of phenazines. B/ Interactions between C. albicans and Lactobacillus spp. on the vaginal 

epithelium. Lactobacillus spp. secrete small molecules including hydrogen peroxide, short-
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chain fatty acids (SCFAs), and weak organic acids (WOAs) such as lactic acid that affect 

fungal growth. Lactobacillus spp. also secrete 1-acetyl-beta-carboline that inhibits the yeast-

to-filament transition, as well as chitinase, which breaks down the fungal cell wall. Finally, 

Lactobacillus spp. directly compete with C. albicans for adhesion sites on the vaginal 

epithelium. Figure made with biorender.com.
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Figure 4: Bacteria secrete diverse compounds that inhibit the C. albicans yeast-to-hyphal 
transition.
The small molecules secreted by bacterial species highlight a diverse collection of chemical 

scaffolds capable of inhibiting hyphal morphogenesis in C. albicans. Figure made with 

biorender.com.
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