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Antimicrobial resistance was estimated to be associated with 4.95 million deaths
worldwide in 2019. It is possible to frame the antimicrobial resistance problem as
a feedback-control problem. If we could optimize this feedback-control problem and
translate our findings to the clinic, we could slow, prevent, or reverse the development
of high-level drug resistance. Prior work on this topic has relied on systems where
the exact dynamics and parameters were known a priori. In this study, we extend
this work using a reinforcement learning (RL) approach capable of learning effective
drug cycling policies in a system defined by empirically measured fitness landscapes.
Crucially, we show that it is possible to learn effective drug cycling policies despite
the problems of noisy, limited, or delayed measurement. Given access to a panel of 15
�-lactam antibiotics with which to treat the simulated Escherichia coli population, we
demonstrate that RL agents outperform two naive treatment paradigms at minimizing
the population fitness over time. We also show that RL agents approach the performance
of the optimal drug cycling policy. Even when stochastic noise is introduced to the
measurements of population fitness, we show that RL agents are capable of maintaining
evolving populations at lower growth rates compared to controls. We further tested
our approach in arbitrary fitness landscapes of up to 1,024 genotypes. We show that
minimization of population fitness using drug cycles is not limited by increasing
genome size. Our work represents a proof-of-concept for using AI to control complex
evolutionary processes.
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Drug-resistant pathogens are a wide-spread and deadly phenomenon that were respon-
sible for nearly 5 million deaths worldwide in 2019 (1). Current projections suggest
the global burden of antimicrobial resistance could climb to 10 million deaths per
year by 2050 (2). In the United States alone, 3 million cases of antimicrobial-resistant
infections are observed each year (3). Despite the significant public health burden of
antibiotic resistance, development of novel antibiotics has slowed due to the poor return
on investment currently associated with this class of drugs (4). Novel approaches to
therapy design that explicitly take into account the adaptive nature of microbial cell
populations while leveraging existing treatment options are desperately needed.

Evolutionary medicine is a rapidly growing discipline that aims to develop treatment
strategies that explicitly account for the capacity of pathogens and cancer to evolve
(5–11). Such treatment strategies, termed “evolutionary therapies,” cycle between drugs
or drug doses to take advantage of predictable patterns of disease evolution. Evolutionary
therapies are often developed by applying optimization methods to a mathematical or
simulation-based model of the evolving system under study (12–22). For example, in
castrate-resistant prostate cancer, researchers developed an on–off drug cycling protocol
that allows drug-sensitive cancer cells to regrow following a course of treatment. Clinical
trials have shown this therapy prevents the emergence of a resistant phenotype and
enables superior long-term tumor control and patient survival compared to conventional
strategies (23, 24).

Current methods for the development of evolutionary therapies require an enormous
amount of data on the evolving system. For example, many researchers have optimized
treatment by using genotype–phenotype maps to define evolutionary dynamics and
model the evolving cell population (16, 25–33). For instance, Nichol et al. modeled em-
pirical drug fitness landscapes measured in Escherichia coli as a Markov chain to show that
different sequences of antibiotics can promote or hinder resistance. However, defining the
Markov chain framework required exact knowledge of the high-dimensional genotype–
phenotype map under many drugs (16). Most published methods for optimization
of these models require a complete understanding of the underlying system dynamics
(15, 16, 34–36). Such detailed knowledge is currently unobtainable in the clinical
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setting. Approaches that can approximate these optimal policies
given only a fraction of the available information would fill a key
unmet need in evolutionary medicine. We hypothesize that re-
inforcement learning algorithms can develop effective treatment
policies in systems with imperfect information. Reinforcement
learning (RL) is a well-studied subfield of machine learning that
has been successfully used in applications ranging from board
games and video games to manufacturing automation (34, 37–
39). Broadly, RL methods train artificial intelligence agents to
select actions that maximize a reward function. Importantly, RL
methods are particularly suited for optimization problems where
little is known about the dynamics of the underlying system.
While previous theoretical work has studied evolutionary therapy
with alternating antibiotics, none have addressed the problems of
noisy, limited, or delayed measurement that would be expected in
any real-world applications (12–14, 17, 40–42). Further, RL and
related optimal control methods have been previously applied for
the development of clinical optimization protocols in oncology
and anesthesiology (21, 43–48).

In this study, we developed an approach to discovering
evolutionary therapies using a well-studied set of empirical fitness
landscapes as a model system (26). We explored “perfect infor-
mation” optimization methods such as dynamic programming
in addition to RL methods that can learn policies given only
limited information about a system. We show that it is possible
to learn effective drug cycling treatments given extremely limited
information about the evolving population, even in situations
where the measurements reaching the RL agent are extremely
noisy and the information density is low.

1. Methods
1.1.Model Systemof EvolvingMicrobial Populations. As a model
system, we simulated an evolving population of E. coli using the
well-studied fitness landscape paradigm, where each genotype is
associated with a certain fitness under selection (16, 26, 29). To
parameterize our evolutionary model, we relied on data from a
previously described fitness landscape of the E. coli �-lactamase
gene (26). In this study, Mira et al. assayed the growth rates of 16
genotypes, representing a combinatorially complete set of 4 point
mutations in the �-lactamase gene, against a set of 15 �-lactam
antibiotics (Table 1). We used these data to define 15 different
fitness landscapes on the same underlying genotype space, each
representing the selective effects of one of the 15 drugs.

Table 1. Reference codes for drugs under study
Index Drug code Drug

1 AMP Ampicillin
2 AM Amoxicillin
3 CEC Cefaclor
4 CTX Cefotaxime
5 ZOX Ceftizoxime
6 CXM Cefuroxime
7 CRO Ceftriaxone
8 AMC Amoxicillin + Clavulanic acid
9 CAZ Ceftazidime
10 CTT Cefotetan
11 SAM Ampicillin + Sulbactam
12 CPR Cefprozil
13 CPD Cefpodoxime
14 TZP Piperacillin + Tazobactam
15 FEP Cefepime

We applied this well-studied E. coli model system because it is
one of the few microbial cell populations for which a combinato-
rially complete genotype–phenotype mapping has been measured
(26, 29). We extended this paradigm to larger procedurally
generated landscapes as a sensitivity analysis (described in SI
Appendix). By simulating an evolving E. coli cell population
using the described fitness landscape paradigm, we were able
to define an optimization problem on which to train RL agents
(Fig. 1).

1.2. Simulation of Evolution Using Fitness Landscapes. We
used a previously described fitness-landscape-based model of
evolution (16, 27). In brief, we model an evolving asexual
haploid population with N mutational sites. Each site can have
one of two alleles (0 or 1). We can therefore represent the
genotype of a population using an N -length binary sequence,
for a total of 2N possible genotypes. We can model theoretical
drug interventions by defining fitness as a function of genotype
and drug. Different drugs can then be represented using N -
dimensional hypercubic graphs (Fig 1A). Further, if we assume
that evolution under drug treatment follows the strong selection
and weak mutation (SSWM) paradigm, we can then compute the
probability of mutation between adjacent genotypes (genotypes
that differ by 1 point mutation) and represent each landscape
as a Markov chain as described by Nichol et al. (16, 27, 49).
Briefly, the population has an equal probability of evolving to
all adjacent fitter mutants and a zero probability of evolving
to less fit mutants. With a sufficiently small population size,
we can then assume that the population evolves to fixation
prior to transitioning to another genotype. At each time step,
we sampled from the probability distribution defined by the
Markov chain to simulate the evolutionary course of a single
population. In the model system described above (Section 1.1),
fitness is given by the growth rate of a population with a given
genotype under a specific drug. As a sensitivity analysis, we also
incorporated a previously described phenomenological model
that better simulates clonal interference compared to the base-case
SSWM model (27, 50). We incorporate a parameter “phenom,”
which biases the probability of transition to a given genotype
based on the difference in fitness between the current genotype
and all adjacent genotypes. When phenom = 0, the model is
identical to SSWM, where all adjacent genotypes with fitness
larger than current fitness have an equal probability of fixing.
When phenom is large, the model becomes more deterministic,
with the most-fit genotype becoming more and more likely
to fix.

1.3. Optimization Approaches.
1.3.1. Markov decision process with perfect information. First, we
employed a Markov Decision Process (MDP), a mathematical
framework recently used to predict optimal drug policies ca-
pable of minimizing resistance acquisition in evolving bacterial
populations (13, 34). In an MDP, the system stochastically
transitions between discrete states (genotypes in our case) and
at each time step a decision (action, drug choice) is made. This
action defines both the instantaneous reward and influences
which state will occur next. The goal of an MDP is to calculate
a policy that optimizes the objective function (in our case,
minimizing the population fitness over a given time period).
In our system, the state st at time step t ∈ {0, 1, 2, ...} is defined
as the vector of fitness values associated with the population’s
genotype. For example, if the population currently occupies
genotype g5 , the state is defined as a vector that describes the
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Fig. 1. Schematic evolutionary simulation and tested optimization approaches. Top: A simulated isogenic population of E. coli evolves on fitness landscapes
in response to drug-imposed selection pressure. At each evolutionary time step, the population transitions to a neighboring available genotype indicated by
directional edges between genotype nodes. Bottom: A table describing the inputs and outputs of the three tested optimization algorithms. The MDP condition
receives the complete transition matrix for the evolving system and fitness of each genotype-action pair. It outputs a policy function that provides an action
given the current system genotype. RL-genotype is batch trained using the instantaneous genotype as the only training input. It outputs a value function, which
is used to select the prescribed action given a genotype as input. RL-fit is batch trained using instantaneous fitness and previous drug as the training inputs.
Like RL-genotype, it outputs a value function with which we can derive a prescribed policy.

fitness of g5 in each of the 15 drug landscapes. At each time
step an action/drug is applied and the system transitions with
probability Pa(st+1|stat) to the new state st+1. In the previous
MDP model, the transition probabilities were estimated from
replicate evolution experiments. Here, we adapted the model to
fitness landscapes, estimating the transition probabilities between
genotypes using the well-characterized Strong Selection Weak
Mutation (SSWM) limit which can be formally described by a
Markov chain. The instantaneous reward function is defined as
1 − Ra(s), where Ra(s) is the fitness of the current genotype
in the current chosen drug/action. The optimal policy

(
�(s)

)
is

a formal mapping of an optimal action/drug for each genotype.
The benefit of an MDP formulation is the certainty of converging
on the true optimal drug policy via dynamic programming
techniques, in our case, backward induction. However, the MDP
formulation requires perfect knowledge of the evolving system.
To set up and solve the MDP formulation, we needed the
transition probabilities between each genotype given each action
and the fitness of each genotype-drug pair.

1.3.2. Reinforcement learners with imperfect information. Next,
we leveraged reinforcement learning to train two distinct deep
learning agents. Identical to the previously described MDP, these
agents suggest an action (drug) based on the information it
has about the system. Importantly, these learners are able to
operate without perfect information, and as a result are more
suitable for clinical application where perfect genotype and
fitness information is impossible to achieve. In both models, the
reinforcement learners begin with no knowledge of the state space
(and its associated organization/geometry), range of possible
fitness values, or transition probabilities between genotypes. Over
the course of 500 episodes, each of which is 20 evolutionary time
steps, the reinforcement learners gather information from their
evolutionary environment in response to its actions (drugs) and
converge on a suggested policy. We chose to implement Deep Q
reinforcement learners, a well-studied and characterized method
of reinforcement learning particularly suited for situations with
very little a priori knowledge about the environment (34, 51). In
the first learner, termed RL-genotype, we made the instantaneous
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genotype of the population at each time step known to the learner.
For this learner, the neural architecture was composed of an input
layer, two 1d convolutional layers, a max pooling layer, a dense
layer with 28 neurons, and an output layer with a linear activation
function. In the second learner, termed RL-fit, we made only the
previous action, at−1, and current fitness known to the learner at
each time step. RL-fit received no information about the genotype
of the population. This learner was composed of a neural network
with an input layer, two dense hidden layers with 64 and 28
neurons, and an output layer with a linear activation function.
In both cases, Q-value estimates are improved by minimizing the
temporal difference between Q-values computed by the current
model and a target model, which has weights and biases that
are only updated rarely. We used mean squared error as the loss
function.
1.3.3. Simulation ofmeasurement noise in the RL-fit learner. As we
approach a more realistic model, we consider a scenario where
the fitness measurement is imperfect. More specifically, the RL-
fit learner is given the previous action, at−1, as before; however,
the current fitness is subject to measurement noise drawn from
a zero-mean normal distribution with variance �2 according to
f ′(s|a) = f (s|a) +N (�, 0.05× �2). The variable � determines
the amplitude of the noise, and therefore the precision of our
fitness measurement. Finally, we evaluated the performance of
RL-genotype learners that were trained on delayed information
to explore the viability of using outdated sequencing information
to inform drug selection (described in SI Appendix).

All code and data needed to define and implement the
evolutionary simulation and reinforcement learning framework
can be found at https://github.com/DavisWeaver/evo_dm. The
software can be installed in your local python environment using
“pip install git+https://github.com/DavisWeaver/evo_dm.git”.

We also provide all the code needed to reproduce the figures
from the paper at https://github.com/DavisWeaver/rl_cycling.

2. Results
In this study, we explored the viability of developing effective
drug cycling policies for antibiotic treatment given less and
less information about the evolving system. To this end, we
developed a reinforcement learning framework to design policies
that limit the growth of an evolving E. coli population in silico.
We evaluated this system in a well-studied E. coli system for
which empirical fitness landscapes for 15 antibiotics are available
in the literature (26). A given RL agent could select from
any of these 15 drugs when designing a policy to minimize
population fitness. We defined three experimental conditions.
In the first, we solved a Markov decision process formulation of
the optimization problem under study. In doing so, we generated
true optimal drug cycling policies given perfect information of the
underlying system (described in Section 1.2). In the second, RL
agents were trained using the current genotype of the simulated
E. coli population under selection (RL-genotype). Then, further
constricting the information of the learner, an agent was trained
using only observed fitness of the E. coli population along with
the previous action taken (RL-fit). Finally, we introduced noise
into these measures of observed fitness to simulate real-world
conditions where only imprecise proxy measures of the true
underlying state (genotype) may be available. Each experimental
condition was evaluated based on its ability to minimize the
fitness of the population under study in 20 time-step episodes.
We compared these conditions to two negative controls; a drug
cycling policy that selects drugs completely at random (which we
will refer to as “random”), and all possible two-drug cycles (i.e.,
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Fig. 2. Performance of RL agents in a simulated E. coli system. (A): Line plot showing the effectiveness (as measured by average population fitness) of
the average learned policy as training time increases on the x-axis for RL agents trained using fitness (red) or genotype (blue). (B): Density plot summarizing the
performance of the two experimental conditions (measured by average population fitness) relative to the three control conditions. (C): Boxplot showing the
effectiveness of 10 fully trained RL-fit replicates as a function of noise. Each data point corresponds to one of 500 episodes per replicate (5,000 total episodes).
The width of the distribution provides information about the episode by episode variability in RL-fit performance. (D): Signal to noise ratio associated with
different noise parameters. Increasing noise parameter decreases the fidelity of the signal that reaches the reinforcement learner.
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Table 2. Example drug sequences
Drug Sequence Replicate Condition

CTX,AMC,CTX,CPR,CTX,CPR,CTX,CPR,CTX,CPR 53 RL-fit
CTX,CPR,CPR,CPR,CTX,CPR,CPR,CPR,CTX,SAM 53 RL-genotype
CTX,AMC,CTX,AMC,CTX,AMC,CTX,AMC,CTX,CPR 23 RL-fit
CTX,AMC,CTX,AMC,CTX,AMC,CTX,AMC,CTX,AMC 23 RL-genotype
CTX,AMC,CTX,AMC,CTX,CPR,CTX,AMC,CTX,CPR 96 RL-fit
CTX,SAM,CTX,SAM,CTX,CPR,CTX,CPR,CTX,CPR 96 RL-genotype

Here, we show the first 10 selected drugs for representative episodes of the three top-performing replicates.

AMP-AM-AMP-AM-AMP...). We tested 100 replicates of RL-fit
and RL-genotype against each of these conditions. Each replicate
was trained for 500 episodes of 20 evolutionary steps (10,000
total observations of system behavior). We chose 500 episodes as
the training time after hyperparameter tuning showed decreased
or equal effectiveness with additional training.

2.1. Comparison of RL Drug Cycling Policies to Negative Con-
trols. We found that both RL conditions dramatically reduced
fitness relative to the random policy. In both cases, the RL
conditions learned effective drug cycling policies after about 100
episodes of training and then fine-tuned them with minimal
improvement through episode 500 (Fig. 2A). As expected,
RL-genotype learned a more effective drug cycling policy on
average compared to RL-fit. RL-genotype had access to the
instantaneous genotype of the evolving population, while RL-
fit was only trained using indirect measurement (population
fitness). We define population fitness as the instantaneous growth
rate of the current genotype. In 98/100 replicates, we observed
a measurable decrease in population fitness under the learned
RL-fit policy versus a random drug cycling policy (SI Appendix,
Fig. S1A). Further, we found that the average RL-fit replicate
outperformed all possible two-drug cycling policies (Fig. 2B).

RL-genotype outperformed both negative controls in all 100
replicates (Fig. 2B). In some replicates, RL-genotype achieved
similar performance compared to the MDP policy (SI Appendix,
Fig. S1D). In addition, the distribution of performance for RL-
genotype policies nearly overlapped with MDP performance (Fig.
2B). Introduction of additional noise to the training process
for RL-fit led to degraded performance (Fig. 2C ). However,
even with a large noise modifier, RL-fit still outperformed the
random drug cycling condition. For example, with a noise
modifier of 40, RL-fit achieved an average population fitness
of 1.41 compared to 1.88 for the random drug cycling condition
(Fig. 2C ).

2.2. Overview of Learned Drug Cycling Policies for RL-Fit and
RL-Genotype. We evaluated the learned drug cycling policies
of RL-fit and RL-genotype for the 15 �-lactam antibiotics
under study. Represented drug sequences for these conditions
can be found in Table 2. We compared these to the true
optimal drug cycling policy as a reference. For this system,
we show that the optimal drug cycling policy relies heavily
on Cefotaxime, Ampicillin + Sulbactam, and Ampicillin (Fig.
3A). Cefotaxime was used as treatment in more than 50% of
time-steps, with Ampicillin + Sulbactam and Ampicillin used

A B

Fig. 3. Drug cycling policies learned by RL-genotype and RL-fit. (A): Heatmap depicting the learned policy for 100 replicates (on the x-axis) of the RL-genotype
and 100 replicates of RL-fit. Far Left column (enlarged) corresponds to the optimal policy derived from the MDP condition. The Y-axis describes the �-lactam
antibiotics each RL agent could choose from while the color corresponds to the probability that the learned policy selected a given antibiotic. Bottom heatmap
shows the median fitness benefit observed under the policy learned by a given replicate. (B) Heatmap showing the average learned policy for RL-fit and
RL-genotype. RL-genotype learns a more consistent mapping of genotype to action compared to RL-fit.
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next most frequently. The optimal drug cycling policy used
Cefprozil, Piperacillin + Tazobactam, and Cefaclor infrequently.
The remaining drugs were not used at all. The different RL-
fit replicates largely converged on a similar policy. They relied
heavily on Cefotaxime and Amoxicillin + Clavulanic acid.
However, they relied infrequently on Cefprozil. RL-genotype
replicates also converged on a relatively conserved policy. Further,
RL-genotype replicates showed a much more consistent mapping
of genotype to action compared to RL-fit (Fig. 3B). Both
RL-genotype and RL-fit identified complex drug cycles that
use 3 or more drugs to treat the evolving population. The
practical benefit of complex dosing protocols with 3+ drugs
is immediately apparent as the MDP/RL-genotype/RL-fit all
significantly outperform each two-drug combination. We show
that policies that do not rely on Cefotaxime are suboptimal in
this system. The three replicates that showed the least benefit
compared to the random drug cycling case did not use Cefotaxime
at all (Fig. 3B). The importance of Cefotaxime is likely explained
by the topography of the CTX drug landscape (SI Appendix,
Fig. S5). More than half of the available genotypes in the CTX
landscape lie in fitness valleys, providing ample opportunities
to combine CTX with other drugs and “trap” the evolving
population in low-fitness genotypes.

2.3. Evolutionary Trajectories Observed under RL-Genotype,
RL-Fit, and MDP Drug Policies. Next, we compared the evolu-
tionary paths taken by the simulated E. coli population under

the MDP, RL-fit, RL-genotype, and random policy paradigms.
The edge weights (corresponding to the probability of observed
genotype transitions) of the RL-genotype and MDP landscapes
show a 0.96 Pearson correlation (SI Appendix, Fig. S2). In
contrast, the edge weights of the RL-fit and MDP landscapes
show a 0.82 Pearson correlation (SI Appendix, Fig. S2). During
the course of training the MDP condition, the backward
induction algorithm generated a value function V (s, a) for
all s ∈ S and a ∈ A. In SI Appendix, Fig. S2D, we use
this value function to show that certain genotypes (namely
1, 5, 6, and 13) were more advantageous to the evolving
population than to the learner. These genotypes were frequented
much more often under the random drug cycling condition
compared to any of the experimental conditions (SI Appendix,
Fig. S2D). We also show that other genotypes (namely 12 and
11) were particularly advantageous for the learner compared to
the evolving population. These genotypes were frequented much
more often under the experimental conditions compared to the
random drug cycling condition (SI Appendix, Fig. S2D).

We also show that certain genotype transitions occur more
frequently than others, independent of experimental conditions.
For example, the population nearly always transitioned from
genotype 5 to genotype 7 (Fig. 4). This transition highlights
the way these learned policies use drug landscapes to guide
evolution. Genotype 5 (0100) is a fitness peak in most of the drug
landscapes used in the learned policies, and is therefore a very
disadvantageous genotype for the controlling agent. CTX, the
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condition. Bottom row: Graph depicting the fitness landscape, beginning with the wild type (Bottom) all the way to the quadruple mutant (Top). Size of the
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most commonly used drug in all effective policies, has a slightly
higher peak at genotype 7 (0110), which forces the population
away from genotype 5 (SI Appendix, Fig. S3).

As another example, the evolving population very rarely
transitioned from genotype 1 to genotype 9 in the RL-fit
condition. This genotype transition occurred commonly in the
MDP and RL-genotype conditions (Fig. 4). This difference is
explained by the policies shown in Fig. 3B. Under the RL-
genotype policy, CTX was selected every time the population
was in genotype 1 (the initial condition). The CTX landscape
topography allows transition to 3 of the 4 single mutants,
including genotype 9 (1000) (SI Appendix, Fig. S5). Under
the RL-fit policy, CTX and AMC were used in about equal
proportion when the population is in genotype 1. Unlike the
CTX landscape, the AMC landscape topography does not permit
evolution from genotype 1 to genotype 9 (SI Appendix, Fig. S5)).

2.4. Characteristics of Selected Drug Policies. To better under-
stand why certain drugs were used so frequently by RL-genotype,
RL-fit, and the MDP policies, we developed the concept of

an “opportunity landscape.” We computed each opportunity
landscape by taking the minimum fitness value for each genotype
from a given set of fitness landscapes. This simplified framework
gives a sense of a potential best case scenario if the drugs in a given
combination are used optimally. For example, the MDP policy
relied heavily on CTX, CPR, AMP, SAM, and TZP to control the
simulatedE. coli population. The resultant opportunity landscape
(Fig. 5A) contains only a single fitness peak, with 15/16 of the
genotypes in or near fitness valleys. In Fig. 5B, we show the actual
genotype transitions observed during evolution under the MDP
policy. We also color the nodes based on the value function
estimated by solving the MDP. As expected, the value function
estimated by the MDP aligns closely with the topography of
the opportunity landscape. There is only one genotype that
the value function scores as being very poor for the learner,
corresponding to the single peak in the opportunity fitness
landscape (Fig. 5). Interestingly, the opportunity landscape
predicted that the population would evolve to the single fitness
peak and fix. In contrast, the observed genotype transitions
suggest that the MDP policy was able to guide the population
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away from that single fitness peak. A more detailed discussion of
opportunity landscapes can be found in SI Appendix.

We also show that both the MDP and RL-genotype conditions
select the drug with the lowest fitness for most genotypes (Fig.
5C ). There are a few notable exceptions to this rule, which
highlight RL-genotype’s capacity for rational treatment planning.
A greedy policy that selects the lowest drug-fitness combination
for every genotype would select Amoxicillin (AM) when the
population is identified as being in genotype 5. The AM drug
landscape then strongly favors transition back to the wild-type
genotype (g = 1). From genotype 1, most available drugs
encourage evolution back to the genotype 5 fitness peak. As
we see in Fig. 5B, genotype 5 is by far the least advantageous
for the learner. The greedy policy therefore creates an extremely
disadvantageous cycle of evolution. In fact, none of the tested
policies rely heavily on AM in genotype 5 (Fig. 3B), instead
taking a reward penalty to select Cefotaxime (CTX). The CTX
drug landscape encourages evolution to the double mutant, which
has access to the highest-value areas of the landscape. Finally, we
rank drug landscapes based on the number of genotypes with a
fitness value < 1 (Fig. 5D). Based on the defined reward function,
these genotypes would be considered advantageous to the learner.

We show that drugs identified as useful by the optimal policy
or RL-genotype tend to have more advantageous genotypes in
their drug landscape. The only two highly permissive landscapes
(CPD, CPR) that aren’t used have extremely similar topography
to CTX, which most policies were built around.

2.5. Impact of Landscape Size, Measurement Delay, and Clonal
Interference. To understand the impact of larger fitness land-
scapes on the ability of our method to develop effective policies,
we simulated random correlated landscapes of size N alleles,
from N = 4 to N = 10, representing a range of 16 to 1,024
genotypes. Using a previously described technique, we tuned the
correlation between landscapes to generate a range of collateral
resistance and collateral sensitivity profiles (27). We found that
reinforcement learners trained on fitness and genotype were able
to outperform the random cycling control across a wide range
of landscapes sizes (Fig. 6A). RL-genotype policies consistently
outperformed RL-fit policies, which outperformed random drug
cycling policies. Further, the MDP-derived optimal policy
achieved similar performance on larger landscapes compared
to smaller ones, suggesting that increasing genome size does
not make drug cycling for evolutionary control less feasible.
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Finally, we investigated the genotype values for the largest
landscape (N = 10), finding that the genotype value space, and
therefore policy space, is rugged, with many peaks and valleys
(Fig. 6B).

Time delays between when information is sampled from a
system and when action is taken based on that information may
be unavoidable in real-world applications. To understand how
the practical limitation of time delays impacts our approach,
we next tested the effect of measurement delays on the ability of
reinforcement learners to generate effective policies. In this study,
the delay parameter d controlled the “age” of the information
available to the learner. With a delay of 0 (d = 0) time steps,
the learner had instantaneous information about the system. If
d = 5, the learner was using genotype information from time t
to inform an action taken on time t + 5. We tested a set of delay
parameters d ∈ 0, 5. For this experiment, we tested only the RL-
genotype condition against the random and MDP conditions,
arguing that growth rate estimates are much easier to obtain
compared to sequencing, and thus measurement delays are less
likely to be a practical limitation for the RL-fit condition. Because
the MDP is our control/optimal policy it remains without a delay.
We found that when d <= 1, average performance of the RL-
genotype condition was equivalent to that observed in the base
case. If d > 1, the performance of RL-genotype decreased to
worse than or similar to the random condition (Fig. 6C ).

Finally, we implemented a recent phenomenological model
that simulates the effect of classic clonal interference by biasing
the transition probabilities toward more and more fit adjacent
mutants through increasing the phenom parameter. We find
that with increasing clonal interference, the performance of RL-
genotype and RL-fit dramatically improves (Fig. 6D and SI
Appendix, S9). This is a result of significantly less stochasticity
in the evolutionary system as the most-fit mutant is increasingly
likely to fix in the population as phenom gets large. However,
this model still treats the population as homogeneous and does
not allow for the fixation of deleterious mutants or ecological
interactions. It is possible that these factors would introduce
much of the stochasticity back into the system, a focus of future
work (52).

3. Discussion
The evolution of wide-spread microbial drug resistance is driving
a growing public health crisis around the world. In this study,
we show a proof of concept for how existing drugs could be
leveraged to control microbial populations without increasing
drug resistance. To that end, we tested optimization approaches
given decreasing amounts of information about an evolving
system of E. coli, and showed that it is possible to learn highly
effective drug cycling policies given only empirically measurable
information. To accomplish this, we developed a reinforcement
learning approach to control an evolving population of E. coli in
silico. We focused on 15 empirically measured fitness landscapes
pertaining to different clinically available �-lactam antibiotics
(Table 1). In this setting, RL agents selected treatments that,
on average, controlled population fitness much more effectively
than either of the two negative controls. Excitingly, we showed
that RL agents with access to the instantaneous genotype of
the population over time approach the MDP-derived optimal
policy for these landscapes. Critically, RL agents were capable of
developing effective complex drug cycling protocols even when
the measures of fitness used for training were first adjusted by a
noise parameter. This suggests that even imperfect measurements

of an imperfect measure of population state (the kind of measure-
ments we are able to make in clinical settings) may be sufficient to
develop effective control policies. We also show that RL or MDP-
derived policies consistently outperform simple alternating drug
cycling policies. In addition, we performed a sensitivity analysis
and showed how RL agents outperformed random controls
with varying landscape size, measurement delay, and simulated
clonal interference. Finally, we introduced the concept of the
“Opportunity Landscape,” which can provide powerful intuition
into the viability of various drug combinations.

Our work expands a rich literature on the subject of
evolutionary control through formal optimization approaches.
Our group and others have developed and optimized perfect
information systems to generate effective drug cycling policies
(12, 13, 15, 17, 18, 53). Further, a limited number of studies
have used RL-based methods for the development of clinical
optimization protocols (21, 43–46, 48). These studies have
been limited so far to simulated systems, including a recent
study that introduced Celludose, a RL framework capable
of controlling evolving bacterial populations in a stochastic
simulated system (47).

Much like the studies noted above, we show that AI or MDP-
based policies for drug selection or drug dosing dramatically
outperform sensible controls in the treatment of an evolving cell
population. We extend this literature in three key ways. We
provide an optimization protocol capable of learning effective
drug cycling policies using only observed population fitness (a
clinically tractable measure) as the key training input. Impor-
tantly, the reinforcement learners have no prior knowledge of
the underlying model of evolution. Second, we grounded our
work with empirically measured fitness landscapes from a broad
set of clinically relevant drugs, which will facilitate more natural
extension to the bench. Third, we tested our approach in fitness
landscapes of up to 1,024 genotypes, the largest state space that
has been evaluated in the treatment optimization literature. We
show that minimization of population fitness using drug cycles
is not limited by increasing genome size.

There are several limitations to this work which bear mention.
We assume that selection under drug therapy represents a
strong-selection and weak mutation regime in order to compute
transition matrices for our models. It is likely that other selection
regimes emerge in cases of real-world pharmacokinetics or spatial
regimes where the drug concentration fluctuates dramatically
(54, 55). While we relax some of the strongest assumptions in the
SSWM regime via a previously studied phenomenological model
(27, 56), we still do not capture the possibility of deleterious
or multiple simultaneous mutations to fix. We also assume
the phenotype of the population is perfectly described by its
genotype. As a result, contexts where epigenetic factors play
a significant role will likely require a more careful treatment.
In addition, we chose to keep drug concentration constant
throughout our analysis, largely owing to the lack of robust
empirical data linking genotype to phenotype under dose-
varying conditions (sometimes called a fitness seascape) (57). As
more empirical fitness seascape data become available, a natural
extension would be to explore the efficacy of the RL system in
controlling a population by varying both drug and dose.

While we present the most extensive genotype–phenotype
modeling work to date on this subject, we still only modeled
the effect of mutations at up to 10 genotypic positions. The real
E. coli genome is approximately 5 × 106 base pairs (58). The
evolutionary landscape for living organisms is staggeringly large,
and not tractable to model in silico. It is possible that empirical

PNAS 2024 Vol. 121 No. 16 e2303165121 https://doi.org/10.1073/pnas.2303165121 9 of 10

https://www.pnas.org/lookup/doi/10.1073/pnas.2303165121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2303165121#supplementary-materials


measures of fitness like growth rate or cell count may not provide a
robust enough signal of the underlying evolutionary state on real
genomes. In vitro implementations of reinforcement learning-
based drug cycle optimization systems are needed to address this
potential shortcoming. Another potential alternative would be to
use the comparatively low-dimensional phenotype landscape of
drug resistance (59).

In this work, we present a reinforcement-learning framework
capable of controlling an evolving population of E. coli in
silico. We show that RL agents stably learn complex multidrug
combinations that are state specific and reliably outperformed
a random drug cycling policy as well as all possible two-drug
cycling policies. We also highlight key features of the types of drug
landscapes that are useful for the design of evolutionary control

policies. Our work represents an important proof-of-concept
for AI-based evolutionary control, an emerging field with the
potential to revolutionize clinical medicine.
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the manuscript and/or SI Appendix. Previously published data were used for
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