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Significance

Cancer relies on genomic changes 
to drive evolution. One type of 
change, chromosomal instability 
(CIN), promotes plasticity and 
heterogeneity of chromosome 
sets via ongoing errors in mitosis. 
The rate of these errors informs 
patient prognosis, drug response, 
and risk of metastasis. However, 
measuring CIN in patient tissues 
is challenging, hindering the 
emergence of CIN rate as a 
prognostic and predictive clinical 
biomarker. To advance clinical 
measures of CIN, we 
quantitatively tested the relative 
performance of several CIN 
measures in tandem using four 
well-defined, inducible CIN 
models. This survey revealed poor 
sensitivity in several common CIN 
assays and highlights the primacy 
of single-cell approaches. Further, 
we propose a standard, 
normalized unit of CIN, permitting 
comparison across methods and 
studies.
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Chromosomal instability (CIN) is the persistent reshuffling of cancer karyotypes via 
chromosome mis-segregation during cell division. In cancer, CIN exists at varying lev-
els that have differential effects on tumor progression. However, mis-segregation rates 
remain challenging to assess in human cancer despite an array of available measures. We 
evaluated measures of CIN by comparing quantitative methods using specific, inducible 
phenotypic CIN models of chromosome bridges, pseudobipolar spindles, multipolar 
spindles, and polar chromosomes. For each, we measured CIN fixed and timelapse fluo-
rescence microscopy, chromosome spreads, six-centromere FISH, bulk transcriptomics, 
and single-cell DNA sequencing (scDNAseq). As expected, microscopy of tumor cells 
in live and fixed samples significantly correlated (R = 0.72; P < 0.001) and sensitively 
detect CIN. Cytogenetics approaches include chromosome spreads and 6-centromere 
FISH, which also significantly correlate (R = 0.76; P < 0.001) but had limited sensitivity 
for lower rates of CIN. Bulk genomic DNA signatures and bulk transcriptomic scores, 
CIN70 and HET70, did not detect CIN. By contrast, scDNAseq detects CIN with high 
sensitivity, and significantly correlates with imaging methods (R = 0.82; P < 0.001). In 
summary, single-cell methods such as imaging, cytogenetics, and scDNAseq can meas-
ure CIN, with the latter being the most comprehensive method accessible to clinical 
samples. To facilitate the comparison of CIN rates between phenotypes and methods, 
we propose a standardized unit of CIN: Mis-segregations per Diploid Division. This 
systematic analysis of common CIN measures highlights the superiority of single-cell 
methods and provides guidance for measuring CIN in the clinical setting.

chromosomal instability | aneuploidy | mitosis | clinical biomarkers

David von Hansemann and Theodor Boveri described chromosomal instability (CIN) 
and proposed its role in human cancer over 100 y ago (1, 2). Indeed, CIN accelerates 
tumor evolution, and portend increased metastasis (3, 4), therapeutic resistance (5–7), 
and worse prognosis (8–10). Importantly, tumors’ CIN levels vary considerably. While 
increasing CIN levels correlate with features of advanced cancer, the relationship is not 
linear or simple. Very high CIN levels inhibit tumors in mouse models (11–13). In human 
cancer, CIN level categories, such as “low” and “high” CIN, have been associated with 
survival in both directions—improved (14–18) and impaired (8, 10, 19, 20). This dis-
crepancy may be due, in part, to context dependent effects of CIN in different tissues, 
tumors, and model systems (12). However, suboptimal CIN measurements and poorly 
defined categories likely contribute, highlighting the need for accurate, quantitative meas-
ures of CIN.

The term CIN has been used to describe elevated mis-segregation of whole chromo-
somes (numerical CIN) and structural and copy number alterations that result from 
chromosome mis-segregation (structural CIN, e.g., chromothripsis). It has also frequently 
been erroneous equated to aneuploidy, which is a result of, but not the same as CIN. How 
CIN is defined impacts the interpretation of its measure and generalization of results. For 
this study, we define CIN as transient or persistent mis-segregation of chromosomes or 
chromosome fragments via abnormal mitosis which results in copy number gains or losses 
of any fraction of a chromosome.

Current measures of CIN vary in accuracy as well as how comprehensively and directly 
they assess CIN, leading to disagreement among measures (21, 22). Given these discrep-
ancies, it is important to compare and judge the analytic validity of these approaches.

Among cell biologists, direct observation of mitotic abnormalities is a common measure 
of CIN. Fixed and time-lapse microscopy rely on the visual identification of abnormal 
mitotic phenotypes such as lagging, polar, and bridging chromosomes as well as spindle 
multipolarity. This direct observation of mitotic defects is considered the “gold standard.” 
However, the identity of the mis-segregated chromosome(s) remains unclear and, in some 
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cases, even direct observation requires assumptions to infer chro-
mosome mis-segregation, such as whether a lagging chromosome 
segregates to the correct or incorrect daughter cell (5–7, 23). 
Therefore, imaging detects CIN by association with mitotic 
defects. Further, these methods are not readily applicable to 
human tumors.

Cytogenetic methods are used to infer CIN by association with 
its resulting cell-to-cell variation in chromosome numbers or kar-
yotypes. Cycling cells are captured in mitosis for chromosome 
counts and karyotypes. However, the reliance on mitotic cells may 
bias the sample, particularly as de novo aneuploidy may delay 
progression through interphase (24–26). By contrast, centromeric 
fluorescence in situ hybridization (cenFISH) identifies abnormal 
chromosome sets in fixed interphase cells without bias for cycling 
cells. However, cenFISH is limited to a small number of chromo-
somes and may suffer from other limitations such as sectioning 
artifacts. Further, any analysis of living cells in a tumor is biased 
by cellular selection, as dead cells are cleared (7, 27–29).

High-throughput sequencing enables several methods to study 
intratumoral heterogeneity and CIN. Bulk transcriptional data 
(bRNAseq) assigns CIN scores to tumor samples based on expres-
sion of a selected set of genes. The CIN70 expression score (30), 
meant to reflect the level of CIN, is derived from an inferred level 
of aneuploidy and correlates with proliferation and structural ane-
uploidy. Similarly, the HET70 score correlates with high karyotype 
heterogeneity in the NCI60 cell line panel, and, unlike CIN70, 
is independent of proliferation (31). Despite these advances, it is 
unclear whether bulk transcriptional scores can discriminate ongo-
ing CIN in the tumor from historical CIN—chromosome aberra-
tions that previously arose but do not continue. Similarly, bulk 
DNA sequencing (bDNAseq) CIN signatures are proposed to 
quantify and identify the initial cause of CIN, by inferring mech-
anisms that could produce an observed cell-averaged DNA copy 
number profile. Whether bulk sequencing measures ongoing CIN 
has not been tested.

Single-cell genomic measures of cell-to-cell variation in copy 
number analysis are less commonly used in clinical samples but 
have an advantage over bulk methods as they are not averaged 
across cells, allowing for direct evaluation of cell-to-cell variation 
(27). Low-coverage single-cell DNA sequencing (scDNAseq) can 
determine numerical copy numbers of all chromosomes in single 
cells in experimental models and patient tumors (32, 33). Like 
FISH, this information can be used to measure CIN by quanti-
fying cell-to-cell heterogeneity in genomics-inferred karyotypes. 
scDNAseq can be further improved by accounting for cellular 
selection against highly aneuploid cells using computational mod-
eling and approximate Bayesian computation (ABC) (27).

We sought to understand which of these measures, under iden-
tical well-controlled circumstances, most readily detect ongoing 
CIN. Toward this, we directly compared these measures of CIN 
within biological replicates of well-defined inducible cell-based 
models. The results reveal the pre-eminence of single-cell measures 
(microscopic analysis of mitosis, cytogenetic methods, scDNAseq) 
in measuring ongoing CIN and the inability of bulk molecular 
sequencing (transcriptional profiles and bulk DNA sequencing) 
to detect CIN. Among single-cell measures, those that survey all 
chromosomes across hundreds of cells are most sensitive. The data 
collected here are made available to investigators who seek to 
accurately quantify CIN and are an important touchstone to estab-
lish the directness of specific measures of ongoing CIN. We antic-
ipate that this comprehensive comparison will serve as a foundation 
to identify accurate CIN measures for use in clinical samples. 
While additional work in tumors is required to validate clinical 
measures of CIN, this work reveals which measures will advance 

mechanistic insight, reveal clinical significance, and allow use of 
CIN as a predictive biomarker, such as for microtubule-targeted 
therapies (17).

Results

Design and Validation of CIN Models with Distinct Mechanisms. 
We developed four phenotypic models of CIN induced by 
distinct mechanisms (Fig.  1A): bridging chromosomes (Br), 
pseudobipolar spindles (Pb), multipolar spindles (Mp), and 
polar chromosomes (Po). Bridging chromosomes are modeled in 
CAL51 cells via tetracycline-inducible expression of a dominant 
negative mutant of telomeric repeat binding factor (TERF2-DN-
tetOn) lacking both its basic domain and Myb-binding box (34). 
Pseudobipolar, multipolar spindles, and polar chromosomes are 
modeled in MCF10A cells with inducible expression of polo-like 
kinase 4 (PLK4-WT-tetOn). Pseudobipolar spindles develop from 
multipolar spindles whose centrosomes have clustered together to 
form an apparent bipolar mitotic spindle, a process that is partially 
dependent on the kinesin-like protein HSET. We model these by 
inducing centrosome amplification via tetracycline-induction of 
PLK4 which, in MCF10A cells often cluster their centrosomes 
prior to anaphase. We model multipolar spindles similarly, only 
we challenge the centrosome amplified MCF10A cells with an 
inhibitor of HSET to prevent the clustering of centrosomes 
observed in the pseudobipolar model. Last, we model polar 
chromosomes via a sequential chemical treatment strategy in the 
same MCF10A cell line (albeit without PLK4 overexpression). 
Here, cells are partially synchronized in prometaphase then 
released into CENP-E inhibitor so they incompletely align their 
chromosomes to the metaphase plate. We then bypass the spindle 
assembly checkpoint using MPS1 inhibitor, forcing the cells into 
anaphase. This sequential chemical treatment induces anaphase 
onset with multiple polar chromosomes with high penetrance 
(35). After induction of each CIN model, we performed imaging 
(fixed immunofluorescence and 4+ h time lapse fluorescence 
microscopy), cytogenetic (mitotic chromosome counts and 
cenFISH), and sequence-based assays (bRNAseq, bDNAseq, and 
scDNAseq) to measure CIN.

Visualization of Mitosis Sensitively Detects CIN. We first verified 
that our models induced CIN by microscopy. Using fixed and time 
lapse imaging, we found the expected CIN phenotypes for each 
model, indicating successful induction (Fig. 1 B–N). As expected, 
the Br model induced anaphase bridges in ~30 to 40% cells after 
doxycycline, visible on fixed and live analysis (Fig. 1 B and F). 
For the Pb model, we often observed multipolar spindles that 
focus to pseudobipolar spindles by anaphase onset such that a 
single spindle pole often has two pericentrin foci (Fig. 1C). The 
Pb model displayed pseudobipolar anaphases in 40 to 50% of 
cells (Fig. 1 C and G), though about 5 to 15% of cells exhibited 
multipolar anaphase (Fig. 1 D and H). The Mp model induced 
~25% multipolar anaphases after doxycycline + CW-069. The Po 
model induced high penetrance of CIN with polar chromosomes 
found in virtually all cells (Fig. 1 E and I).

To evaluate measures of CIN, we quantified the total mitotic 
aberrations by microscopy using fixed and time lapse imaging (Fig. 1 
J and K). As expected, all had statistically elevated CIN over controls 
and the two methods were significantly correlated (R = 0.72, P < 
0.001) (Fig. 1L). To directly compare the relative levels of CIN 
imparted by each model, we quantified a standardized measure of 
the fundamental feature of CIN, the mis-segregation rate.

While direct observation of rate (or penetrance) of abnormal 
mitosis indicates CIN, it does not necessarily equate to the 



PNAS  2024  Vol. 121  No. 16  e2309621121� https://doi.org/10.1073/pnas.2309621121   3 of 12

mis-segregation rate. Mis-segregation rate is also a function of the 
number of chromosomes involved in erroneous segregation (which 
we call magnitude), the rate at which those chromosomes actually 
segregate to the correct cell (which we call resolution), and the 
total number of chromosomes available to be segregated (ploidy). 
We previously described a metric, Mis-segregations per Diploid 

Division (MDD), which accounts for these factors (36). Thus, 
MDD measures the severity of CIN in terms of mis-segregation 
rate by approximating the total number of chromosomes that are 
likely to be mis-segregated in a given division. This is then nor-
malized to the background ploidy of the sample to ensure the 
metric scales by the severity of CIN rather than extent of karyotype 
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Fig.  1.   Inducible CIN models validated by imaging. (A) Inducible models of CIN phenotypes. Bridging chromosomes (Br), Pseudobipolar (Pb), Multipolar 
spindles (Mp), and Polar chromosomes (Po). Br, Pb, and Mp were treated with doxycycline for 72 h before harvest. Po cells used for mitotic chromosome 
spreads and centromeric cenFISH were washed out at T-0 and harvested 24 h later after a 2 h 50 ng/mL colcemid treatment. (B–E) Representative images 
of specific CIN phenotypes and observed incidence by fixed immunofluorescence or (F–I) time lapse fluorescence imaging. (J) Fraction of abnormal mitoses 
by fixed immunofluorescence or (K) time lapse fluorescence imaging. P < 0.05 (*), <0.01 (**), <0.001 (***), and <0.0001 (****). (L) Correlation between fixed 
immunofluorescence and time lapse imaging with Pearson correlation coefficient; α = 0.01. (M) MDD estimates from fixed imaging. (N) MDD estimates from time 
lapse. MDD values were approximated as the sum of phenotype specific MDD values for each condition (SI Appendix, Table S2). Colors represent the biological 
replicate; bars and error bars indicate mean and SE. Significance values are from a two-tailed, two-sample Student’s t tests corrected by the Benjamini–Hochberg 
method. For time lapse imaging, N ≥ 20 cells for each of ≥3 biological replicates, except single replicates of CtrlC and Pb. For fixed imaging, N ≥ 50 metaphase 
and ≥anaphase/telophase cells for each of ≥3 biological replicates, except single replicates of CtrlM, Pb.

http://www.pnas.org/lookup/doi/10.1073/pnas.2309621121#supplementary-materials
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heterogeneity produced, which is a function of ploidy and change 
depending on the study (Materials and Methods).

To approximate MDD from mitotic observations, we assume that 
apparent bridging chromosomes produce 1 mis-segregation (1 chro-
mosome at 0% resolution as chromosomes must be broken) and 
lagging chromosomes produce <1 mis-segregation (1 chromosome 
at 90% resolution). We estimate that cells with polar chromosomes, 
in our model, produce 7.8 mis-segregations (7.8 chromosomes at 
0% resolution) based on quantitative immunofluorescence imaging 
of polar centromere foci (SI Appendix, Fig. S1A). Based on previously 
published scDNAseq data (27), we know cells dividing on multipo-
lar spindles produce an average of 18 mis-segregations (18 chromo-
somes at 0% resolution). Last, while hidden merotelic attachments 
may occur within the main chromosome masses of pseudobipolar 
spindles, the rate at which this occurs is unknown. For the purposes 
of this approximation, we assume pseudobipolar spindles do not 
produce chromosome mis-segregation in and of themselves (0 chro-
mosomes at 0% resolution) (SI Appendix, Table S1 and Materials 
and Methods). By this approximation, the mis-segregation rates 
(MDD) observed for each model are 0.22 ± 0.1 for CtrlC, 0.60 ± 
0.04 for Br, 0.27 ± 0.06 for CtrlM, 1.17 ± 0.36 for Pb, 4.49 ± 0.58 
for Mp, and 7.72 ± 0.13 for Po by fixed imaging (Fig. 1M). By time 
lapse imaging, these approximations are 1.28 ± 0.66 for CtrlC, 1.39 
± 0.19 for Br, 0.6 ± 0.6 for CtrlM, 2.82 ± 0.56 for Pb, 4.45 ± 0.67 
for Mp, and 7.88 ± 0.36 for Po (Fig. 1N). We also performed a 
sensitivity analysis to understand how the assumed magnitude of 
CIN, the number of chromosomes involved, in each model affected 
the overall approximation (SI Appendix, Fig. S2). As expected, MDD 
were most sensitive to changes in the assumed magnitude for each 
phenotype. For example, changing the assumption of the number 
aberrant chromosomes associated with multipolar spindles more 
drastically effects approximated MDD in the Mp model than for 
other mitotic defects. Importantly, to infer the MDD from micros-
copy, assumptions are made about resolution of mis-segregation 
based on data and previous studies. In summary, these findings val-
idate our CIN models and demonstrate low levels of CIN with Br 
and Pb, intermediate levels with Mp, and high levels with Po. These 
distinct models and mechanisms of CIN confirm they are suitable 
models to compare quantitative measures of CIN.

Short-lived CIN Phenotypes Are Underestimated in Fixed 
Imaging. While the two imaging methods significantly correlated 
(Fig. 1L), time lapse imaging was more sensitive to certain CIN 
phenotypes (SI Appendix, Fig. S1B). For example, we detected more 
multipolar metaphases and anaphases with lagging chromosomes 
using time lapse imaging. These differentially detected defects 
are transient in nature, suggesting that the differences are not 
an artifact of live imaging. Together, these results indicate that 
measurement of CIN using fixed imaging, as is common in 
retrospective clinical analyses of CIN, may underestimate the 
incidence of some mitotic defects.

Cytogenetic Methods Are Less Sensitive to Ongoing CIN 
than Fluorescence Imaging. Mitotic chromosome counts and 
centromeric FISH are commonly used cytogenetic approaches to 
measure CIN (17, 37–39). Importantly, these measures depend 
on the association between ongoing CIN and the resultant cell-
to-cell variation in chromosome copy numbers. Chromosome 
counts detected variation around the modal chromosome count 
(46 for CAL51s and 47 for MCF10As) in all CIN models and 
their controls (Fig. 2A). In several models, in addition to near-
diploid aneuploidy, there were small fractions of counts consistent 
with triploid (n = 69) or tetraploid (n = 92) cells. However, the 
variation observed was not statistically significant for any of our 

phenotypic models (Fig.  2B). The cenFISH probe counts can 
estimate CIN as nonmodal counts (Fig. 2 C and D). In some 
cases, CIN measures were similar to controls, likely reflecting the 
difficulty of measuring CIN by sampling only 6 chromosomes after 
only 1 to 2 aberrant divisions. However, nonmodal probe counts 
were elevated for the models with the highest CIN: twofold for 
Mp and threefold for Po, though only the former was statistically 
significant (Fig. 2D). Recent data suggest a bias for mis-segregation 
of larger chromosomes, though this can vary based on the insult 
that causes chromosome missegregation (21, 22, 40). If there is a 
bias, it may be important to survey more than a few chromosomes.

Although these methods did not detect statistically significant 
copy number variation (CNV), they largely correlate with micro-
scopic detection of mitotic defects (R > 0.71, P < 0.001) (Fig. 2E). 
One exception is that nonmodal mitotic chromosome counts did 
not correlate with fixed imaging but did with time lapse (R = 0.36, 
P = 0.15). Together, these data suggest that cytogenetics methods 
are less sensitive than inspection of mitosis at detecting ongoing 
CIN.

Bulk Transcriptomic and Genomic CIN Signatures Do Not Reflect 
Ongoing CIN. Transcriptional signatures of CIN such as CIN70 
and HET70 are used as proxy measures to assess CIN from 
bulk transcriptomic data in tumor samples (41, 42). These are 
derived indirectly by identifying gene expression that correlates 
with aneuploidy in tumor samples (CIN70) (30) and karyotype 
heterogeneity in cell lines (HET70) (41). Neither CIN70 nor 
HET70, to our knowledge, has been tested in inducible models 
of CIN. To determine whether these directly measure induced 
CIN. We performed bulk RNA sequencing and measured CIN70 
and HET70 signatures in our models (SI Appendix, Table S3). To 
validate our results, we verified that doxycycline addition caused 
a fourfold increase of TERF2 expression in the Br condition and 
a 32-fold increase in PLK4 expression in Pb and MP. In each 
case, these were among the top differentially expressed genes 
(SI  Appendix, Fig.  S3 A and B). Turning to CIN scores, we 
plotted the distribution of all 70 genes (Fig. 3 A and B) with the 
mean representing the score. As illustrated, neither CIN70 nor 
HET70 was increased in any of the CIN models. In fact, CIN70 
decreased slightly in Pb and Mp models (Fig. 3A), likely due to a 
decrease in cell proliferation after centrosome amplification (43). 
Likewise, neither CIN70 nor HET70 significantly correlated with 
microscopic detection of mitotic defects (Fig. 3C). This suggests 
that these bulk transcriptional scores do not detect ongoing CIN.

In addition to RNA, bulk genomic DNA measures of CIN are 
proposed to detect characteristic signatures of CNV from SNP array 
and genome sequencing data—essentially measuring patterns of 
aneuploidy (44). These measures characterize the final state of the 
tumor, which could either arise from an early event in oncogenesis, 
or through continuous CIN with selection for certain aneuploid 
clones. In the latter circumstance, bulk DNA would potentially 
measure “historical CIN.” While these signatures are not designed 
to measure ongoing CIN, it is worth testing that possibility as they 
are often described as CIN signatures. Whole-genome sequencing 
(~10× coverage) and copy number calling in our models revealed 
nearly identical copy number profiles between control and 
CIN-induced groups (Fig. 3D). We next analyzed recently published 
CIN signatures (44) in each replicate and clustered the models and 
controls by signature (Fig. 3E). CX1 is the predominant CIN sig-
nature in all groups (~70 to 75%) and in control cells. CX1 corre-
sponds to large-scale copy number alterations consistent with whole 
chromosome or chromosome arm mis-segregation. CX1 is signifi-
cantly increased in Pb and Po models than in control cells, but not 
Mp. CX6 did not differ between controls and induced CIN models, 

http://www.pnas.org/lookup/doi/10.1073/pnas.2309621121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2309621121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2309621121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2309621121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2309621121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2309621121#supplementary-materials
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other than Pb, even though it similarly is reported to represent whole 
chromosome and chromosome arm mis-segregation and makes up 
no more than 6% of the CIN signature activity. CX2, CX3, and 
CX5 correspond to impaired homologous recombination (IHR). 
CX2 is elevated within the Pb and Po models, though CX3 and CX5 
exhibit no statistically significant differences (Fig. 3F). Last, CX4, a 
putative signature of WGD tolerance, was only found in a single 
replicate of control MCF10As, which are not whole-genome dou-
bled. Since our models of CIN are induced over 8 to 72 h, they may 
not provide sufficient time for extensive cellular selection, a process 
that is likely required for these signatures to appear as they are based 
on the averaged CNVs of the population. Nevertheless, we conclude 

that the DNA genomic signatures of CIN do not directly measure 
ongoing CIN. Accordingly, neither CX1 nor CX6 correlated with 
mitotic defects via fixed microscopy (P > 0.01) and only CX1 cor-
related with time lapse microscopy (R = 0.63, P < 0.01) (Fig. 3G). 
In sum, bulk genomic measures of CIN, whether transcriptomic or 
genomic, do not directly measure ongoing CIN, even in an ideal 
context where tumor purity is not at issue.

scDNAseq Detects Ongoing Numerical CIN and Enables 
Inference of Mis-segregation Rates. The analyses above suggest 
that optimal CIN measures would i) detect all chromosomes, 
ii) directly detect CNV variation across cells, and iii) have high 
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Fig. 2.   Cytogenetic methods are less sensitive to ongoing CIN than fluorescence imaging. (A) Representative mitotic spreads and histograms. (B) Fraction 
of mitotic spreads where chromosome counts differ from the mode ±1. N ≥ 50 mitotic spreads for each of three biological replicates, except CtrlC with two 
biological replicates, and Mp. (C) Representative cenFISH images from each phenotypic CIN model with probe count histograms. Diploid counts are excluded from 
histograms. (D) Fraction of cells whose cenFISH probe counts differ from the mode. Shapes of individual points indicate the biological replicate. (E) Correlations 
between each cytogenetic method and fixed immunofluorescence or time lapse imaging with Pearson correlation coefficients. For correlations, α = 0.01. N ≥ 200 
cells for each of three biological replicates. Bars and error bars indicate mean and SE. Symbolic significance thresholds are 0.05 (*) and 0.01 (**).
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throughput. scDNAseq meets these characteristics. Even low 
coverage of reads across the genomes are sufficient to infer copy 
numbers across all chromosomes. Thus, scDNAseq has been 
employed to measure cell–cell variation and to infer CIN (27, 
45). We therefore evaluated scDNAseq as a measure of CIN.

To evaluate scDNAseq, we sampled 32 single cells per replicate 
and included a bulk sample of 500 cells to infer average karyotype 
(SI Appendix, Fig. S4). We filtered for quality and inferred 
large-scale chromosome copy number alterations at 1Mb resolu-
tion, resulting in 378 high-quality single-cell copy number profiles 
(Fig. 4A). Bulk analyses reveal CAL51 as diploid with a focal 8q 
amplification; MCF10A cells also had 8q plus gains of 1q, 5q, 
and recurring subclonal gains of Xq. To quantify chromosomal 
deviations, we evaluated the absolute difference between each 
single-cell karyotype and the modal karyotype inferred from bulk 
samples. Both controls—CAL51 and MCF10A—had a small 
number of deviations from modal karyotype (Fig. 4B). We did 

not detect a clear increase in chromosomal deviations in the Br 
model. This could be due to resolution of chromatin bridges, 
chromosome breakages resulting in structural variation, but con-
served copy number, which would be undetectable by low cover-
age scDNAseq, or segmental copy number changes smaller than 
50% of the chromosome. However, we ruled out the last possi-
bility using an alternative analysis which failed to detect telomere 
proximal breaks (SI Appendix, Fig. S5). We found an increase in 
nonmodal chromosomes with the Pb model and significant 
increases in the Mp and Po models, which average about five to 
six deviations per cell respectively (Fig. 4B). The percentage of 
cells with deviations from the mode followed a similar trend, 
though also detects a small increase in the Br model that is not 
statistically significance (Fig. 4C). As expected, the Mp model 
displayed a significant bias of chromosome losses over gains 
(Fig. 4D)—this is expected since division of duplicated chromo-
somes into 3+ daughter cells reduces chromosome number. Other 
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Fig. 3.   Bulk transcriptomic and genomic CIN signatures do not reflect ongoing CIN. (A) Expression [mean log2 counts per million (CPM)] of CIN70 and (B) HET70 
genes from bRNAseq data. Each point indicates the average expression level across three biological replicates. (C) Correlations between bulk transcriptional 
scores and fixed immunofluorescence or time lapse imaging with Pearson correlation coefficients. (D) Representative whole-genome copy number profiles 
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Fig. 4.   scDNAseq detects CIN and enables inference of mis-segregation rates. (A) Heatmaps of unsorted single cell and bulk (500 cells) copy number profiles from 
scDNAseq with copy number (CN) indicated by color. Color annotations on left of heatmap indicate models and shades indicate replicates. Vertical lines separate 
chromosomes. Whole chromosome CNs are used to quantify, for each phenotypic model, (B) the absolute number of whole chromosome deviations from its 
modal karyotype, (C) the percentage of cells with whole chromosome deviations, and (D) the net change of total chromosomes in each cell. (E) Aneuploidy (the 
sub-clonal mean variance within karyotypes), (F) Colless indices (i.e., phylogenetic imbalance), and (G) mean karyotype variance (MKV, the mean variance of each 
chromosome) were used as summary statistics for ABC. (H) Space of summary statistics of independent prior simulation datasets used for ABC projected (small 
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points indicate accepted simulations for at least one model and replicate, whereas gray were rejected. (I) Posterior distributions (violin plots) of mis-segregation 
rates (MDD) across all replicates for each phenotypic CIN model (individual points) inferred using ABC. A log2 scale is used to better illustrate the data. (J) Joint 
posterior density distributions of accepted mis-segregation rates and selective pressure from ABC for all replicates of each phenotypic CIN model. Data points 
are mean values for each replicate. Parameter values for prior simulation datasets are as follows: CtrlC and CtrlM—MDD = [0 … 2.3], S = [0 … 200], Time Steps = 
[30 … 50]; Br, Pb, and Mp — MDD = [0 … 46], S = [0 … 200], Time Steps = [0 … 4]; Po—MDD = [0 … 46], S = [0 … 200], Time Steps = [0 … 2]. (K) Correlations between 
the whole-chromosome deviations or inferred MDD and fixed immunofluorescence or fluorescence time lapse imaging with Pearson correlation coefficients, 
with α = 0.01. Shapes of individual points indicate the biological replicate. Bars and error bars indicate mean and SE.
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models showed no such bias with gains/losses being roughly equal. 
Taken as a whole, these data support scDNAseq as a sensitive 
method for detecting CIN.

Single-cell resolution may enable detection of CIN signatures 
(44), so we repeated our previous analysis using the single-cell copy 
number profiles. Again, the proposed whole/arm mis-segregation 
signature, CX1, was predominant among the groups (SI Appendix, 
Fig. S6). However, the relative activity of this signature between 
groups did not correspond to CIN as observed by microscopy or 
by directly measuring whole-chromosome copy number altera-
tions. CX6, the other proposed whole/arm mis-segregation signa-
ture, had much lower activity among groups and did not correspond 
to observed CIN. Interestingly, despite their low activity, the only 
signatures that seemed to reflect the observed trend were decreasing 
CX4 and increasing CX8, proposed signatures of whole-genome 
doubling and replication stress, respectively. Thus, these measures 
of CNV at single-cell resolution do not well characterize ongoing 
CIN.

Because the fitness levels imparted by different karyotypes can 
be acted on over time by natural selection, the absolute number 
of chromosomal deviations in a population may not capture 
CIN in its entirety. We recently addressed this issue and devel-
oped a computational framework to infer mis-segregation rates 
from scDNAseq datasets using ABC, a method to statistically 
relate biological and simulated data (27). In short, this approach 
uses a large prior dataset of evolutionary trajectories simulated 
under varying rates of chromosome mis-segregation and selec-
tion pressures (27). The simulated prior dataset consists of a 
series of population measurements taken over time: aneuploidy 
(average sub-clonal variance within karyotypes), karyotype het-
erogeneity (MKV; average variance within chromosomes across 
the population), and the Colless index, a measure of asymmetry 
in the shape of the reconstructed copy-number-based phylogeny, 
indicative of ongoing selection (46, 47). We repeat these meas-
ures in our experimental data and perform parameter inference 
with ABC to find simulation parameters that produce similar 
populations.

As expected, our CIN models increased the median aneuploidy 
and MKV in the populations, though only the aneuploidy 
observed in Mp and Po was statistically significant (Fig. 4 E and 
G). Further, Colless index decreased indicating a low level of selec-
tion after CIN induction (Fig. 4F). This likely reflects the lack of 
selection over the short-time of the experiment (8 to 72 h); by 
contrast, the control population has been under long-term selec-
tion and has higher Colless. Together, the summary statistics ena-
ble inference of mis-segregation rates by ABC.

We next applied ABC to infer chromosome mis-segregation 
rates. Dimensionality reduction verified that the biological data 
falls within the “summary space” of the simulated data (Fig. 4H). 
Inferring mis-segregation rates (taken as the average of the poste-
rior rate distributions) revealed a wide range across models from 
0.3 to 11.5 MDD (36, 48). There was only a twofold increase in 
mis-segregation rate in the Br model of bridging chromosomes: 
CtrlC and Br showed mis-segregation rates of 0.12 ± 0.02 and 
0.28 ± 0.07 MDD, respectively. CtrlM cells had inferred 
mis-segregation rates at 0.83 ± 0.64 MDD while the Pb, Mp, and 
Po models had much higher mis-segregation rates of 5.4 ± 0.49, 
6.73 ± 1.35, and 11.3 ± 1.84 MDD, respectively (Fig. 4I). In 
comparison, the approximated mis-segregation rates of in RPE1 
cells is 0.01 to 0.05 MDD and for U2OS, 0.33 to 0.46 MDD 
(36). These rates correlate with the number of deviations measured 
directly from whole chromosome copy number data, particularly 
when accounting for the partial induction of CIN over 8 h with 
the Po model (Fig. 4B and SI Appendix, Fig. S7). They also 

correlate with MDD values approximated for each model by imag-
ing methods (SI Appendix, Fig. S7). Joint posterior distributions 
reflect lower apparent evidence of ongoing selection in the Po 
model, as compared to the other models, in concordance with the 
short time-span of CIN induction (Fig. 4J). The mis-segregation 
rate observed in the Mp model, when taking into account the 
penetrance of the phenotype (~25% penetrance via imaging), is 
similar to previously observed mis-segregation rates caused by 
multipolar divisions (~18 MDD at ~100% penetrance) (27). 
Overall, both the inferred MDD and the number of chromosomal 
deviations significantly correlate the fraction of cells with mitotic 
defects at imaging (R > 0.67, P < 0.01) (Fig. 4K).

We conclude that CIN can be measured several ways using 
single cell copy number profiles. Copy number alterations can be 
calculated directly, particularly if the period of CIN is relatively 
short, in which case karyotype selection is not a significant factor. 
Inferring chromosome mis-segregation rates by comparing to 
simulated data works in both short and long time periods, though 
it is ideal for long-time periods when karyotype selection becomes 
a strong confounder.

Concordance and Performance of CIN Measures. To assess and 
summarize the performance of CIN measures, we performed 
standardized effect size and pairwise correlation analyses. As 
expected, fixed immunofluorescence, time lapse, nonmodal mitotic 
chromosome, and centromeric probe counts were significantly 
correlated (α = 0.01), excepting the pair of fixed imaging and 
chromosome counts (Fig. 5A and SI Appendix, Fig. S7). By contrast, 
bulk transcriptional CIN signatures (CIN70, HET70) did not 
correlate to imaging, nor cytogenetics, nor between themselves. 
Considering genomic signatures on bulk (CX1, CX6 bDNAseq), 
and with single-cell data (CX1 scDNAseq; CX6 scDNAseq), these 
also correlated poorly with one another with the exception of 
single-cell CX1 and CX6. Interestingly, the CIN signature CX1, 
when measured in bDNAseq data, did significantly correlate with 
time-lapse imaging, but not fixed imaging. HET70 negatively 
correlated with the CX1 and CX6 signatures in single cells. This 
seemed to be a cell line–dependent effect as MCF10A cells had 
relatively high HET70 expression and low CX1 and CX6 signature 
activity than CAL51, regardless of CIN model (SI  Appendix, 
Figs.  S6 and S7). scDNAseq chromosomal analyses, regardless 
of whether they considered whole-chromosome deviations from 
mode or inferred MDD from ABC, correlate with each other as 
well as fixed imaging, time lapse, and FISH analyses. We conclude 
that the single-cell analyses perform well for measuring rates of 
ongoing CIN.

We next compared the sensitivity of different measures. 
Standardized effect sizes are analogous to the signal-to-noise ratio. 
For instance, a Hedge’s g statistic of two represents an effect twice 
that of the pooled SD for a given comparison. Thus, we looked 
at the standardized effect sizes produced using each measure in 
each phenotypic model compared to its control. Average effect 
sizes across all CIN phenotypes were high among the imaging 
methods (Fig. 5B). Inferred MDD from scDNAseq was high, as 
expected from sampling chromosomes and accounting for cell 
selection. Next, CX1 measured by bDNAseq was also high though, 
as noted previously, these scores do not reflect observed CIN levels 
by imaging or single-cell sequencing. The effect size for cenFISH 
was similar to whole chromosome deviations in scDNAseq. The 
CIN signature of mis-segregation (CX6), as measured by bulk or 
single cell DNAseq was middling. Transcriptional measures of 
CIN (CIN70 and HET70) and CIN measured by mitotic chro-
mosome counts exhibited the lowest effect sizes. We conclude that 
highly sensitive quantitative measures of CIN can be achieved by 

http://www.pnas.org/lookup/doi/10.1073/pnas.2309621121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2309621121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2309621121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2309621121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2309621121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2309621121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2309621121#supplementary-materials
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direct microscopy or by scDNAseq combined with inference of 
rates by ABC.

Because the primary purpose of this study is to identify which 
CIN measures are most sensitive under equivalent conditions, 
there may be cases where a particular measure, while often used, 
lacked the power to achieve a statistically significant result under 
our strategy. We performed a power sensitivity analysis to identify 
these borderline cases (SI Appendix, Fig. S8). Measures which sig-
nificantly correlated (α = 0.01) with the fraction of mitotic defects 
apparent overall in both imaging techniques but weren’t them-
selves sensitive enough to independently detect CIN in some 
phenotypic models include cenFISH and scDNAseq. scDNAseq 
failed to significantly detect elevated CIN (fraction nonmodal 
chromosomes or inferred MDD) in the Br model while cenFISH 
failed to detect elevated CIN (fraction nonmodal FISH probes) 
in the Br, Pb, and Po models.

Given effect sizes observed in the Br model with scDNAseq 
methods (fraction nonmodal chromosomes or inferred MDD), 
power levels less than 0.5 would be required to deem the effects 
statistically significant at α = 0.05. In other words, the likelihood 
of detecting a real significant event would be less than 50%. It 
is unlikely that additional replicates would have aided this meas-
ure. Rather, scDNAseq, used in this way, cannot detect CIN in 
this model. A potential cause is that bridging chromosomes pro-
duce segmental alteration too small for our approach which cal-
culates the modal copy number of the whole chromosome, 
though our previous breakpoint analysis would refute this expla-
nation (SI Appendix, Fig. S5). Another explanation is the com-
plete resolution of chromosome bridges, without breakage, which 
would be undetectable by scDNAseq. Though chromosome 
bridge breakage resulting in large segmental alterations in the 
very same daughter cells were previously observed in this model 
using Look-Seq, a more discrete scDNAseq approach (49). 
Nevertheless, it is clear that scDNAseq performed here was insuf-
ficient to detect this CIN phenotype.

The same applies in the Br and Pb models as detected by cen-
FISH. The effect sizes for both are below the critical effect size for 
a significant result at a power of 0.2. This is not surprising for the 

Br model as the likelihood that a chromosome breakage would 
include a centromere that is probed, particularly given the lack of 
apparent effect in the scDNAseq data, is small. Although we did 
observe a significant effect with scDNAseq for the Pb model, this 
could be due to the relatively low resolution of cenFISH. It is 
likely that, with an additional biological replicate or a better 
signal-noise ratio, elevated CIN in the Po model could have been 
significantly detected with cenFISH. As it stands, the effect size 
observed in the Po model using cenFISH could be considered 
significant at a power level of ~0.6.

Here, we employ MDD as a standardized and quantitative 
measure of CIN. Two systems with the same MDD have the same 
per chromosome rate of mis-segregation, regardless of their chro-
mosome content. Whereas MDD is a quantitative measure of 
CIN, it is not comprehensive. It does not account for segmental 
chromosome aberrations, systematic or correlated chromosome 
gains or losses. It does not address the rate of micronuclei gener-
ation, or downstream effects. Different mechanisms of CIN could 
generate the same MDD in some cases. Nevertheless, MDD is a 
single quantitative measure of whole-chromosome genomic insta-
bility that can be standardized and compared across studies.

Discussion

Ongoing CIN is defined by an elevated rate of chromosome 
mis-segregation, which varies across tumors and depends on the 
penetrance and magnitude of specific CIN mechanisms. The 
intrinsic rate of mis-segregation in a cell population produces 
functional consequences for tumorigenesis, cancer progression, 
and treatment response. Very low mis-segregation rates limit 
tumorigenesis, presumably due to reduced adaptive potential, 
while high mis-segregation rates have the same effect through 
loss of necessary genetic material. Intermediate mis-segregation 
rates can promote tumorigenesis. Once a tumor has formed, 
reports conflict on whether patients whose tumors exhibit mod-
erate to high intrinsic rates of mis-segregation tend to have 
poorer clinical outcomes (8, 10, 14–20), likely due to limita-
tions of current methods for measuring CIN in patient tumors. 
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Breast cancer patients whose tumors exhibit high mis-segregation 
tend to have improved response to taxanes, likely because CIN 
sensitizes to the multipolar mitotic spindles produced by these 
drugs. Despite the clinical significance of CIN and its variability 
across tumors, its measurement is not currently used to guide 
patient care (8, 12, 13, 17, 50).

The reason CIN is not measured for clinical use is ultimately 
due to three factors: accessibility, scalability, and sensitivity. In 
reviewing the CIN measures tested in this study, we find varying 
levels of accessibility and scalability (Table 1). Some measures 
are clinically accessible in terms of necessary equipment and 
reagents, but they do not easily scale because of time required 
for sample preparation or data acquisition. For example, fixed 
imaging is commonplace for pathological assessment of tumors. 
In this study, fixed immunofluorescence imaging was among 
the most sensitive methods to detect ongoing CIN. However, 
the quantification of CIN phenotypes requires substantial time 
and a sufficient number of mitoses from highly proliferative 
tumors (8). Karyotypes and chromosome counts require a large 
number of mitotic cells, not easily obtained by culturing tumor 
tissues. Likewise, time lapse imaging is not possible directly in 
patient tumors and is laborious, time-consuming, and expensive 
even with ex vivo culture, fluorescent labeling, and imaging of 
patient organoids. Direct observation of mitotic defects, con-
sidered the gold standard measure of CIN, is indicative of but 
does not necessarily equate to the occurrence of mis-segregations.

Measures of CIN based on bulk genomic and transcriptomic 
sequencing are attractive due to the wide availability of shared 
high-throughput sequencing data and because they are already in 
routine clinical use. However, bulk sequencing failed to detect 
ongoing CIN in any of our phenotypic models. This is likely 
because bulk sequencing measures CNVs and RNA levels averaged 
across many cells without the ability to detect cell-to-cell differ-
ences. One challenge in the field of genomic integrity is that CIN 
and aneuploidy are often conflated. To be fair, aneuploidy is a 
product of prior mis-segregation events, providing a rationale to 
infer a degree of CIN from the current degree of aneuploidy in a 
tumor. This is also described as historical CIN, which represents 
an accumulation of prior chromosome gains/losses and cellular 
selection. However, this does not permit inference of ongoing 
chromosome gains or losses because any degree of aneuploidy 
could, in fact, be a product of a single event that was not repeated. 
By contrast, ongoing CIN, described here, is a process in which 
there are ongoing aberrations over multiple cell divisions, which 
is associated with metastasis and response to microtubule-targeted 
therapies (8, 12, 13, 17, 50).

The de novo karyotype heterogeneity in cell populations with 
ongoing CIN does not significantly alter the predominant kar-
yotype and is not detected by bulk genomic CIN signatures (e.g., 
CX1 and CX6). This demonstrates that these signatures detect 
historical aneuploidy rather than ongoing CIN. Nor do the gene 
expression states of new aneuploid clones significantly alter the 
predominant transcriptional phenotype with respect to previ-
ously established transcriptomic CIN scores (CIN70 and 
HET70). MCF10A cells scored slightly higher on HET70 than 
CAL51. While this may represent cell line–specific gene expres-
sion, we note that the scDNAseq data show MCF10A cells exhib-
iting higher karyotype heterogeneity than CAL51 at baseline, 
despite exhibiting similar rates of mitotic errors during imaging. 
Thus, while HET70 scores did not respond to induced CIN and 
karyotype heterogeneity, we cannot rule out that HET70 detects 
a pre-existing transcriptional phenotype that is tolerant of ane-
uploidy and increased karyotype heterogeneity. However, while 
HET70 did not detect induced, ongoing CIN in any of our 
models, MCF10A cells did score higher on HET70 than CAL51. 
While this may represent cell line specific gene expression, the 
scDNAseq data show MCF10A cells exhibiting higher karyotype 
heterogeneity than CAL51 at baseline. Although HET70 scores 
did not increase with induced CIN and karyotype heterogeneity 
HET70 may detect a transcriptional phenotype that correlates 
with aneuploidy tolerance.

As a clinically accessible alternative to imaging, scDNAseq 
provides the best measure of CIN in terms of sensitivity and 
correlation to both fixed and time lapse imaging. CIN can be 
measured by quantifying the absolute number of chromosomal 
deviations from the modal (i.e., clonal) karyotype of a population. 
Additionally, the rate of mis-segregation resulting in a given pop-
ulation of single cell copy number profiles can be measured by 
pairing computational modeling and statistical inference. Both 
analysis methods performed well in measures of ongoing induced 
CIN over relatively few cell divisions. However, we have previ-
ously found that the latter, inference of CIN, performs better in 
the context of longer time scales, such as the growth of a tumor 
(27). While single-cell sequencing is not currently used in clinical 
care, major advances in ultra-high-throughput sequencing will 
likely make low-coverage scDNAseq accessible at clinical capacity 
(51–53). Toward this end, we estimated that ~200 cells are 
needed for accurate measurement of CIN (27). Although we did 
not detect increased segmental copy number alterations caused 
by bridging chromosomes in our inducible model, further 
advancement of sequencing technology and scDNAseq methods 
may enable more robust detection of copy-neutral structural 

Table 1.   Characteristics of CIN measurement methods

Method Accessibility Scalability Sensitivity
Imaging

concordance

Fixed imaging +++ No (4/4) bridges/pseudobipolar/
multipolar/polar

–

Time lapse imaging – No (4/4) bridges/pseudobipolar/
multipolar/polar

–

Chromosome spread – No (0/4) No

6-centromere FISH +++ Yes (1/4) multipolar Yes

Bulk RNA seq ++ Yes (0/4) No

Bulk DNA seq +++ Yes (0/4) No

scDNAseq + Yes (3/4) pseudobipolar/multipolar/polar Yes
Categories for clinical accessibility are (–) insurmountable barriers, (+) requires special equipment and/or reagents and time-consuming and/or laborious, (++) requires special equipment 
and/or reagents or time-consuming and/or laborious, or (+++) commonly performed clinical assays use the same equipment and reagents. Scalability is determined by the pre-existence 
of established protocols and/or platforms for high throughput sample preparation and data acquisition in a clinical or nonclinical setting. Sensitivity to a specific mechanism is determined 
by a significant difference between the control and CIN-induced groups. Imaging concordance is determined by significant correlation to both imaging methods.
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variation in single cells. Importantly, the measurement of struc-
tural CIN using scDNAseq would require relatively uniform 
coverage of the entire genome, which is not provided by mutation 
panels. For intact tumors, it would be important to distinguish 
the genome structures of tumor cells from stromal cells, which 
could be accomplished by simultaneously detecting cancer-specific 
mutations.

One limitation of this study is that our models had a short time 
of CIN induction. This approach ensures ongoing CIN, but methods 
that failed to detect CIN here could correlate with ongoing CIN 
after cellular selection or could indicate a cellular context permissive 
of ongoing CIN. For example, although cenFISH only detects the 
highest levels of CIN this may become more sensitive over several 
generations with elevated CIN, which would increase the probability 
that one of a limited set of probes would detect an alteration. While 
our bulk genomics and transcriptomics methods are not reliable 
measures of ongoing CIN, further work will be required to determine 
how the clinically accessible methods that did detect CIN (cenFISH 
and scDNAseq) perform in longitudinal models such as murine 
tumors or patient-derived tumor spheroids.

We did not test downstream effects of CIN. The incidence of 
micronuclei apparent by microscopy reflects ongoing CIN and is 
reported to promote metastasis (3). We did not track micronuclei in 
this study, though their incidence would likely be phenotype- 
specific, as reported elsewhere (54). We also did not evaluate 
single-cell RNAseq (scRNAseq) as a method of measuring CIN. 
Currently, there are no widely used scRNAseq-based measures of 
CIN and we did not seek new methods of CIN measurement. 
However, given the preponderance of evidence of the transcriptional 
consequences of CIN and aneuploidy (26, 55–59), it is conceivable 
that robust transcriptional CIN signatures could be derived at 
single-cell resolution. Whether these would reflect gene dosage, a 
general response to CIN or would be phenotype/mechanism-dependent 
is unclear. In any case, the reliability of these measures could be 
limited by dosage compensation (60–64). Although we could select 
specific genes minimally affected by compensation, the sparse data 
with current scRNAseq platforms remains a challenge. On the other 
hand, large-scale DNA copy number alterations can be inferred from 
scRNAseq data (65, 66), which would provide an additional dimen-
sion of single cell genomic data and perhaps increase the reliability 
of a measure of CIN based on single-cell chromosome copy number 
data.

This work provides a thorough empirical analysis of the relative 
capability of current CIN measures to detect ongoing CIN across 
specific, inducible phenotypic models of CIN. We find current meas-
ures differ in their ability to detect ongoing CIN and that some fail 
to reliably detect CIN at all. Imaging approaches are the most sen-
sitive and reliable. Cytogenetic approaches have low sensitivity, only 
significantly detecting the model which had among the highest 
mis-segregation rates. Bulk genomic and transcriptomic measures 
do not reflect ongoing CIN while single-cell genomic methods, par-
ticularly the inference of mis-segregation rates, offer both sensitivity 
and potential for clinical accessibility. In light of these conclusions, 
we recommend single-cell genomics with Bayesian inference as the 
best method for further development of a clinically accessible meas-
ure of CIN. Importantly, the models and data generated here serve 
as a resource for investigators seeking to validate innovative measures 
of ongoing CIN from bulk and single-cell sequencing.

Materials and Methods

Cell lines, cultivation, and fixed and time-lapse microscopy, and cytogenetics used 
standard approaches, and are described in further detail in SI Appendix, Methods.

scDNAseq and Analysis. Cells were reseeded in six-well plates at 40% 
and grown to ~70 to 80% density over 18 to 24 h prior to harvest. Standard 
procedures are described in SI Appendix, Methods. Copy number calls were 
performed in a local installation of Ginkgo (67) with a variable bin size of 
~2.5 Mb using global segmentation. Minimum ploidy was set to 1.35 and 
maximum ploidy to 3 to reflect our flow cytometric gating strategy for FACS. 
Whole chromosome copy numbers were estimated by taking the mode of 
copy numbers across genomic bins for each chromosome. Thus, even sub-
chromosomal gains and losses of greater than 50% of a chromosome should 
remain detectable.
Quantification of single cell CIN signatures. We quantified previously 
published putative CIN signatures from Drews et  al. (44) using resources 
made publicly available in a github repository by the authors (https://web.
archive.org/web/20220615195321/https://github.com/markowetzlab/
CINSignatureQuantification). We used the function “quantifyCNSignatures” in 
the available R package CINSignatureQuantification (44) to call signatures from 
unrounded segment copy number matrices derived using Ginkgo, as described 
above and report the normalized, unscaled signature activity levels to avoid mask-
ing the relative activity of each signature.
Inference of mis-segregation rates. We used agent-based simulation and 
approximate Bayesian computation to infer mis-segregation rates from scD-
NAseq data. Agent-based simulation of CIN and karyotype selection in growing 
populations was performed in NetLogo (v6.0.4) (68) and approximate Bayesian 
computation was performed using the R (v4.2.2) (69) using the abc package 
(v2.1) (70) as previously described (27). Additional details are described in 
SI Appendix, Methods.

Bulk DNA Sequencing and Analysis. Sample preparation, sorting, and bulk 
DNA library preparation were prepared in parallel with and in the same manner 
as single-cell DNA samples. Then, 500 cells were sorted for each bulk DNA sam-
ple. Standard procedures are described in SI Appendix, Methods. Bulk DNA copy 
numbers were called in R using QDNAseq (v1.34.0) (71) and a bin size of 30 Kb. 
Segment copy numbers were called using bin copy numbers smoothed over two 
bins and Anscombe transformed (transformFun = “sqrt” in the “segmentBins” 
function). Putative CIN signatures were derived from bulk copy number profiles 
and reported in the same manner as for single-cell DNA copy number profiles 
as described above.

Bulk RNA Sequencing. Cells were reseeded in six-well plates at 40% and grown 
to ~70 to 80% density over 18 to 24 h prior to harvest. Standard procedures are 
described in SI Appendix, Methods. Linear modeling and differential expression 
analysis were performed in limma (v3.46) (72, 73). Imaging-based approxima-
tion of MDD and Statistical methods are described in SI Appendix, Methods.

Data, Materials, and Software Availability. Sequencing data were deposited 
to NCBI SRA (PRJNA992891) (74). Data and code for analysis were deposited to 
OSF (https://osf.io/aqvyx/) (75).
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