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Abstract

INTRODUCTION: Three-dimensional (3D) histology analyses are essential to over-

come sampling variability and understand pathological differences beyond the dis-

section axis. We present Path2MR, the first pipeline allowing 3D reconstruction of

sparse human histology without a magnetic resonance imaging (MRI) reference. We

implemented Path2MR with post-mortem hippocampal sections to explore pathology

gradients in Alzheimer’s disease.

METHODS: Blockface photographs of brain hemisphere slices are used for 3D recon-

struction, fromwhich anMRI-like image is generatedusingmachine learning.Histology

sections are aligned to the reconstructed hemisphere and subsequently to an atlas in

standard space.

RESULTS: Path2MR successfully registered histological sections to their anatomic

position along the hippocampal longitudinal axis. Combinedwith histopathology quan-

tification, we found an expected peak of tau pathology at the anterior end of the

hippocampus, whereas amyloid-beta (Aβ) displayed a quadratic anterior-posterior

distribution.

CONCLUSION: Path2MR, which enables 3D histology using any brain bank data set,

revealed significant differences along the hippocampus between tau and Aβ.
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Highlights

∙ Path2MR enables three-dimensional (3D) brain reconstruction from blockface

dissection photographs.

∙ This pipeline does not require dense specimen sampling or a subject-specific

magnetic resonance (MR) image.

∙ Anatomically consistent mapping of hippocampal sections was obtained with

Path2MR.

∙ Our analyses revealed an anterior-posterior gradient of hippocampal tau pathology.

∙ In contrast, the peak of amyloid-beta (Aβ) deposition was closer to the hippocampal

body.

1 BACKGROUND

A wealth of information regarding region-specific cellular and patho-

logical features has been obtained from human post-mortem brain

specimens.1–4 For this purpose, brains are typically cut into slices,

from which smaller, thin sections are sampled and analyzed under the

microscope. The ensuing observations are assigned to the anatomic

structure of origin and compared across subjects. However, because

in standard practice sampled regions are visually identified and man-

ually processed, histological sections from different subjects rarely

originate from the same brain position. This results in a lack of

anatomic generalizability of the sophisticated cellular and pathological

quantifications that are attracting increasing interest.5–7 Identifying

the precise structural location of each section would allow anatomi-

cally relevant comparisons of histological observations. Moreover, this

would enable pooling of data from different individuals into a com-

mon space to study histological measurements beyond the sectioning

plane.

To achieve such fine-grained mapping, three-dimensional (3D) his-

tology reconstruction approaches have been developed, which rely on

image registration to align consecutive histological sections.8 Without

a reference of the original shape, inferring the 3D volume confor-

mation represents a challenge, and often leads to artifacts such as

z-shift (accumulation of errors along the stack) and the “banana effect”

(straightening of curved structures).8 Several strategies are avail-

able to optimize reconstruction outcome.8–12 These methods have

been applied for brain reconstruction using animal13–15 and human

histology.9,16 However, they require dense, serial sectioning of the

whole brain or structure of interest to ensure accurate representation

of its3Dconfiguration.17 Suchdensehistological sampling is rarelyper-

formed in routine brain bank procedures andmay be unfeasible due to

time limitations or sample requests for other purposes.

Alternative efforts toward histology reconstruction have relied on

magnetic resonance imaging (MRI) as a 3D reference. Using subject-

specific in vivo18,19 or ex vivo20–24 scans, these approaches overcome

shape uncertainty by registering sections to the MRI volume. With

this strategy, serial histology reconstruction allows accurate unbi-

ased registrations to an atlas. In addition, other MRI-based methods

have enabled reconstruction of sparse histological images.18,19,25–27

Although entailing less-accurate slice-to-volume registrations,28 this

option avoids dense sampling of the whole specimen. Unfortunately,

in vivo MRI is available only for special cases or in planned follow-

up initiatives such as the Alzheimer’s Disease Neuroimaging Initiative

(ADNI).29 Similarly, many brain banks have no access to ex vivo scan-

ning due to financial and logistic constraints. As these approaches

rely on highly specialized setups and equipment, their applicability to

the large histological data sets generated in brain banks and clinical

facilities is limited.

Here, we present Path2MR, a histology mapping pipeline that

enables 3D studies using sparse sampling and without a specific MRI

reference. Our strategy uses blockface images of brain hemisphere

slices to recover the 3D structure by geometrical stacking. Then, deep

learning is employed to obtain a 1 mm3 resolution, 3D prediction

of the hemisphere with MRI-like contrast, which is registered subse-

quently to thewidely usedMontrealNeurological Institute (MNI) atlas.

Histological sections are then registered to the corresponding coro-

nal slice within the reconstructed hemisphere, and deformations are

concatenated to register them toMNI standard space.

We demonstrate the applicability of Path2MR by analyzing patho-

logical gradientsofAlzheimer’s disease (AD), forwhichneuropathology

serves as ground truth for diagnosis and biomarker validation.30

Specifically, we explore the distribution of tau and amyloid beta (Aβ)
pathologies along the anterior-posterior axis of the hippocampus in 26

patients with no co-pathologies aside from AD. We take advantage of

the spatial variability inherent to histological sampling to achieve a fine

depiction of this axis using only three sections per subject. Our results

show an anterior-posterior gradient of hippocampal tau pathology,

consistentwith previouswork using ex vivoMRI and dense sampling.31

In contrast, Aβpathologydisplays aquadratic-shapeddistribution,with
more variable patterns of deposition across hippocampal subfields.

Our 3D histology pipeline is widely applicable to any prospective or

retrospective brain bank histology data set.

2 METHODS

Path2MR is summarized in Figure 1, and steps are detailed

in Sections 2.1 to 2.5. Steps described in Sections 2.1 to 2.4
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(3D reconstruction and registration to MNI) are performed once

for every subject, whereas histology registration (Section 2.5) is

performed independently for each histological section included in the

analyses. This pipeline is agnostic to the brain-processing procedures.

Because many brain banks limit histology to one hemisphere, the

pipeline has been developed for single hemisphere reconstruction;

however, it is easily adaptable to 3D reconstruction of the whole brain.

Steps described in Sections 2.1 and 2.2 are available as part of the

neuroimaging suite FreeSurfer, and steps from Sections 2.3 to 2.5 are

publicly available at https://github.com/ortegacruzd/Path2MR.

2.1 Blockface photography

The procedure for blockface photography of specimen slices has

been described recently32 and photograph processing is available in

FreeSurfer 7.433 (and subsequent versions). As shown in Figure 1A,

the specimen destined for histology should be cut by an experienced

pathologist into slices of regular thickness (ideally under 10 mm to

optimize the reconstruction result). Specimen slices are placed on a

flat (preferably dark) surface including four fiducial markers on the

corners of a rectangle of known dimensions (Figure 1B). All slices

are placed in the same orientation (either anterior or posterior), and

photographs are then taken with homogeneous lighting. The fidu-

cials are automatically detected with scale invariant feature transform

(SIFT)34 and random sample consensus (RANSAC),35 or alternatively,

four reference points of knowndistance between them can be selected

manually within each photograph. The distance between fiducials or

reference points is used to compute a perspective transform that cor-

rects geometric distortion of the photographs, while calibrating their

pixel size.32 This correction overcomes the variable angles of differ-

ent elements in the image to the camera, and can also adjust for

potential variations in camera distance across photographs. After pho-

tography, blocks are sampled from the slices for histological processing

(Figure 1C).

2.2 3D photograph reconstruction

From corrected photographs, slices are segmented from the back-

ground using automatic color thresholding (easier with dark back-

grounds) or manual correction (if background is light colored)

in any image editing software, such as the open-source package

GIMP (https://www.gimp.org). Then we define the order of the

slices using a simple graphic user interface (GUI), also available in

FreeSurfer 7.4.

Next the slices are reconstructed into a 3D volume32 (Figure 1D)

using a joint registration framework for MRI-free reconstruction.36

This framework takes advantage of prior knowledge about brain slice

thickness and uses an MRI atlas (Montreal Neurological Institute

[MNI]) as 3D reference volume. The orientation of slices in the image,

either anterior (default) or posterior, can be specified, resulting in

interchangeable results.

RESEARCH INCONTEXT

1. Systematic review: We reviewed the literature using

PubMed and Google Scholar. We examined in detail

previous methodologies for three-dimensional (3D) his-

tological analyses, as well as current knowledge about

the distribution of Alzheimer’s pathology through the

hippocampus.

2. Interpretation: Our pipeline enabled 3D mapping of

human post-mortem histology without the need for

dense specimen sampling or a magnetic resonance imag-

ing (MRI) reference, as required by previous methods.

We report an anterior-posterior hippocampal gradient

of tau pathology that is consistent with previous work

and describe for the first time a significantly different

distribution for amyloid beta (Aβ).
3. Future directions: The method and findings presented

here unlock the possibility of: (1) implementing Path2MR

using diverse brain bank data sets, including digital histol-

ogy data; (2) further characterizing the interplay between

tau and Aβ gradients in the three axes of the hippocam-

pus; and (3) exploring the distribution of other pro-

teopathies along the hippocampus, to build a complete

map of combined dementia pathology.

2.3 Deep learning synthesis

The reconstructed volume is aligned to the reference MNI atlas only

linearly, so accurate mapping requires subsequent nonlinear registra-

tion. To increase the accuracy of nonlinear alignment, it is desirable

to synthesize a 1 mm isotropic synthetic MRI (Figure 1E) from the

3D reconstructed volume.37 For this purpose, we use SynthSR,38,39

which we finetuned to adapt the method to the features of slice

photography: absence of cerebellum or brainstem; single hemisphere;

and different brightness variations for every coronal slice. As shown

previously,38 SynthSR confers reliable results across brain structures

and was trained using data from subjects with varying degrees of

atrophy, making it robust to severely atrophied brain specimens.

2.4 Registration to MNI

As shown in Figure 1, SynthSR produces a 1 mm isotropic volume

with T1-weightedMRI-like contrast.We register the T1-weighted ver-

sion of the MNI atlas to this volume (Figure 1F) using NiftyReg,40 an

open-source software for linear and nonlinear registration of medical

images (http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg). NiftyReg

is a widely used tool showing highly accurate results, with a val-

idated performance compared to other registration methods.41,42

Registration includes a linear step (function reg_aladin) followed by

https://github.com/ortegacruzd/Path2MR
https://www.gimp.org
http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg
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F IGURE 1 Summary of Path2MR. Steps in the top row include tissue processing and photography (Section 2.1), and the bottom shaded
pentagon includes steps of the reconstructionmethod (Sections 2.2 to 2.5). Briefly, the fixed specimen is: (A) sliced (coronally and unilaterally in
our case), (B) photographed including fiducial markers, and (C) dissected for histological processing. The 3D reconstructionmethod uses blockface
photographs as the starting point (D), Section 2.2), followed by deep learning synthesis of a 1mm3 resolution prediction of the hemisphere (E),
Section 2.3). To enable population analyses, an atlas inMNI space is registered to this hemisphere prediction (F), Section 2.4). Linear and nonlinear
transforms obtained at this step (representedwith a T) are used after registration of histology sections to the 3D reconstruction, for whichmanual
initialization is used (G), Section 2.5), to in turn register histology toMNI. Subsequently, any histology-derivedmeasure can be compared for
population analysis in standard space (H). 3D, three dimensional. MNI, Montreal Neurological Institute.

a nonlinear diffeomorphic registration, using 15 mm control point

spacing and a local normalized cross-correlation objective func-

tion with a 4 mm gaussian window (function reg_f3d -vel -sx −15

–lncc 4.0).

2.5 Histology registration and pathology map
computation

Direct slice-to-volume registration of a histological section to MNI

space is extremely ill posed and ambiguous, particularly for nonlin-

ear registration.28 To circumvent this challenge, our pipeline takes

advantage of prior knowledge of the brain slices from which tissue

blocks (and histology sections) were derived. This correspondence is

used to register each histological section to its approximate location

and rotation in the brain slice. Manual initialization is performed by

selecting two anatomic gyrification landmarks (e.g., for hippocampal

sections, the hippocampal fissure and the border of the temporal horn)

in both the histology section and its corresponding hemisphere slice

(Figure 1G). To account for block trimming during sectioning, if slice

photos and tissue blocks were obtained from the anterior side, we

shift the initial coronal position of the section 2.5 mm posteriorly. This

shift was chosen assuming that histology sections were obtained from

the center of the tissue block (commonly 5 mm thick), entailing an

error of ± 2.5 mm in registration initialization. Finally, the MNI atlas

registered to subject-specific space (Section 2.4) is used to enhance

registration accuracy in the coronal plane based on gradientmagnitude

correlation,within a range of±10mm. This last step is particularly use-

ful ifworkingwith thickerdissectionblocks,whichwouldentail a higher

initialization error.

To register histology to atlas space, the coronal level of each sec-

tion resulting from the prior registration step is used as a reference.

To model uncertainty in the anterior-posterior direction as the main

source of error in this pipeline, we use kernel regression, whereby

kernels account for both the density of the data (for interpolation

purposes) and registration error. To that end, a gaussian distribution

around each section’s resulting coronal position is obtained, serving

as a position probability function. Linear and nonlinear deformations

obtained in Step2.4 are then concatenated tononlinearly deformgaus-

sian distributions to MNI space (Figure 2). Subsequently, a weighted
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F IGURE 2 Steps followed to perform population analysis of histology in standard space. First, gaussian distributions are obtained around the
position of each section in subject-specific space. These are then registered toMNI space using transforms derived from registration of the atlas to
the syntheticMRI for each subject (T1, T2,. . .Tn). The gaussian position distribution of each section inMNI space is multiplied by its quantified
pathology burden and normalized by the total number of sections included for that subject. Finally, burdenmaps for all sections and subjects are
added andmasked to obtain the pathology distribution of the population within the region of interest (ROI). MNI, Montreal Neurological Institute;
n, number of subjects; N, number of sections per subject; ROI, region of interest.

averageofmeasuredpathologyburdens (or anyother histologicalmea-

surement) is obtained, using their gaussian position distributions as

weights. Amask of the brain structure of interest is then applied to the

resulting average burden maps, thereby enabling population analyses

(Figure 1H).

To obtain MNI coronal coordinates for Path2MR validation com-

pared to visual positions, after registration to MNI, gaussian distribu-

tions of each histology section were applied a mask of the hippocam-

pus.Within eachmaskeddistribution, the coronal slicewith the highest

number of high-intensity voxels (equal to 1) was selected as the coro-

nal coordinate of the section (the center of the distribution). Intensity

measures per coronal plane were derived from masked distributions

and pathologymaps using commands from FSL software,43 specifically

fslslice, fslmaths, and fslstats. Throughout themanuscript, the uncuswas

used as reference for the transition from hippocampal head to body,

delimiting y = −22 as the first MNI coronal coordinate within the

hippocampal body.44

2.6 Experimental donor cohort

TATo evaluate the applicability of the presented pipeline, we used sam-

ples from donors with dementia from the BT-CIEN brain bank (Madrid,

Spain). Standard diagnostic procedures at BT-CIEN45 include quali-

tative assessment of global and medial temporal lobe (MTL) atrophy

(0–3) immediately after extraction. Subsequently, the left hemisphere

is fixed in 4% phosphate-buffered formaldehyde and cut into 10 mm–

thick coronal slices for tissue block dissection, whereas the right hemi-

sphere is frozen. Neuropathological evaluation is performed according

to published criteria for AD,46 vascular pathology,47 presence of Lewy

bodies,4 limbic-predominant age-related TARDNA-binding protein 43

(TDP-43) encephalopathy (LATE),48 and hippocampal sclerosis of aging

(HS).49

To minimize heterogeneity from co-pathology, we included all

patients with a neuropathological diagnosis of “pure” nonfamilial AD

according to the following criteria: (1) highADneuropathologic change
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(ADNC)46; (2) no Lewy bodies, LATE or classical HS, and low or no

vascular pathology; (3) extent of global and MTL atrophy lower than

the maximum (i.e., score 0–2), as neuropathologic criteria could not be

reliably evaluated in samples from extremely atrophic cases (score of

3). Intermediate ADNC cases with no co-pathology commonly present

milder clinical profiles50 and are, therefore, rare in dementia autopsy

series. Of all donations received at BT-CIEN between 2007 and 2020,

a total of 26 amnestic dementia cases complied with these criteria and

were included in the study.

Reconstruction was performed from retrospective photographs of

stored hemisphere slices that were processed previously for histology.

For all subjects, reconstruction was carried out using anterior block-

face photographs. If any slice had missing information due to tissue

dissection, with the posterior side of its consecutive slice being intact,

the latter was replaced by the former (horizontally flipped) prior to

segmentation from the background (Section 2.2) using GIMP 2.10.28.

2.7 Histology and quantification

Given the extensively studied vulnerability of the hippocampus to

AD pathology, we employed Path2MR to analyze the distribution of

tau and Aβ pathologies along the hippocampal longitudinal axis. As

shown in Figure 3A, we used histology sections obtained from three

coronal blocks of the left hippocampus: hippocampal head, body, and

tail. Blocks were processed using the HistoCore PEARL (Leica Biosys-

tems), placed within paraffin, and the Microm HM355S microtome

(ThermoFisher) was used to obtain 4 μm–thick sections. Immunohis-

tochemistry was carried out using primary antibodies for tau AT100

(ThermoFisher Invitrogen, code:MN1060, 1:100 dilution) or Aβ (Dako,
code: M087201-2; 1:40 dilution), together with hematoxylin. For each

pathology, analyses were designed to include a total of 78 sections

(3 per subject). Of these, 9 blocks could not be included in tau anal-

ysis due to dim staining or tissue unavailability, and 6 could not be

obtained for Aβ staining, resulting in 69 and 72 sections included,

respectively. For histology registration (Section 2.5), a 1X digital image

of each sectionwas obtained using aNikonCoolscanV-Ed scanner. The

anatomic position of each section was determined by K.S.B. and A.R.,

who were blinded to Path2MR outcome. This was performed based on

the microatlas by Mai et al.,51 determining the distance to the ante-

rior commissure (AC) of each section (ranging from 10.7 to 39.5 mm)

by visual inspection under the Nikon 90i light microscope.

Toobtain an averagemeasureof tauneurofibrillary tangle (NFT) and

Aβ burden per section, we measured these in five hippocampal sub-

fields: CA1, CA2, CA3, as well as the medial (MDG) and lateral (LDG)

regions of the dentate gyrus (Figure 3B). The selected CA1 region

included the medial portion of the subfield (with proximal meaning

close to CA2, and distal close to the subiculum). Three micrographs

were acquired in each subfield using a Nikon 90i microscope with

20Xmagnification. Pathology burdenwas quantified using CellProfiler

4.0.7, performing segmentationbasedon the color of the stain followed

by intensity correction to homogenize acrossmicrographs. Then, in tau

images, the following items of interest were identified based on size:

NFT+ neurons (mature tangles, covering the whole neuronal soma)

and hematoxylin-stained nuclei of NFT– neurons. In the Aβ images we

identified diffuse, cored, cotton-wool or coarse-grained plaques, with-

out separate classification of each type. As described previously, tau

burden was measured as the percentage of NFT+/total neurons in

the image,52 and amyloid burden was measured as the area percent-

age covered by Aβ plaques53 (Figure 3C). Because neuron size differs

between pyramidal CA layers and granular DG layers, independent

projects were used for tau quantification in CA and DG subfields. To

normalize counts by layer area, because CA images included only the

pyramidal layer, the whole area of the image was used. Conversely, DG

images included the neuron-containing granular layer and neighbor-

ing (polymorphic and molecular) layers, and thus segmented neurons

were dilated (to a size of 15 pixels) and merged to delimit the area of

the granular layer. Our CellProfiler projects for tau and Aβ quantifi-

cation are also available at https://github.com/ortegacruzd/Path2MR.

Subfield burdenwas obtained as the average between the threemicro-

graphswithin a subfield, and global section burdenwas obtained as the

average among the five subfields.

2.8 Ground truth experiment

To validate Path2MR reconstruction performance, we used MRI scans

from theHumanConnectomeProject (HCP)54 as the ground truthdata

set, adapting the methodology of Gazula et al.32 T1 and T2 sequences

(slice thickness of 0.7 mm) from 100 subjects were first skull stripped

using FreeSurfer, followed by extraction of the left hemisphere. The

T1 was used as ground truth structure, and the T2 was used for

reconstruction (Figure S1). To that end, we simulated 10mm–thick dis-

section photographs from T2 hemispheres by extracting one coronal

slice every 14 slices (0.7 mm*14 = 9.8 mm spacing). To mimic variabil-

ity in experimental data, each extracted slice was applied a distortion

transform Tdist that comprised random rotations (within ± 20◦), trans-

lations (within ± 0.5 pixels in both axes), shearings (within 10% in both

axes), and smooth illumination fields. Larger random translations were

not required, since 3D reconstruction is initialized by matching cen-

ters of gravity of the slices. Distorted T2 slices were then used for 3D

reconstruction, deep learning synthesis, and nonlinear MNI registra-

tion (Path2MR steps in Sections 2.2, 2.3, and 2.4, respectively). Finally,

the T1 hemispherewas also applied a 3D random rigid transform (rota-

tion within ± 30◦ and translation within ± 20 mm) and nonlinearly

registered toMNI using the same configuration as in Section 2.4.

On one side, MNI registration of the T1 ground truth hemisphere

yielded a deformation transform D1. On the other side, reconstruc-

tion of T2-derived slices yielded a restoration transformTrest, and after

SynthSR processing, MNI registration of the resulting isotropic scan

yielded a transform D2. We can then compare D1 with the composi-

tion: Tdist ∘ Trest ∘ D2. In an ideal scenario, Tdist = Trest
−1 such that

the two cancel each other, with SynthSR generating perfect isotropic

images and D1 and D2 being identical. In practice, mistakes are made

in the 3D reconstruction (which affects the error directly) and in deep

learning synthesis (which affects the error indirectly, via impact on the

https://github.com/ortegacruzd/Path2MR
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F IGURE 3 Summary of steps carried out for AD pathology quantification along the hippocampal longitudinal axis. (A) Three anatomic blocks
were sectioned for histology: head, body, and tail of the hippocampus. Sections from each of these levels were stained with antibodies against tau
(AT100) and Aβ. (B) Threemicrographs at 20Xmagnification were taken per subfield: CA1, CA2, CA3MDG, and LDG. (C) Each 20Xmicrograph
from sections stained against tau or Aβwas quantified with CellProfiler 4.0.7, measuring the percentage of NFT+ neurons (outlined in green, vs
NFT– neurons outlined in purple), or area covered by Aβ plaques (outlined in green), respectively. Aβ, amyloid beta; LDG, lateral dentate gyrus;
MDG, medial dentate gyrus; NFT, neurofibrillary tangle.

NiftyReg registration). Therefore, the error was computed as themod-

ule of the difference between D1 and D2, averaged across nonzero

voxels in every reconstructed slice.

2.9 Statistics

Statistical comparisons and associated plots were performed using

RStudio 1.4.1106, including the following packages: ggpubr, tidyverse,

readxl, rstatix, and viridis. Tau andAβdistributions along the longitudinal
hippocampal axis were compared using the Kolmogorov-Smirnov test.

To find the most appropriate fit to the data, we used linear, quadratic,

and cubic functions and selected the fit with highest adjusted R2 and

lowest Akaike information criterion (AIC) value. Pathology burdens

were compared between subfields using repeated-measures analysis

of variance (ANOVA) and post hoc pairwise T tests.

2.10 Ethical approval

The BT-CIEN brain bank is officially registered by the Carlos III

Research Institute (Ref: 741), by which donation is carried out under

informed consent by a relative or proxy. BT-CIEN procedures have

been approved by local health authorities of the Madrid Autonomous

Community (Ref: MCB/RMSFC, Expte: 12672). The study of these

data was approved independently by the ethics committee of the

Universidad Politécnica deMadrid (N◦ Expte: 2021-062).

3 RESULTS

3.1 Validation of reconstruction performance

First, the accuracy of Path2MR in recovering the original structure

of the specimen was assessed quantitatively using scans from 100

subjects from the Human Connectome Project. T1-weighted scans

were used as ground truth, and corresponding T2-weighted scans

were used to simulate 10 mm–thick slices for 3D reconstruction,

deep learning synthesis, and registration to MNI (Figure S1). Result-

ing deformations were compared at every voxel with those obtained

from MNI registration of the T1 ground truth, revealing an average

3D error of 3.27 ± 0.42 mm (mean ± standard deviation). Evalu-

ating separate contributions from each axis, we found an error of

1.22 ± 0.18 in medial-lateral, 1.71 ± 0.33 in superior-inferior, and
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F IGURE 4 Comparison of histology localization with Path2MRwith visually determined section positions. Visual positions were determined
by using amicroatlas of the hippocampus 51 as reference. (A) Scatter plot and correlation between visually determined positions and coronalMNI
position obtained from Path2MR. For each section, the slice with highest number of high-intensity voxels from the gaussian position distribution
was used as its coronalMNI position. MNI coordinates have been reversed to ease visualization (from anterior to posterior). Anterior (A) and
posterior (P) ends of the x and y axes are indicated. The gray-shaded region shows 95% confidence interval. (B) Distributionmap of distance to the
anterior commissure (AC) obtained with Path2MR, showing the shortest and largest distances in the hippocampal head and tail, respectively. AC,
anterior commissure; MNI, Montreal Neurological Institute.

1.91 ± 0.26 mm in the anterior-posterior direction. The comparable

error between the three axes, while dealing with discrete sampling in

the anterior-posterior axis, shows that Path2MR steps prior to histol-

ogy registration achieve an accurate estimation of the specimen’s 3D

structure.

3.2 Validation of histology localization

Together with reconstruction performance, the reliability of results

obtained with Path2MR depends on its ability to accurately localize

histological sections. To validate this step using our hippocampal histol-

ogy data set, we compared Path2MR-based histology localization with

visually determined positioning using a hippocampus microatlas as

reference.51 The Path2MR coronal level of each histology section was

obtained as the center of its gaussian distribution (width: σ = 3 mm),

obtained around the predicted position tomodel registration error and

registered toMNI. For the 72 Aβ histology sections included, resulting
coronal MNI coordinates ranged between y = −8 (hippocampal head)

and y=−42 (hippocampal tail). As shown in Figure 4A, these Path2MR

coordinates presented a strongly significant correlation with visu-

ally determined anatomic positions (Pearson’s correlation, R = 0.77,

p=2.5×10−15). In addition, we used the visual location of each section

to generate a 3D position map using Path2MR, applying Equation 1 as

explained in Figure 2 and Section 2.5:

Pathologymap =

Subject n∑

Subject 1

section N∑

section A

Gaussian distribution ⋅ Pathology burden
N

(1)

In this case, the visually determined distance to the AC was used as

the “pathology burden” measure. The resulting hippocampal position

map showed the expected distribution, with distance increasing pro-

gressively from the head to the tail of the hippocampus (Figure 4B).

Both results were similar when using tau sections instead (R = 0.77,

p = 5 × 10−15). Therefore, Path2MR conveys an anatomically con-

sistent representation of histology localization, while overcoming the

subjective character of visual comparison to a reference.

3.3 Anterior-posterior AD pathology distribution

The hippocampal long axis (anterior-posterior in humans) shows grad-

ual and discrete transitions in terms of anatomic connectivity, genetics,

receptor expression, and pathology vulnerability.55 To illustrate the

utility of Path2MR for population analyses, we assessed the distribu-

tion along this axis of tau and Aβ pathologies, hallmarks of AD. For

each pathology, we multiplied the gaussian distribution (σ = 10 mm)

of each section by its quantified pathology burden, normalizing by the

number of sections per subject and adding results from the 26 subjects

(Equation1, Section2.5). Followedby applying amaskof the hippocam-

pus, this strategy resulted in smooth pathology maps for tau and Aβ
(Figure 5). For both pathologies, burden was highest at the hippocam-

pal head, reaching lowest values at the hippocampal tail. To inspect

these distributions closely, we obtained the mean intensity per coro-

nal slice of each burden map, showing the highest tau burden at the

anterior end of the hippocampus (MNI coordinate y=−7). Tau burden

remained stable for the contiguous sliceswithin the hippocampal head,

followed by a linear decrease from y = −17 toward the posterior end

of the hippocampus. In contrast, Aβ distribution resembled a quadratic

curve, peaking at y = −18 within the hippocampal head. High-burden

slices covered a more widespread region, with a decrease initiating at

the hippocampal body and continuing throughout the tail.

These two anterior-posterior distributions were compared

through a Kolmogorov-Smirnov test, showing a statistically significant
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F IGURE 5 Distribution of tau and Aβ pathology burdens along the hippocampal long axis. (A) Distributionmap for tau pathology, quantified as
the percentage of NFTs over the total neuron count, obtained with Path2MR.Mean tau burden per coronal slice of this map is shown on the right.
(B) Distributionmap of Aβ burden, quantified as percentage area covered by Aβ plaques, together with plot of mean burden for every coronal slice.
In graphs on the right, the gray shade shows standard deviation, andMNI coordinates have been reversed to ease visualization from anterior (A) to
posterior (P). Aβ, amyloid beta; MNI, Montreal Neurological Institute; NFT, neurofibrillary tangle

difference between both (D = 1, p = 7 × 10−16). We also explored

within-subject pathology gradients (Figure S2A), using MNI-section

positions obtained in Section 3.2. Given the low number of data points

included per subject, individual pathology distributions were variable.

However, in accordance with distributions from 3D pathology maps,

a linear fit was found to be most appropriate for tau density, based

on the selection of fit with highest R2 and lowest AIC. Conversely, a

quadratic function represented a better fit for Aβ pathology (Figure

S2B). Results were similar when employing visually determined his-

tology positions (Figure S2C), although this classification comprises

a lower density of coronal levels through the hippocampus, and thus

lower resolution. Therefore, Path2MR allowed population analyses at

a finer resolution compared to a visual reference, revealing significant

differences between tau and Aβ deposition along the long axis of the

human hippocampus.

3.4 Pathology distributions for each subfield

Given that global section burden was obtained by averaging pathology

values from five hippocampal subfields, we also evaluated between-

subfield differences. Mean tau (F(264) = 248.4, p = 7 × 10−40) and Aβ
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F IGURE 6 Individual distributions of tau and Aβ along the hippocampus for each subfield. (A) Tau burden distribution obtained with Path2MR
independently for each subfield, showingmean burden per coronal slice within the hippocampus. (B)Mean Aβ burden in each subfield for every
hippocampal coronal slice. Gray shades show standard deviation, and x axis coordinates are reversed for visualization from anterior (A) to
posterior (P). Aβ, amyloid beta; LDG, lateral dentate gyrus; MDG, medial dentate gyrus; MNI, Montreal Neurological Institute; NFT, neurofibrillary
tangle.

(F(295) = 56.8, p = 6 × 10−13) burden was significantly higher in CA1

and CA2 compared to CA3, LDG, and MDG. Anterior-posterior differ-

enceswere also foundwithin each subfield for bothpathologic proteins

(Figure S3), as well as for separate measures of neuron and NFT areal

densities (Figure S4). Neuron density in CA1, CA2, and CA3, and NFTs

in all subfields, were higher at the anterior portion of the hippocam-

pus, which explains the observed tau (NFT/neuron) distributions. We

then generated subfield-specific 3Dmaps of tau andAβusingPath2MR

(Equation 1), from which the mean burden of every coronal slice was

obtained (Figure 6). We found that, while all subfields presented their

highest tau burden at the anterior end of the hippocampus, Aβ dis-

tribution was more variable across subfields. The anterior-posterior

Aβ distribution of CA1, CA3, and LDG reached a maximum at the

hippocampal head (MNI coordinates y = −21, −7, and −8, respec-

tively). In contrast, CA2 and MDG presented their maximum burden

at the hippocampal body (y = −25 and −33, respectively). Therefore,

the anterior-posterior gradient for Aβ pathology is intertwined with

gradients in the proximo-distal axis (between subfields).

4 DISCUSSION

We present Path2MR, a novel pipeline for histology mapping into a

3D framework enabling data integration for population analyses. This

pipeline requires only blockface images of slices obtained upon sam-

pling of the organ of interest—in this case, the left brain hemisphere.

These images are stacked into a sparse 3D volume, which is then

brought to isotropic 1 mm3 resolution using deep learning and reg-

istered to atlas space using standard MRI processing methods. We

implement Path2MR for population analysis using blockface images
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and hippocampal histology sections from 26 subjects with AD. In these

experiments, the spatial interpretability of the method was verified

by comparing histology mapping results in MNI space to visual sec-

tion localization. Although the MNI reference overcomes visual bias

and provides a higher resolution compared to the anatomic microatlas

(1 vs 1.4 mm), results from both methods showed a high correla-

tion, and thus comparable outcomes. This supports the reliability of

the method despite using specimens with severe atrophy. Moreover,

Path2MR reconstruction, synthesis, and MNI registration steps were

evaluated quantitatively using ground truth data, revealing a 3D error

of 3.27 mm, which is within the previously reported 2–6 mm error

range from registration of brainMRIs toMNI.42,56,57

The critical advantage of our sparse histology reconstruction

pipeline lies in its independence of a 3D reference image. Previ-

ous reconstruction methods were based on keystones obtained with

highly specialized equipment and expertise: either a subject-specific

MRI,26,27,58 dense sampling of the specimen,9,12 or both.21,23 While

dense sampling methods rely on stacking histological sections for

reconstruction, Path2MR recovers 3D structure by stacking blockface

images, which are straightforward to obtain. The proposed pipeline,

however, entails several assumptions such as the depth of the histo-

logical section from the face of the tissue block. In contrast, direct

stacking of serial histology sections allows the consideration of dif-

ferent deformation sources during histology processing.59,60 Use of

a specific 3D reference is also valuable to reduce uncertainty,8

with sophisticated approaches such as mold-guided sectioning fur-

ther facilitating the correspondence between MRI and histology.61,62

Although Path2MR involves a larger registration error, we show it

overcomeshistological sampling variability for thehippocampus,which

spans several centimeters along the coronal axis. Because all steps

of Path2MR are based on whole-brain methods, this approach can

also be applied for histological analyses in any other brain structure,

including cortical regions. This would be of great interest toward a

more anatomically complete understanding of AD histopathological

topographies.

The experiments included in this study revealed an anterior-

posterior gradient of hippocampal tau NFT pathology. These results

are in line with the recently reported higher anterior tau burden in the

hippocampus and other MTL structures,31 further supporting the reli-

ability of the pipeline. In a positron emission tomography (PET) study,

tau radiotracer uptake was also found to be higher in anterior tempo-

ral regions.63 The anatomic and functional connectivity between the

humanentorhinal cortex,where tau deposition initiates,3 and the ante-

rior hippocampus,55 could provide insights into this increased regional

burden. Interestingly, we also found a gradient of Aβ pathology, which
peaked toward the middle portion of the hippocampal long axis. To

our knowledge, no other pathology studies have explored the dis-

tribution of Aβ along this axis. We also report intriguing neuronal

density gradients in CA subfields of the hippocampus, with areal den-

sities decreasing in the anterior-posterior direction. Although these

results are in contrast with previous studies in healthy subjects, which

reported the opposite trend,64 or no anterior-posterior differences,65

new studies employing more recent methodology and including sam-

ples from patients with AD are required to validate the gradients

observed here.

Hippocampal anterior-posterior gradients have been observed con-

sistently in other dimensions including gene expression,66 as well as

functional55 and anatomic67 connectivity. An additional gradient of

functional connectivity from the middle of the hippocampus toward

the anterior and posterior ends has been described recently using

gradient mapping.68 This gradient predicted episodic memory per-

formance throughout the lifespan and could be linked to the Aβ
distribution reported herein. The topological distribution of amyloid

PET binding has been shown to overlapwith the “default mode” resting

state network.69 Evidence is emerging from analyses of functional gra-

dients within the hippocampus and the cortical mantle that the default

mode network may show the strongest hippocampal connectivity at

the transition between the head and body.70 This has relevant implica-

tions for the understanding of clinical manifestations and progression

ofAD. In this context, it is pertinent to investigate the hippocampal gra-

dients of other proteopathies that commonly coexist with AD, such as

TDP-43 and α-synuclein.
In linewith previous studies,71,72 we found both tau andAβ burdens

to be the highest in hippocampal subfield CA1, followed by CA2. Dif-

ferences between subfields were especially notable for Aβ, presenting
a high variability in anterior-posterior distributions. This is coherent

with the extracellular propagation pattern of Aβ, whereas tau spreads
on a cell-to-cell basis through axonal connections.73 As our analyses

were performed by averaging burdens across subfields, whose relative

positions differ along the long axis,51 the obtained anterior-posterior

distributions are conditioned by proximo-distal (between-subfield) dif-

ferences. Recent approaches take advantage of histology digitalization

for high-throughput quantification across the whole section, typically

using deep learning.6,74 Unfortunately, digitalization was not available

for the studied data set, thereby limiting our ability to explore 3D topo-

graphical interactions in greater detail. In futurework, Path2MRcanbe

readily exploited using high-resolution digital histology data, to inves-

tigate pathological differences in medial-lateral and superior-inferior

directions. This will provide a fine-grained understanding of spatial

gradients within structures severely affected by neurodegenerative

pathologies, as well as their associated cellular vulnerabilities.

Together with the lack of digital histology data, the presented

experiments entail some limitations, including the unavailability of

right-hemisphere pathological information. Another limitation is the

use of blockface photographs acquired after histological processing.

Brain slices used for reconstruction were nonintact, inducing uncer-

tainty in subsequent steps of the pipeline. Kernel regression was,

therefore, employed to model registration error, in a similar fashion

to smoothing strategies typically used in neuroimaging analyses.75 On

the other hand, the robustness of the method to these experimental

limitations is also a strength of this study, as it demonstrates the appli-

cability of Path2MR to any brain bank datasetwith access to preserved

tissue. Its implementation with blockface photographs of intact brain

slices will further improve the accuracy of its results, enabling more
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lenient error corrections. Another strength of this work is the use of

spatial variability inherent to histological sampling to obtain a dense

between-subject representation along the hippocampus, considering

only three sections per subject. Combinedwith kernel regression, such

dense representation over multiple subjects resulted in the smooth

pathology maps presented here. Moreover, in our experiments, the

possible effects of other co-pathologies on tau and Aβ patterns were
isolated by studying a homogeneous set of patientswithADas the only

substantial neuropathology.

In conclusion, Path2MR is a widely applicable 3D reconstruc-

tion pipeline. Using information extracted from routine dissection,

Path2MRcanbe implementedwith sparse histology and in the absence

of an MRI reference. These features unlock the possibility of ana-

lyzing in 3D the rich histological information obtained routinely at

brain banks, as well as clinical and research institutions. We demon-

strate the utility of Path2MR in population analyses including sections

from three regions of the hippocampus (head, body, and tail) from

26 patients with AD. We found that both tau NFTs and Aβ deposits

predominate at the hippocampal head, while showing significantly

different anterior-posterior distributions. Using this pipeline, future

studies could validate these results and integrate themwith data from

earlier AD stages, as well as with other pathologies, to constitute a

comprehensivemap of combined hippocampal pathology in dementia.
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