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Abstract The clinical use of dendritic cells (DC) as
tumor vaccines is very much dependent on their
survival potential. Members of the tumor necrosis
factor (TNF) receptor superfamily and their ligands are
involved in the regulation of cell death. Fas (CD95) is a
representative protein that promotes apoptosis. The
Bcl-2 family of proteins functions as an integrator of
diverse pro- and anti-apoptotic signals. It has been
found that DC maturation facilitates their survival, and
thus has an anti-apoptotic function. However, little is
known about the underlying mechanisms. We investi-
gated the effects of TNF-a and lipopolysaccharide
(LPS) on the expression of apoptotic molecules during
differentiation and maturation of DC under serum-free
conditions, and correlated this to the sensitivity to
apoptosis by the Fas-mediated pathway. Indeed, DC
activation effectively inhibited DC apoptosis, which
was predominantly accompanied by the upregulation of
Bcl-XL and to a lesser extent Bcl-2, while Bax and
FLICE inhibitory protein (FLIP) remained unchanged.
In contrast, in the presence of serum FLIP was also
upregulated. We conclude that under serum-free con-
ditions, Bcl-XL rather than FLIP plays the main role in
protection against DC apoptosis.
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Introduction

Hematopoetic dendritic cells (DC) are a unique popu-
lation of antigen-presenting cells (APC) and also one of
the most potent initiators and modulators of the im-
mune response. Once peripheral immature DC are
stimulated and capture an antigen, they begin to process
it to form MHC–peptide complexes and migrate from
the peripheral tissues to the T cell regions of the lym-
phoid organs [3, 42]. During this process, DC mature
and upregulate various accessory molecules that en-
hance binding to and activation of T cells [9, 18]. This
process is, however, defective in cancer patients and
leads to an insufficient recognition by the host immune
system of tumor antigens [19]. By in vitro conditioning
this phenomenon can be reversed, leading to functional
restoration. Several clinical studies have demonstrated
that injection of small numbers of peripheral blood-
generated DC pulsed with a relevant antigen induce a
strong immune response in cancer patients, in some
cases leading to tumor regression [12, 26, 28, 36]. The
clinical use of DC as tumor vaccines is, nevertheless,
dependent on their survival potential.

Apoptosis is critical for the control of homeostasis in
a variety of tissues, including the immune system [1, 25,
35, 51]. A wide range of factors and molecules are in-
volved in the regulation of apoptosis, including the Fas
(CD95/Apo1)-mediated pathway that is responsible for
the induction of cell death [27]. The death receptor Fas
belongs to the tumor necrosis factor (TNF) receptor
superfamily, and activates several downstream signal
proteins such as caspases. Other members of the TNF
receptor superfamily also include the TNF receptor itself
and CD40 [14, 22, 24, 39, 40]. It is noteworthy that they
have both cytotoxic as well as protective effects upon
cells [15, 33, 37, 44, 45]. Other molecules involved in the
control of apoptosis are members of the Bcl-2 family,
with the molecules Bcl-2 and Bcl-XL known to prevent
apoptosis [10, 15], while Bax promotes it [30].
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It has been found that several proteins of the TNF
family that are expressed on activated andmemory T cells
can increase DC survival [2, 7, 50]. TNF-a, CD40 ligand
(CD40L) and lipopolysaccharide (LPS) enhance the exp-
ression of MHC and accessory molecules such as CD80
and CD86. Furthermore, it has been shown that CD40L
counteracts Fas-mediated apoptosis [5, 20]. However,
little is known about the underlying mechanisms.

We investigated how TNF-a and LPS affect the sen-
sitivity of DC to Fas-mediated apoptosis. We have
shown that these molecules effectively inhibit Fas-me-
diated cell death and at the same time upregulate the
expression of Bcl-2 and in particular Bcl-XL, while
FLICE inhibitory protein (FLIP) expression remains
unchanged. These results suggest that Bcl-XL plays a
major role in the regulation of DC apoptosis.

Materials and methods

Generation of monocyte-derived DC

Peripheral blood mononuclear cells (PBMC) were separated on
Ficoll-Hypaque gradient (Amersham Pharmacia, Uppsala, Sweden)
from peripheral blood buffy coats of healthy donors. Monocytes
isolated by negative depletion using immunomagnetic selection
(CD14+ monocyte isolation kit MACS; Miltenyi Biotech, Bergisch
Gladbach, Germany) following the manufacturer’s instructions,
were resuspended in X-vivo 15 (Biowhittaker, Rockland, Md.)
supplemented with 50 ng/ml GM–CSF and 40 ng/ml IL-4 (both
Schering-Plough, Stockholm, Sweden). To obtain DC with mature
phenotype, 50 ng/ml of TNF-a (Cetus, Emeryville, Calif.) or
100 ng/ml of LPS was added for the last 24 h of culture. To induce
apoptosis, anti-Fas antibody (CH-11; Medical & Biological Labo-
ratories, Japan) or isotype control (mouse IgM; Dako, Dakopatts
AB, Stockholm, Sweden) was added at 500 ng/ml and further
incubated for 8 h.

Flow cytometric analysis

The generated DC were characterized by flow cytometry using a
FACScan cytometer (Becton Dickinson, San Jose, Calif.). The

following panel of monoclonal antibodies (mAbs) was used: CD83–
PE (phycoerythrin), CD86–APC (allophycocyanin), CD80–FITC
(fluorescein), CD1a–PE, HLA–DR/DQ/DM–FITC, HLA–ABC–
PE, CD3–FITC, CD56–PE, CD19–PE (Pharmingen, San Diego,
Calif.) and CD14–PC5 (Immunotech, Marseille, France). For
determination of Fas (CD95) expression, monoclonal mouse
anti-human CD95 antibody (clone DX2) was used. Annexin-V
binding assay was performed according to the instructions supplied
by the manufacturer.

Western blot analysis

Harvested cell populations (2–5 · 106) were centrifuged and
pelleted. The cell pellets were resuspended in ice-cold lysis buffer.
Nuclei and unlysed cellular debris were removed by centrifugation
at 14,000 g for 20 min. The supernatant was mixed with sodium
dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE)
sample buffer and electrophoresed through 8% SDS–polyacryla-
mide gels. Proteins were electrotransferred onto polyvinylidene
fluoride filter membrane (Immobilon-P; Millipore, Bedford,
Mass.). Filters were incubated with primary monoclonal murine
anti-human: Bcl-2, Bcl-XL, Bax (Zymed, San Francisco, Calif.) and
actin (Amersham, Bucks., UK) antibody, and polyclonal rabbit
anti-human I-FLICE antibody (Pharmingen) for 1 h. Following
incubation with secondary horseradish peroxidase (HPR)-conju-
gated anti-mouse immunoglobulin (Ig) or anti-rabbit Ig (Amer-
sham) for 1 h, filters were developed with an enhanced
chemiluminescence (ECL) system (Amersham).

Results

Activated DC resist Fas-induced apoptosis

To investigate how cell death is affected with regard to
differentiation of monocytes into DC, immunomagneti-
cally enriched monocytes were differentiated in the
presence of GM–CSF and IL-4 for seven days. To obtain
DC at the terminal stage of differentiation, LPS or TNF-
a were added to the culture during the last 24 h. A major
upregulation of the costimulatory molecules CD80 and
CD86 as well as the activation molecule CD83 was
detected. The CD1a marker was expressed independently

Fig. 1 Mature DC show higher
levels of costimulatory mole-
cules but not CD1a. Monocytes
were isolated from normal do-
nors and enriched by immuno-
magnetic selection. Monocytes
were further differentiated into
immature DC in X-vivo 15
medium supplemented with IL-
4 (40 ng/ml) and GM–CSF
(50 ng/ml). To induce matura-
tion, TNF-a (50 ng/ml) or LPS
(100 ng/ml) were added to the
cultures during the last 24 h.
Cells were incubated with fluo-
rochrome-conjugated antibod-
ies in PBS at 4�C for 30 min
prior to flow cytometric analy-
sis. A typical result is shown
from at least four independent
experiments
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of activation (Fig. 1). To analyze their susceptibility to
Fas-induced apoptosis, DC were subsequently incubated
with anti-Fas mAb CH11 or isotype-matched control
antibody for 8 h. Staining for Annexin-V and 7-AAD
showed that immature DC exhibited higher levels of
spontaneous apoptosis compared to TNF-a- or LPS-
treated DC. Viability of immature DC was 79% com-
pared to 86% and 90% for TNF-a- and LPS-treated DC
respectively (Fig. 2A). Upon Fas triggering, this differ-
ence was even more pronounced, as 65% of the immature
DC were still viable compared to 76% and 88% for
TNF-a- and LPS-treated DC (Fig. 2B). These results
extend the findings of others [32, 48], that TNF-a or LPS
treatment rescues DC from Fas-induced cell death and
apoptosis. To elucidate whether these differences could
be explained by diverse Fas (CD95) expression, DC were
stained with anti-Fas antibody and analyzed by flow
cytometry. Others have shown that Fas expression on
CD34+-derived DC is enhanced following LPS or TNF-
a treatment [34]. However, no differences were observed
in Fas expression between immature and TNF-a-treated
monocyte-derived DC (Fig. 2C).

Activated DC express higher levels
of anti-apoptotic molecules

Conflicting information exists about the significance of
different apoptosis-regulating proteins responsible for
the pronounced protection from cell death of terminally
differentiated DC. We analyzed by western blot the ex-
pression of apoptotic molecules throughout the culture

period. No significant differences were detected in the
levels of these molecules between day 0 and 8 (data not
shown). However, upon stimulation with TNF-a or LPS
a strong upregulation in protein level of Bcl-XL was
detected. Bcl-2 was also upregulated to a lesser extent,
while no change in the level of FLIP was detected
(Fig. 3A). This finding was contradictory to the pub-
lished results of others when DC was cultured in the
presence of bovine serum [23, 29, 48]. Therefore, we also
examined FLIP expression under these culture condi-
tions. Indeed, DC stimulated with TNF-a or LPS cul-
tured in the presence of serum displayed a significantly
upregulated level of FLIP (Fig. 3B). These results sug-
gest that rather than FLIP, Bcl-XL is the main regula-
tory protein responsible for the marked protection of
Fas-induced apoptosis under serum-free conditions.

Discussion

In earlier clinical trials of DC cancer vaccines, mainly
immature DC were used [21, 26, 43]. In some instances,
even DC cultured in the presence of bovine serum were
employed [28]. Lately, it has become apparent that
mature DC are more suitable for clinical application.
This concept is based on evidence that due to a higher
expression of accessory molecules, mature DC are better
APC and also that this phenotype does not revert in vivo.
Based on the results reported here, these cells are also
more resistant to cell death.

It is likely that this feature also has relevance in vivo.
Mature DC in contrast to immature DC might have an

Fig. 2 Activated DC resist Fas-
induced apoptosis. Monocytes
were differentiated under se-
rum-free conditions into
immature DC in the presence of
IL-4 and GM–CSF. A Sponta-
neous apoptosis of immature
and mature DC. AnnexinV and
7-AAD were measured after 8 h
of IgM control (500 ng/ml) an-
tibody binding. B Fas-induced
apoptosis of immature and
mature DC, AnnexinV and
7-AAD were measured 8 h after
anti-Fas (clone CH11; 500 ng/
ml) binding. C Flow cytometric
analysis of CD95 expression on
immature and TNF-a-treated
DC. Filled and open histograms
represent isotype control and
cells stained with anti-human
CD95 antibody (clone DX2),
respectively. One out of three
independent experiments is
shown
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intrinsic escape mechanism, protecting them from the
immunologically fatal contact with T cells and other
cytotoxic cells such as natural killer (NK) cells and ac-
tivated macrophages in the lymphoid tissue. Otherwise,
DC could become degraded soon after reaching the
lymphoid organs and their antigen-presenting capacity
might be suboptimal. It has been reported that mature
DC are far less targeted by autologous NK cells than
immature DC [49]. Nevertheless. it is very difficult to
speculate how these results can be transferred to the
in vivo situation, since tissue cultures with or without
bovine serum do not constitute physiological conditions.

Maturation of DC can be influenced by a variety of
factors. TNF-a, LPS and CD40L stimulate the final
maturation of DC [7, 8, 11], while IL-10 blocks it [6]. In
our study, either TNF-a or LPS upregulated the ex-
pression of MHC II and CD86, which was correlated
with the enhancement of the expression of CD83. Ex-
pression of these molecules is associated with a mature
phenotype and an increase in the antigen-presenting ca-
pacity [4]. TNF-a, TNF-related activation-induced cy-
tokine (TRANCE), FasL and CD40L are the TNF
ligand family members that provide activation signals in
APC such as B cells, macrophages, and DC [41, 46, 50].
In general, members of the TNF receptor family are
recognized as killer molecules. They activate caspases,
enzymes that are critically involved in the death process,
and this activation is further amplified by intracellular
mitochondria-associated mechanisms. Conflicting evi-
dence on the susceptibility of DC to Fas-induced cell
death exists. It has been reported that immature mono-
cyte-derived DC are sensitive [20] as well as resistant [48]

to Fas ligation. On the other hand, mature DC after
treatment with TNF-a or CD40L have been generally
considered to be resistant to apoptosis [6, 8]. The culture
conditions, mainly the presence of bovine serum, might
explain some of the conflicting findings. Willems et al.
reported that DC do not undergo apoptosis upon CD95
ligation unless sensitized with cyclohexamide. Other
studies suggest that DC or monocytes are not at all
susceptible to Fas-induced cell death [29, 31, 34]. How-
ever, the majority of experiments have been performed
on DC cultured in the presence of serum. In our study,
for the future clinical application of DC, we deliberately
employed serum-free conditions and found that even
though DC expressed similar levels of Fas, immature DC
were more susceptible to Fas-induced apoptosis.

To further investigate the underlying mechanism, we
examined the expression of several proteins from the
Bcl-2 family and FLIP in the DC preparations. Our
results demonstrated that while Bcl-2 was moderately
upregulated, a more pronounced upregulation of Bcl-XL

was observed during maturation of DC. Meanwhile, Bax
and FLIP expression remained unchanged. Conflicting
observations exist in the literature on the latter point. It
has been reported that CD40L and TRANCE upregu-
late Bcl-XL but not Bcl-2 [46, 50], and that FLIP is re-
sponsible for the increase in DC survival [23, 29, 34, 48].
Leverkus et al. reported that immature DC harvested on
days 4 and 7 exhibited similar levels of FLIP, while DC
harvested on day 7 were less susceptible to Fas-induced
apoptosis [23]. They furthermore suggested that in ad-
dition to FLIP, other regulatory mechanisms might also
account for the resistance of DC to death ligands [23].
Most studies have suggested that Bcl-2 is a poor inhib-
itor of CD95-mediated apoptosis, whereas Bcl-XL has
been shown to rescue B cells from anti-Ig-induced
apoptosis [47]. We have shown that FLIP is strongly
upregulated in DC in the presence of serum. Yet, when
DC are cultured in the absence of serum, Bcl-XL rather
than FLIP seems to be the major regulatory protein of
DC apoptosis. It may be speculated that due to its lo-
calization, Bcl-XL could play a more significant role
than Bcl-2 in protection from apoptosis. Bcl-2 is pre-
dominantly membrane-associated [16], whereas Bax is
mostly located in the cytosol [17] and Bcl-XL is present
in both of these locations [13, 17]. Both Bcl-2 and Bcl-XL

form heterodimers with Bax, which renders Bax inactive
[38, 52]. Therefore Bcl-XL seems more flexible and ca-
pable of binding Bax more easily than Bcl-2, and thus
blocks apoptosis more efficiently.

Taken together, our results demonstrate that under
serum-free conditions the maturation of monocyte-de-
rived DC protects them from CD95-mediated apoptosis.
This effect is mediated not only via Bcl-2 but especially
by the upregulation of Bcl-XL.
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