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Abstract The coexistence of tumor progression with a
tumor-specific immune response constitutes a major
paradox of tumor immunity. During the last decade, the
presence of cytotoxic T lymphocytes (CTLs) recognising
melanoma-associated antigens has been unequivocally
demonstrated in numerous different in vivo and in vitro
models. However, most often these melanoma-specific T
lymphocytes do not control tumor growth. Several
mechanisms that involve changes in melanoma pheno-
type and/or in T-cell differentiation and function could
explain the inability of the immune response to control
melanoma. In the last few years it has been demon-
strated that cellular cytotoxicity is the result of a balance
between activating signals triggered by the TCR and
costimulatory molecules and inhibitory signals triggered
by inhibitory receptors expressed by the CTL. Because
the final outcome of the immune response against mel-
anoma depends on the balance between activating and
inhibitory signals, the expression de novo on melanoma
cells of ligands for inhibitory NKRs and the down-reg-
ulation of costimulatory molecules may favor the escape
of tumor cells from immunosurveillance. In this paper
we review how altered expression of molecules required
for T-cell costimulation could result in impaired lysis of
melanoma. The modulation of antimelanoma T-cell re-
sponses by a group of receptors originally described on
NK cells (NK-associated receptors) but which are now

known also to be expressed on a subset of cytolytic
effector cells is reviewed. We hypothesize that the
expression of ligands for NKRs on melanoma cells may
contribute to T-cell–mediated immune responses against
melanoma either enhancing or inhibiting activation and
differentiation to effector cells. Blocking inhibitory
receptors or increasing activating receptors could result
in new strategies to improve T-cell–mediated rejection of
melanoma.
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Abbreviations

CTL cytotoxic T lymphocyte
Ig immunoglobulin
ILT immunoglobulin-like transcripts
ITAM immunoreceptor tyrosine-based activation

motif
ITIM immunoreceptor tyrosine-based inhibition

motif
KIR killer cell immunoglobulin-like receptors
NK cell natural killer cell
NKR natural killer cell–associated receptor
TCR T-cell receptor

Introduction

Cytolytic lymphocytes play a pivotal role in protection
from tumors. Several strategies have been developed to
enhance tumor recognition, including induction of
MHC molecules by cytokines. In the last decade, it has
been reported that cytotoxic T-cell activation and
effector function, upon recognition of specific peptides
presented by MHC class I, may be regulated by the
expression of natural killer (NK) cell–associated recep-
tors (NKRs) specific for major histocompatibility com-
plex (MHC) class I molecules [13]. NKRs were first
identified on NK cells as a regulatory mechanism of
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cytotoxicity [47, 62, 63, 81, 88, 146]. Although most
NKRs are not present on high percentages of T cells, a
subpopulation of T cells that expresses those receptors
and that corresponds to cells with a memory/effector
phenotype has been identified [86]. The majority of T
cells expressing NKRs are included within the
CD8+CD28) T-cell subset, characterized by higher
cytotoxic capacity, diminished proliferative response,
shortened telomeres, and low levels of telomerase
activity [116, 125]. The functional significance of the
expression of ligands for NKRs and costimulatory
molecules on melanoma cells and their correlation with
their susceptibility to lysis by T lymphocytes and NK
cells has not yet been fully established. In addition, the
study of the role of several cytokines as modulators of
NKRs and costimulatory molecule expression on both
melanoma and lymphocytes may open new avenues for
successful immunotherapy against melanoma.

Immune response against melanoma

Different components of humoral and cellular immune
responses are involved in the elimination of tumor cells,
although apparently paradoxical, tumor immunity fre-
quently coexists with tumor progression (Fig. 1). Even
though cellular immune responses against tumors are
generally mediated by T lymphocytes, the role of other
components of the immune response such as NK cells,
NKT cells, antibodies, or phagocytes in the elimination
of melanoma cells has also been defined in different
experimental models.

Thus, antibodies against melanoma have been
identified in many patients but their role in the anti-

tumoral immune response has not been fully clarified.
It has been reported that the induction of antibodies
against melanoma antigens after vaccination may con-
tribute to the therapeutic efficacy by a mechanism
primarily involving antibody destruction of tumor cells
by antibody-dependent cellular cytotoxicity (ADCC)
through the engagement of Fc receptors [76]. Further-
more, antibody-coated tumor cells could also be killed
by a process involving opsonization and phagocytosis.
However, the role of macrophages in the immune re-
sponse against melanoma is mainly related to their role
as antigen-presenting cells and to their capacity to se-
crete several effector molecules such as tumor necrosis
factor a (TNF-a) and interleukin (IL)-12 that may
participate in melanoma rejection [54].

Natural killer (NK) cells are cytolytic cells that also
contribute to the immune responses against tumors as
they kill some cancer cells without prior sensitization
and without a requirement for MHC restriction [95,
145]. NK cells are CD3-negative lymphocytes and,
within NK cells, two subsets have been defined accord-
ing to the level of expression of CD56. The CD56dim

NK-cell subset is characterized by higher cytotoxic
capacity than the CD56bright subset, which represents a
minority subset and is characterized by the production
of greater amounts of cytokines [24]. NK-cell cytotox-
icity has been found to be diminished in patients with
metastatic melanoma and could reflect the immuno-
suppressed state associated with advanced tumors [60].
NK cytotoxicity is controlled by the balance of acti-
vating and inhibitory signals mediated by different
receptors some of which bind to MHC class I molecules
on target cells [13, 47, 124, 146]. As will be discussed in
this review, these receptors can play a significant role in

Fig. 1 Immune responses
against melanoma. Different
cell types participate in the
rejection of tumor cells leading
to tumor immunity. A potential
consequence of tumor
immunity is autoimmunity.
Immune intervention can
enhance tumor immunity and
overcome the immune tolerance
status mediated by several
escape mechanisms
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tumor immunity because of their expression by a subset
of cytotoxic T cells.

T-cell–mediated immune response against melanoma

Cellular immunity plays a pivotal role in the immune
response against melanoma and an active T-cell–medi-
ated immunity against melanoma-associated antigens
has been demonstrated in different in vivo and in vitro
models [102]. During the last decade, significant progress
has been made in the identification and characterization
of several MHC class I–restricted melanoma-associated
antigens recognized by CTLs. These antigens belong to
three main groups: cancer-testis–specific antigens (e.g.,
MAGE, BAGE, GAGE, PRAME, and NY-ESO-1),
melanocyte differentiation antigens (e.g., tyrosinase,
Melan-A/MART-1, gp100, TRP-1, and TRP-2), and
mutated or aberrantly expressed antigens (e.g., MUM-1,
CDK4, beta-catenin, gp100-in4, p15, and N-acetylglu-
cosaminyl transferase V). CD4+ T cells can also recog-
nize several MHC class II–restricted epitopes from
melanoma antigens [46, 72, 128, 129, 131]. The discovery
of new antigens recognized by T cells has allowed a
better understanding of the cellular and molecular bases
of the immune response against melanoma. Because
many of these melanoma-associated antigens are self-
proteins, T-cell effector function is frequently found to
be weak or absent as a consequence of immune toler-
ance, which allows melanoma cells to escape from im-
mune responses [35].

The development of MHC class I–peptide tetrameric
complexes to study antigen-specific T cells ex vivo by
flow cytometry has significantly increased our under-
standing of the immune response against melanoma
antigens and has allowed the quantification and phe-
notypic characterization of specific CD8+ T cells [70,
94]. At the same time, the improvement of technology
for the in vitro expansion of specific T cells allows the
functional characterization of different T-cell subsets
[17]. Such approaches have shown that different mela-
noma-associated antigens may stimulate a differential T-
cell response with selective involvement of either CD4 or
CD8 T cells [50].

Melanoma-specific T cells: differentiation from naı̈ve to
effector and memory cells

Differentiation of naı̈ve CD8+ T cells toward effector/
memory T cells is required for an effective immune re-
sponse against melanoma. Frequently, CTLs from mel-
anoma patients show a low cytotoxic capacity, and it has
been postulated by several authors that this defect could
be the consequence of an impaired maturation from
memory/effector lymphocytes to terminally differenti-
ated cytotoxic effector lymphocytes [2, 35, 70, 90].

T-cell differentiation from naı̈ve to effector cytolytic
T lymphocytes is an area of intense study by many

investigators. Although no consensus on the transition
from naı̈ve to memory cells has yet been established,
four different stages of maturation have been defined
within CD8+ T cells according to their expression of
CCR7 and CD45RA molecules [108]. Whereas CD8
naı̈ve cells express both CCR7 and CD45RA, central
memory cells are CCR7+CD45RA), and effector
memory cells CCR7)CD45RA). A fourth stage of dif-
ferentiation that constitutes terminally differentiated
cytotoxic effector cells is defined by the lack of CCR7
expression, the reacquisition of CD45RA and large
amounts of perforin [108]. The relationship between
central memory and effector/memory T cells has been
further analyzed in humans [7] and mice [130, 143]. In
mice, a linear differentiation model has been proposed
by Wherry et al. in which effector/memory cells are de-
rived from effector cells, and central/memory cells are
derived from effector/memory cells [143]. This model has
not been confirmed in humans, and recent results by
Baron et al. suggest that most effector memory and
central memory cells are independently generated [7].

Different stages of T-cell maturation, from naı̈ve
(CD45RA+CCR7+) to terminally differentiated
(CD45RA+CCR7)) CD8+ T cells, have been observed
in melanoma-specific T cells obtained from patients [3,
56, 134]. Dunbar et al. [33] found that Melan-A–specific
CD8+ T cells from melanoma patients may have a
CCR7+CD45RA+ naı̈ve phenotype associated with a
defective immune response to Melan-A peptide ex vivo.
In contrast, a group of melanoma patients with metas-
tases were found to possess Melan-A–specific CD8+ T
cells with a CCR7)CD45RO+CD45RA) effector mem-
ory phenotype and were able to respond to Melan-A
peptide. Tyrosinase-specific T cells with an effector/
memory phenotype have also been found in bone mar-
row from melanoma patients at similar or higher levels
than in peripheral blood [71].

In melanoma patients, CD8+ T cells from tumor-free
lymph nodes showed a naı̈ve phenotype characterized
mainly by the expression of CCR7 and CD45RA [3].
A similar phenotype was found in a large fraction of
CD8+ T cells specific for melanocyte differentiation
antigens or tumor-restricted antigens obtained from tu-
mor-invaded lymph nodes. In contrast, preterminally
differentiated CTLs (CCR7)CD45RA)CD27+CD28)

perforin+) were observed in tumor-invaded lymph
nodes from a small fraction of melanoma patients, but
no evidence for tumor regression was found in these
patients. This may suggest a lack of terminally differ-
entiated CD8+ T cells [3, 90], but interestingly, in vitro
treatment with IL-2 or IL-15 promoted differentiation to
melanoma-specific effector T cells [3].

Antitumor activity of NKT cells

Recently, natural killer T (NKT) cells have been impli-
cated in defense against tumors [26, 65, 66, 113]. NKT
cells represent a novel T-cell lineage characterized by the
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restricted expression of an invariant TCR a chain
encoded by Va24/JaQ gene segments in humans and
Va14/Ja281 in mice. NKT cells constitute a small sub-
population of T cells (0.1–0.5% of peripheral blood
lymphocytes) that have been frequently confused with
NK cells because they share several phenotypic and
functional characteristics [45]. Because NKT cells can
express NKRs (e.g., CD161, CD56) it was also suggested
that they could represent the subset of NKR+ cytotoxic
T cells. However, detailed analysis of these cells has
demonstrated that NKT and NKR+ cytotoxic T cells
represent different T-cell subpopulations [29]. NKT cells
react with CD1d and, after stimulation, produce high
levels of IL-4 and interferon (INF)-c [37]. The specific
ligand of murine Va14+ and human Va24+ NKT cells is
a-galactosylceramide (aGalCer) which is presented by
the CD1d molecule [45]. Recently, a ganglioside named
GD3 that is presented by CD1d molecules has been
found to be expressed on several human tumors
including melanoma. GD3 expression on normal tissues
is low or absent. Furthermore, NKT cells from mice
immunized with a human melanoma cell line expressing
GD3 recognized human GD3 cross-presented by mouse
APCs in a CD1d-restricted fashion, resulting in pro-
duction of IL-4, IFN-c, and IL-10 [144].

It has been observed that NKT cells exert protective
immunity against melanoma in vivo and in vitro. In a
murine model, dendritic cells pulsed with aGalCer have
been shown to be effective against tumor development in
vivo by means of activating Va14 NKT cells and
increasing their cytolytic capacity [64, 132]. Studies in
vitro using human Va24+ NKT cells from melanoma
patients have shown that aGalCer-stimulated NKT cells
did not display cytolytic activity against melanoma cell
lines (autologous or allogeneic) but were able to sup-
press proliferation of melanoma cell lines cocultured
with activated Va24+ NKT cells. This effect was medi-
ated by the induction of cytokine release (IFN-c and to a
lesser extent IL-12) rather than by direct cytotoxicity
[66]. Together, these results indicate that aGalCer can
induce antitumor effects that can be mediated by
increased cytolytic activity or by cytokine release
depending on the experimental model used.

Balance between activating and inhibitory signals

As mentioned above, the final outcome of T-cell–medi-
ated immune responses against melanoma depends on a
balance between activating and inhibitory signals.
Activation of T lymphocytes requires two signals, the
first mediated by T-cell receptor (TCR) recognition of
the specific peptide in the context of an appropriate
MHC molecule and the second mediated by costimula-
tory receptors on T cells that interact with their specific
ligands on antigen-presenting cells or target cells.
Interaction of CD28 on T cells with members of the B7
family (e.g., CD80 and CD86) on target cells delivers the
second signal for an efficient T-cell activation after TCR-

mediated recognition of the specific ligand [78]. In
addition to CD28-B7, other receptors have recently been
defined that also enhance T-cell responses and may be
important in tumor immunity. Manipulation of the
immune system through induction of costimulatory
molecules could lead to enhanced immune responses
against tumors [136].

NKRs expressed on T cells can mediate negative as
well as positive signals, resulting in melanoma growth
promotion or suppression, respectively. The role in tu-
mor rejection of signals mediated by activating NKRs
has not been characterized. In contrast, interaction of
inhibitory NKRs on the effector cells with their ligands
on tumor cells leads to inhibition of TCR-mediated
cytotoxicity against melanoma [6, 137]. Modulation of
this balance between activating and inhibitory signals
invites a new strategy for enhancing effective immunity
against melanoma.

Expression of costimulatory molecules by T cells
from melanoma patients

Delivery of a costimulatory signal through engagement
of CD28 on T cells by members of the B7 family (e.g.,
CD80 [B7.1], CD86 [B7.2]) on antigen-presenting cells is
essential for full T-cell activation, potentially leading to
tumor elimination. The outcome of T-cell costimulation
through B7 molecules involves a combination of acti-
vating and inhibitory signals from CD28 and CTLA-4
molecules [20, 36, 112]. Although the expression of B7
family molecules in nonlymphoid tissues is mostly not
constitutive, it is sometimes inducible by cytokines such
as IFN-c, IFN-a, IFN-b, or TNF-a [112]. It should be
also considered that recognition of melanoma antigens
by tumor-infiltrating lymphocytes induces the release of
several cytokines such as granulocyte-macrophage col-
ony-stimulating factor (GM-CSF), TNF-a, and IFN-c
that may have clinical relevance [49, 109].

Frequently, T-cell responses in melanoma patients
are defective [70], and tumor-associated antigens ex-
pressed by melanoma cells are poorly immunogenic due,
in part, to the lack of expression of costimulatory mol-
ecules by human melanoma cells [10, 19, 43, 48] that
render melanoma-specific CTLs anergic in vivo [70].
Thus, it has been reported that the expression of CD80
and CD86 molecules in spontaneously regressing pri-
mary melanomas improved T-cell–mediated antitumor
immunity, whereas these molecules were absent in met-
astatic melanoma and consequently favored the escape
of melanoma cells from immune surveillance [30]. On the
other hand, others have found no significant correlation
between CD80 and CD86 expression on melanoma
metastases and regression of the tumor, time to pro-
gression or survival [11].

It has also been reported that transfection of mela-
noma cells with the costimulatory molecules CD80 or
CD86 improves immune responses mediated by both
CD4+ and CD8+ T cells [14, 34, 74, 80]. Transfection of
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HLA-A*0201 melanoma cell lines with both the IL-2
and B7-1 (CD80) genes also resulted in an improved
response by specific CTLs. Transfected melanoma cells
displayed higher immunogenicity even with low antigen
expression and were able to stimulate cytotoxicity and
IFN-c release by autologous and HLA-A*0201–com-
patible allogeneic T cells [79].

Although the CD28-CD80/CD86 and CTLA4-CD80/
CD86 pathways of costimulatory and inhibitory signals
are the best characterized, other new members of the B7/
CD28 superfamily have recently been identified. One
involves the molecule B7 h (also known as ICOSL, LI-
COS, GL50, B7RP-1, and B7H2) a member of the B7
family of costimulatory molecules, which interacts with
inducible costimulatory molecule (ICOS). ICOS is ex-
pressed on activated T cells and it has been found that
expression of B7 h on tumor cells enhanced CTL re-
sponse in vivo [36, 75, 112, 139]. Recently, B7-H1 (PD-
L1) has been identified as a new member of the B7
family of costimulatory molecules. B7-H1 molecules are
involved in the negative regulation of the immune re-
sponses through engagement of the PD-1 (programmed
death-1) receptor on activated T and B cells [18]. Inter-
estingly, B7-H1 expression has been found in several
tumors including melanomas. Furthermore, B7-H1
expression may be induced by IFN-c treatment of tumor
cell lines [32]. In vitro experiments showed that the
interaction of B7-H1 with its ligand induces apoptosis of
activated tumor-reactive T cells and may favor the
growth of B7-1+ tumors in vivo [32]. The expression of
B7-H1 on tumor cells can represent an escape mecha-
nism from the T-cell immune response, and blockade of

PD-1)B7-H1 interactions may provide new perspectives
for tumor immunotherapy [55].

The human NK-like cell line YT-Indy constitutively
expresses CD28 that triggers NK-mediated lysis of tar-
get cells expressing B7. By transfection of KIR2DL2 on
YT-Indy cells we have analyzed the role of inhibitory
NKRs on CD28-mediated lysis. Interaction of
KIR2DL2 on YT-Indy cells with its ligand, HLA-Cw3,
on target cells inhibited CD28-dependent cytotoxicity.
This inhibition was blocked by the addition of anti-
KIR2DL2 or anti-HLA class I mAb, whereas it was not
affected by the addition of other control mAb [126].
CD28-mediated lysis of CD80-transfected melanoma
cells by YT-Indy cells has also been observed and this
effect was inhibited by interaction of the inhibitory
receptor KIR2DL2 on YT-Indy with its ligand on mel-
anoma cells (J.G. Casado et al., unpublished data).

Manipulation of costimulation through B7 molecule
interactions with their different receptors on effector
cells is therefore expected to provide a useful model not
only to further our understanding of immune responses
against melanoma but also for the development of new
immunotherapy strategies.

Inhibitory and activating MHC class I–specific NK
receptors on T cells in melanoma patients

NKRs were firstly described in NK cells and in a subset
of CTLs and play an important role in regulating
cytotoxicity (for review, see [13]). In humans, three
families of genes encode these HLA class I–specific
receptors (Fig. 2A). The first family identified is called
the killer cell immunoglobulin-like receptor (KIR) which
consists of type I transmembrane molecules belonging to
the immunoglobulin (Ig) superfamily, and interacts with
HLA class I molecules to regulate NK- and T-cell

Fig. 2A,B Inhibitory and activating NKRs. Expression and func-
tion of human NKRs on cytotoxic cells and their potential ligands
on melanoma cells. A HLA class I–specific receptors. B Non-HLA-
specific receptors
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function. KIRs with long cytoplasmic tails contain im-
munoreceptor tyrosine-based inhibitory motifs (ITIM)
(e.g., KIR2DL and KIR3DL) and inhibit lysis of target
cells expressing their MHC class I molecule ligands [87],
and also inhibit cytokine production by the effector cells
[27]. In contrast, KIR with short cytoplasmic tails (e.g.,
KIR2DS) can activate NK-cell cytotoxicity toward tar-
get cells expressing an appropriate MHC class I ligand
[89] through interactions with the adaptor molecule
DAP12, a molecule expressed as a homodimer that
contains an immunoreceptor tyrosine-based activation
motif (ITAM) [69]. A second group of receptors also
belonging to the Ig superfamily are named immuno-
globulin-like transcripts (ILTs) and are expressed pre-
dominantly in monocytes, NK cells, and also on a
subpopulation T cells. KIR and ILT ligands include
several classical HLA class I molecules and the non-
classical HLA-G molecule. C-type lectin family mem-
bers constitute the third family of HLA-specific NK
receptors and are composed of heterodimers of CD94
covalently associated with a member of the NKG2
family of molecules. The ligand for CD94/NKG2A
(inhibitory) and CD94/NKG2C (activating) receptors is
the nonclassical class I molecule HLA-E. The inhibitory
members of this family contain ITIM in their cytoplas-
mic tails and the activating receptors associate with
DAP12 [13]. It has been repeatedly demonstrated that
KIR, ILT, and C-type lectin receptors (CD94:NKG2)
can modulate T-cell cytotoxicity [86].

Predominance of stimulatory signals mediated by
activating NKRs has been observed in autoimmune
diseases. Thus, CD4+ T cells from rheumatoid arthritis
patients frequently lack the costimulatory molecule
CD28 but have an increased expression of activating
forms of KIRs (CD158j). These receptors were func-
tional and enhanced IFN-c production after T-cell
receptor stimulation. These results suggest that activat-
ing KIRs in T cells function as costimulatory molecules
and may contribute to the autoreactivity observed in
rheumatoid arthritis [92, 114].

NKG2D is another C-type lectin-activating receptor
that is expressed by both NK cells and CTLs in humans
and by all NK cells and activated T cells in mice [103].
NKG2D recognizes MICA and MICB that are stress-
induced cell-surface MHC class I–related molecules.
Interestingly, MICA and MICB expression is frequently
up-regulated on tumor cell lines and primary tumors of
epithelial origin [110, 138], and shedding of MIC has
been observed in epithelial tumors [39]. Expression of
MIC has been recently reported in primary and meta-
static melanomas, and NKG2D expression was also
found in lymphocytes infiltrating the tumor [138].
NKG2D/MIC interaction induces endocytosis and
degradation of NKG2D. Furthermore, defective
expression of NKG2D has been linked to the presence of
tumor-associated MIC that impairs NK- and T-cell–
mediated immune responses and constitutes a new im-
mune evasion mechanism [39]. NKG2D also recognizes
a new family of MHC class I–related molecules named

UL16-binding proteins (ULBPs). Four different ULBP
proteins (ULBP1–4) have been identified so far and are
characterized by their ability to bind to the cytomega-
lovirus (CMV) glycoprotein UL16 [25, 57, 119]. These
results suggest that NKG2D/MIC interactions may be
involved in NK-cell–mediated as well as T-cell–mediated
cytotoxicity to melanoma cells [82, 99]. Furthermore,
NKG2D-mediated NK-cell activation may be inhibited
by the engagement of inhibitory NKRs [99].

The expression of classical MHC class I molecules on
melanoma cells is required for TCR-mediated recogni-
tion by specific T cells and the down-regulation of HLA
class I molecules in melanoma cells is an important tu-
mor escape mechanism (for review, see Garrido et al. in
this Symposium in Writing). Furthermore, although its
in vivo relevance has not been defined, the engagement
of MHC class I–specific activating receptors might en-
hance T-cell–mediated immune responses against mela-
noma cells.

In contrast, as discussed above,MHCclass Imolecules
on melanoma cells can also be recognized by inhibitory
receptors that would block T-cell activation and then fa-
vor tumor escape. The analysis on tumor cells of HLA-A,
HLA-B, HLA-C, and nonclassical MHC molecules
such as HLA-E and HLA-G that are recognized by
KIR, CD94/NKG2, and ILT receptors, respectively,
has been limited by the absence of monoclonal anti-
bodies. Even though MHC class I down-regulation in
tumor cells is a well-known escape mechanism to avoid
T-cell recognition, frequently tumor cells are also resis-
tant to NK-mediated lysis and the expression of
nonclassical HLA molecules recognized by inhibitory
receptors has been postulated to be involved in this
process.

In a recent study, the expression of HLA-E molecules
was analyzed in a panel of tumor cells. The expression of
HLA-E on the cell surface of tumor cell lines correlated
inversely with the expression of other HLA class I
molecules and was related to the availability of b2-mi-
croglobulin. Thus, HLA-E expression could be induced
in an HLA class I–negative melanoma cell line by
transfection of the b2-microglobulin gene [77]. There-
fore, in contrast with total loss of HLA class I molecules,
partial loss of HLA-A, HLA-B, or HLA-C class I
molecules (allelic or haplotype HLA loss) may at the
same time inhibit CTL responses by deleting the
restriction element and also inhibit NK-cell–mediated
cytotoxicity by expressing HLA-E molecules. Further-
more, HLA-E expression on tumor cells could inhibit
specific CTL-mediated cytotoxicity by interaction with
inhibitory NKRs (CD94/NKG2A) [77].

An increased expression of NKRs, including HLA-
specific receptors, on CD8+ T lymphocytes has been
observed in several clinical conditions that involve
chronic activation of the immune system (e.g., HIV
infection, as well as tumor patients) [86, 116, 125].
Furthermore, the expression of NKRs in T cells has
been associated with cells that have undergone a process
of replicative senescence after multiple rounds of cell
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division probably as a consequence of chronic stimula-
tion [15, 124].

Recently, the expression of several NKRs on T cells
has been analyzed in melanoma patients. However, the
proportion of NKR+ T cells showed great variation
between individuals, and it was therefore difficult to
establish significant differences compared with healthy
donors [115, 116]. The functional capabilities of NKRs
expressed on T cells from melanoma patients have been
assessed against melanoma cells. Thus, HLA-specific
inhibitory NKRs have been shown to inhibit lysis of
melanoma cells mediated by specific CTLs transfected
with the inhibitory receptor KIR3DL1 [6]. It has also
been reported that melanoma-specific CTLs can express
inhibitory NKRs in vivo that impair their cytolytic
activity [51, 53, 98, 115].

Ikeda et al. found the expression of an inhibitory
NKR (KIR2DL2) on melanoma-specific CTLs that was
able to inhibit cytolysis upon interaction with its ligand
(HLA-Cw7) on melanoma cells [53]. The expression of
C-type lectin-like NKRs has been also analyzed in
melanoma patients. Triggering of CD94/NKG2A
inhibitory receptor by its ligand on melanoma cells in-
duced inhibition of CTL-mediated lysis of melanoma
cells [115]. Both inhibitory and activating forms of
CD94/NKG2 receptors have been found in MART-1–
specific T cells in different areas of a primary melanoma.
Inhibitory CD94/NKG2-A receptors were found exclu-
sively in the vitiligo-like areas, whereas both the inhibi-
tory receptors and the activating CD94/NKG2-C
isoforms were present within the tumor [98].

In vitro cultures of CD8+ T cells primed with mela-
nocyte differentiation antigens, showed that a fraction of
CD8+ T cells from healthy donors expressed both
activating and inhibitory forms of NKRs, but only
inhibitory receptors display functional activity inhibiting
effector functions of CD8+ T cells [51]. Furthermore,
phenotypic characterization of melanoma-specific
CD8+ T lymphocytes expanded in vitro has allowed the
identification of changes in several NKRs after stimu-
lation [51, 117] (Casado et al. unpublished results).

We have previously discussed NKR expression as
effector molecules that may trigger or inhibit CD8+ T-
cell function [86, 124]. However, recent data also sup-
port the notion that NKR expression may correlate with
the differentiation stage of T cells [147]. Although NKR
expression is preferentially observed in the CD8+CD28)

T-cell subset, we have found that other subsets of
CD28+ T lymphocytes can also express NKRs [19], and
we suggest that these subsets correspond to intermediate
maturation stages from ‘‘naı̈ve’’ to cytolytic effector
cells. Thus, a differential expression of KIR and ILT2
receptors in CTLs that correlates with transition from
effector to memory lymphocytes has been recently
demonstrated [147]. KIR expression is associated with
acquisition of a memory phenotype and resistance to
apoptosis induced by antigenic activation. In contrast,
ILT2 expression correlates with effector cytotoxic cells.
Recently, KIR [133] and CD94/NKG2A [42] expression

has also been associated with the survival of memory
CD8+ T lymphocytes. The correlation of other NKRs
with resistance to apoptosis remains to be clarified, and
new research on the development of specific T cells will
help to characterize the role of NKRs in the transition
from immature to cytotoxic effector T cells during
chronic activation of the immune system. Furthermore,
characterization of phenotypic and functional changes
in pathological conditions such as those of melanoma
patients will allow us to identify new markers of T-cell
differentiation as targets for possible immunotherapies.

Expression of non-MHC-specific NK receptors on T
cells in melanoma patients

Several receptors, usually expressed on NK cells, rec-
ognizing ligands others than MHC class I molecules, are
also expressed by a subpopulation of T cells and, to
some extent, may contribute to cytotoxicity or other
effector functions (Fig. 2B). One of these receptors is
CD56, an isoform of the neuronal cell–adhesion mole-
cule (NCAM), that is involved in homotypic and het-
erotypic binding of cytotoxic cells to target cells,
although its precise function, either on NK cells or on T
cells, remains elusive [68]. CD56 expression on NK cells
defines two different subsets according to the cell-surface
density of this marker, CD56dim and CD56bright NK
cells, with differential phenotype and function [24, 96,
127]. In contrast to NK cells, CD56 expression on T cells
is not constitutive. It has been observed that CD56+ T
cells are almost absent at birth and in adults are found as
oligoclonal expansions [101]. Cord blood CD3+ cells
can acquire CD56 expression after culture with IL-15
and the expanded CD3+CD56+ T cells have a
CD8+CD25+ IFN-c+ phenotype, with 40% being cd T
cells [23]. Furthermore, the percentage of CD8+CD56+

T cells increased with age (DelaRosa, unpublished re-
sults) but is diminished in HIV infection [125].
CD8+CD56+ T cells generally contain high amounts of
intracellular perforin and granzyme B, and CD56
expression on CD8+ T cells correlates with cytolytic
activity [101]. The finding that CD8+CD28)DR) T cells
have low telomerase activity and frequently express
CD56 [118] further supports the idea that CD56+ T cells
have an effector/memory phenotype. CD56 expression
has been demonstrated in several tumors of the nervous
system, melanomas, and other epithelial cancers sug-
gesting that CD56 molecules may be involved in tumor
biology [52, 105]. CD56-mediated homotypic adhesion
between CD56+ tumor cell lines and NK cells has been
shown [93, 122].

CD57 is an oligosaccharide found on many cell-sur-
face glycoproteins that has been implicated in cell-to-cell
and cell-to-extracellular matrix adhesion. CD57 is pref-
erentially expressed in NK cells and in a subset of T
cells. The expansion of the CD8+CD28)CD57+ T-cell
subset is age-associated probably due to repeated anti-
genic stimulation [83]. Several studies report the associ-
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ation between viral infections (e.g., human cytomega-
lovirus) and increased numbers of CD8+CD57+ T cells
[107, 142]. Furthermore, CD57 expression on virus-
specific CD8+ T cells is related to a state of replicative
senescence with low proliferative capacity and short
telomeres [15]. CD57+ T cells are also frequently found
in tumor patients, generally as a monoclonal or oli-
goclonal expansions, have a low rate of turnover and
low expression of the apoptotic marker CD95 [120], and
exert higher cytotoxic activity ex vivo than their CD57–

counterparts in an anti-CD3-redirected assay [135]. It
has also been found that most NKR+ T cells are in-
cluded within the CD28)CD57+ subset [84]. This
CD57+ T-cell subset comprises the majority of the
CD56+ T cells previously described, which represent
differentiated effector T cells [101]. Glycoproteins con-
taining carbohydrate epitopes recognized by antibodies
against CD57 can also be found in several tumors
including melanoma. Moreover, CD57 expression on
melanoma cells has been associated with metastatic
potential and seems to have a function in intercellular
adhesion [58, 123].

CD244 (2B4 or C1.7) is a cell-surface glycoprotein
related to CD2 that belongs to the Ig-like superfamily
and is involved in T- and NK-cell activation [21, 59].
CD244 is expressed on the surface of all human NK
cells, a subset of CD8+ T cells, monocytes, and ba-
sophils. In NK cells, CD244 ligation can induce redi-
rected lysis [21, 67]. It has been reported that CD244
expression on CD8+ T cells overlaps with activation
markers such as granzyme B and perforin [117]. CD244
expression can be induced in vitro on CD8+ T cells by
anti-CD3 cross-linking, and its expression constitutes a
marker for activated/memory CD8+ T cells [100]. Fur-
thermore, recent studies show that CD244 activation
causes an increased expression of matrix metallopro-
teinase-2 and may induce degradation of extracellular
matrices promoting lymphocyte invasion of tumors [21].
CD48, the ligand for CD244, is a ubiquitously expressed
molecule in humans [16, 91]. Until now, expression of
CD48 has not been reported in melanoma cells; how-
ever, it has recently been shown that CD244-CD48
interactions can occur directly between T cells and in-
duce proliferative responses of neighboring T cells [61].
Furthermore, transfection of CD48 into poorly immu-
nogenic melanoma cells enhances the immune response
[73]. In melanoma patients, CD244 was found to be up-
regulated in Melan-A–specific T cells, although its role
in promoting T-cell effector function has not been
established [117]. In addition, inhibitory receptors as
KIR2DL1 or CD94/NKG2 can block CD244 activation
[141].

CD16 is a low-affinity Fc receptor for IgG (FccRIII)
that mediates ADCC by binding to the Fc portion of
antibodies. CD16 is mainly expressed in a subset of NK
cells (CD56dim) and in a small subpopulation of CD3+

lymphocytes. Ligation of CD16 stimulates not only
cytotoxicity but also cytokine production [1] and
proliferation [140]. In animal models, CD16 has been

involved in both passive and active immunization
against melanoma [22].

CD161 (NKRP1) belongs to the C-type lectin family
and is expressed by NK cells and a subpopulation of T
cells. While the expression of the majority of NKRs on T
cells is essentially restricted to CD8+ T cells, CD161 is
expressed on both CD4 and CD8 T cells. Moreover,
expression of CD161 is a characteristic of NKT cells
[121, 124]. CD161 cross-linking triggers cytotoxicity.
Although its ligand remains to be identified, it has been
postulated that this receptor recognizes carbohydrate
structures expressed on target cells [4].

Natural cytotoxicity receptors (NCRs) expressed in
NK cells have recently been identified. These receptors
belong to the Ig-superfamily but their ligands are not
HLA class I molecules. NKp46, NKp44, and NKp30
were the first members identified and are characterized
by their capacity to trigger natural cytotoxicity. NCRs
associate with signal-transducing polypeptides contain-
ing ITAM. The expression of NCR seems to be re-
stricted to NK cells and, so far, none of these receptors
has been identified in T cells.

Several groups, including our own, have found that
the expression of CD56, CD57, CD244, or CD16 in T
cells is associated with an activated/effector phenotype
[28, 38, 101, 116, 117]. NKR expression is mainly re-
stricted to the CD8+CD28)CD56+ T-cell subset that
represents the mature effector cytolytic subset responsi-
ble for the immune response against viral infection and
tumors [116, 125].

Different studies show that several cytokines may
modulate the expression of HLA-specific NKRs on T
lymphocytes. Thus, TGF-b [12, 41], IL-10 [106], and IL-
15 [85] have been implicated in the induction of CD94/
NKG2A receptors on T cells. Thus, IL-15 produced by
melanoma cells induces the expression of inhibitory
NKRs on specific T cells and may constitute a new es-
cape mechanism [8]. Recently, the induction of CD94/
NKG2A receptors has also been observed after IL-12
treatment. Because IL-12 is frequently used for the in
vitro induction of antigen-specific T cells, the expression
of the inhibitory receptor CD94/NKG2A may have
functional relevance [31]. In contrast, expression of the
triggering receptor CD161 is also up-regulated by IL-12
[5].

Conclusions

A major paradox of tumor immunity is that tumor
progression frequently, if not always, coexists with tu-
mor-specific immune responses (Fig. 1). Numerous
studies have been performed to investigate possible tu-
mor escape mechanisms from immunosurveillance.
Thus, MHC class I down-regulation by tumor cells
represents a well-known major evasion mechanism.
Expression of HLA class I has been found to be altered
in human melanoma, including total absence of HLA
class I, loss of expression of particular allotypes, or loss
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of heterozygosity (LOH) leading to an HLA haplotype
loss [97, 104].

Total loss of HLA class I molecules would interfere
with CTL recognition but would render melanoma cells
susceptible to NK-cell–mediated cytotoxicity. A recent
report correlates inversely the expression of HLA-E on
the cell surface of tumor cell lines with the expression of
other HLA class I molecules [77]. Thus, partial loss of
HLA class I molecules (allelic or haplotype HLA loss)
may inhibit CTL responses if the restriction element is
lost and may favor the expression of HLA-E molecules
that can be recognized by inhibitory NKRs (CD94/
NKG2A) on T cells or NK cells.

The expression of surface molecules on melanoma
cells, such as adhesion molecules (e.g., intercellular
adhesion molecule 1 [ICAM-1]) has been associated with
aggressive tumors and defective immune responses.
ICAM-1 shedding by melanoma cells can inhibit con-
jugate formation between T-cell clones and the autolo-
gous melanoma cells and abrogated the MHC-restricted
killing of the melanoma by T-cell clones. In addition,
melanoma cells induced anergy of CD4+ T cells due to
lack of a costimulatory signal mediated by B7/CD28
interactions [9].

Many of the antigens presented by melanoma cells are
unaltered self-proteins and may induce autotolerance.
Several strategies have been developed to overcome poor
immunogenicity and tumor evasion of CTL-mediated
destruction. It has been observed that induction of HLA
class I expression on melanoma cells can restore specific
CTL responses [111]. In contrast, increased HLA I
expression in melanoma cells could induce the activation
of HLA-specific inhibitory NKRs leading to inhibition of
lysis both in NK cells and T cells. On the other hand,

activating HLA-specific receptors could be expressed
both in NK cells and T cells. The final balance between
activating and inhibitory signals will generate an effective
immune response or tumor progression.

Loss of costimulatory molecules [19, 43, 44] or
defective function of TCR signaling molecules has been
reported in melanoma patients [40, 148]. The induction
of several costimulatory molecules has been also at-
tempted in order to increase tumor immunity against
melanoma cells. Transfection of melanoma cells with
CD80/CD86 or CD48 molecules increases tumor rec-
ognition by CTLs. It is interesting to consider that
NKRs can also inhibit CD28/CD80 and CD244/CD48
interactions [126, 141].

Studies on new antigenic determinants capable of
generating adequate tumor immunity constitute a pri-
ority area in melanoma research. In this context, the
expression on melanoma cells of ligands for inhibitory
NKRs expressed on effector T cells may represent an
escape mechanism used by these tumor cells. In contrast,
the expression of ligands for activating or costimulatory
receptors may contribute to the efficient recognition and
killing of melanoma cells (Fig. 3). Blocking inhibitory
receptor function and enhancing activating receptors
offers a new strategy with therapeutic potential.
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Fig. 3 Inhibitory/activating
balance. Different receptors
participate in the immune
response against melanoma
mediated by CTLs. Positive
signals mediated by TCR and
costimulatory molecules may be
enhanced by the expression of
activating NKRs on CTLs and
their ligands on melanoma. By
contrast, inhibitory signals
triggered by inhibitory NKRs
after interaction with their
ligands will allow melanoma
escape from
immunosurveillance
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