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Abstract This review focuses on the use of radiolabeled
antibodies in the therapy of cancer, termed radioim-
munotherapy (RAIT). Basic problems concerned with
the choice of antibody, radionuclide, and physiology of
the tumor and host are discussed, followed by a review
of the pertinent clinical publications of various radio-
antibody constructs in the treatment of hematopoietic
and solid tumors of diverse histopathology, grade, and
stage, and in different clinical settings. Factors such as
dose rate delivered, tumor size, and radiosensitivity play
a major role in determining therapeutic response, while
target-to-nontarget ratios and, particularly, circulating
radioactivity to the bone marrow determine the princi-
pal dose-limiting toxicities. RAIT appears to be gaining
a place in the therapy of hematopoietic neoplasms, such
as non-Hodgkin’s lymphoma: several agents are ad-
vancing in clinical trials toward registration, and one has
recently been approved by the FDA. Although RAIT of
solid tumors has shown less progress, use of pretargeting
strategies, such as an affinity-enhancement system con-
sisting of bispecific antibodies separating targeting from
delivery of the radiotherapeutic, appears to enhance
tumor-to-nontumor ratios, and may increase radiation
doses to tumors more selectively than directly labeled
antibodies.
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Introduction

Although more than 20 years have elapsed since the
introduction of radioimmunodetection (RAID) and ra-
dioimmunotherapy (RAIT), involving the use of iso-
topes conjugated to monoclonal antibodies (mAbs) for
imaging and therapy, respectively [53, 54, 56], it has only
been in the last few years that this technology has begun
to gain a role in the treatment of cancer because of its
success in lymphoma patients. This article is intended to
review the current status of cancer therapy with radio-
labeled antibodies, and to complement and extend other
recent reviews [46, 47, 49, 50, 60, 66, 77, 92, 133]. It is
now appreciated that (1) many radionuclides and anti-
bodies have potential applicability for this therapy, (2)
antibody accretion remains the major limitation in de-
livering effective tumor radiation doses, and (3) multiple
administrations and combinations with other treatment
modalities will prove necessary, especially in the therapy
of solid tumors. Whereas RAIT of hematopoietic neo-
plasms is becoming established as a new future therapy
modality [32, 40, 43, 48, 67, 103, 104, 127], solid tumors
have been less responsive, although targeting minimal or
micrometastatic disease appears at present to be the
most optimal approach in solid tumor therapy. The
challenge of treating solid tumors has stimulated a
number of approaches to improve the radiation dose
delivered and to achieve a more uniform distribution of
ionizing radiation, the ultimate goal being the delivery of
tumoricidal doses while sparing normal tissues.

Basic challenges

Numerous reviews have discussed the dependence of
RAIT on three basic factors: the antibody, the
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radionuclide, and the target tumor and host [12, 14, 29,
34, 52, 58, 115, 117, 118, 129]. The most important
variables affecting tumor response include cumulative
radiation dose delivered to the tumor(s), dose rate,
penetration, and tumor radiosensitivity. Tumor uptake
and penetration have been the most challenging limita-
tions, since accretion has been at such low levels as
0.001–0.01% of the injected dose of radiolabeled anti-
body per gram of tumor, resulting in tumor doses usu-
ally of <1,500 cGy. The dose-limiting organ has been
the bone marrow, which appears to have a dose limita-
tion of about 150–200 cGy. Hence, improvements in
accretion need to be achieved before the radiation doses
needed for efficacy are achieved, and here various
approaches have been pursued, such as the use of agents
that increase tumor vascularization (flow) and perme-
ation, antibody combinations, repeated applications,
and pretargeting methodologies, to mention a few [5, 16,
19, 20, 21, 29, 30, 31, 34, 42, 47, 52, 57, 91, 99, 114, 129].

The selection of appropriate antibodies seems to be
sufficient for the principal cancer types, and the earlier
limitation of using immunogenic murine antibodies has
been overcome with the introduction of chimeric, hu-
manized, and fully human antibodies. The relation of
different antibody forms to tumor uptake and residence
time is summarized in Table 1, showing that the smaller
the molecule, the faster and lower the uptake, as well as
the shorter the residence time in tumor. This suggests
that larger, intact immunoglobulin molecules may still
be the optimal targeting agent in RAIT. However, initial
dose rates appear to be much higher with monovalent

fragments, such as Fab, as compared to whole IgG,
despite lower absorbed tumor doses at equitoxic dosing;
this has also resulted, in animal models, in effective
control of tumor growth because of high intratumoral
dose rates [8, 10].

Even the selection of radionuclides available for
RAIT has expanded in recent years, such that several
useful candidates are available and have shown clinical
promise (Table 2). The suitability of a radionuclide re-
sides in its physical and chemical properties, its stability
after conjugation to antibody, and the nature of its ra-
diation (high or low linear energy transfer). The choice is
also influenced by the clinical setting, such as tumor
location, size, morphology, physiology, and radiosensi-
tivity, as well as the kinetics of the antibody. For ex-
ample, a large tumor would be more amenable to
therapy with a deep-penetrating beta-emitter, and ra-
dionuclides with shorter path-lengths of penetration,
with higher LET, would be more suitable for smaller or
minimal disease. The need for a radiolabeling procedure
to be simple, efficient, reproducible, and affordable is
self-evident, but these criteria are not necessarily fulfilled
by some of the radionuclides reported in some clinical
trials. Table 2 lists many of the radionuclides that have
been studied clinically, but at present only 131I and 90Y
appear to fulfill the requirements for commercial devel-
opment. Nevertheless, necessity and success with any
radionuclide will ultimately result in improved avail-
ability and cost, as market conditions come into play
when new therapies are needed for life-threatening dis-
eases. Recently, much interest was provoked by the

Table 2 Radionuclides of
current interest in RAIT
(reproduced from [5], with
permission)

Isotope Half-life (h) Emission
(for therapy)

Maximum
energy (keV)

Maximum particle
range (mm)

Iodine-131 (131I) 193 Beta 610 2.0
Yttrium-90 (90Y) 64 Beta 2,280 12.0
Lutetium-177 (177Lu) 161 Beta 496 1.5
Copper-67 (67Cu) 62 Beta 577 1.8
Rhenium-186 (186Re) 91 Beta 1,080 5.0
Rhenium-188 (188Re) 17 Beta 2,120 11.0
Bismuth-212 (212Bi) 1 Alpha 8,780 0.09
Bismuth-213 (213Bi) 0.77 Alpha >6,000 <0.1
Astatine-211 (211At) 7.2 Alpha 7,450 0.08

Table 1 Targeting properties of
different forms of antibodiesa

(reproduced from [50], with
permission)

aKindly provided by R.M.
Sharkey, Belleville, N.J.

IgG F(ab’)2 Fab’ Diabody scFv

Physical
Molecular wt. 150 k 100 k 50 k 40k 20k

Biological
Immune effector function Yes No No No No
Biol.T1/2 blood 2–3 days 1–2 days 4 h <4 h 1 h
Target organ Liver Liver Kidney Kidney Kidney

Tumor binding
Uptake (1= highest to
4= lowest)

1 2 3 3 4

Duration (1= longest to
4= shortest)

1 2 3 3 4

Optimal accretion time Days Day Hours Hours Hour
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report showing that actinium-225, with a 10-day half-
life, coupled to internalizing antibodies, showed in vitro
and in vivo (in mice) destruction of human tumor cells
by alpha-irradiation [88].

The excellent targeting of tumors with diverse pan-
carcinoma antibodies and the relatively good radiosen-
sitivity of certain neoplasms encourage the pursuit of
cancer radioimmunotherapy. However, there are still
too few such studies reported, and none has yet pro-
gressed beyond phase I or II trials. This may be due both
to the nature of the patient population being studied and
to development requirements involving the radiolabeled
antibodies. As in most phase I studies, usually patients
with advanced disease are entered, and these have been
heavily pretreated, resulting in unfavorable patients for
assessing dose response or potential efficacy. Whereas
small doses of antibody fragments, which are virtually
nonimmunogenic, can be used for immunoscintigraphy,
higher protein doses of intact immunoglobulins used in a
therapy setting can result in immune responses, espe-
cially with repeated doses, if murine antibodies are used.
Therefore, there has been an effort to use chimeric, hu-
manized (CDR-grafted), and now even fully human
immunoglobulins, and these appear to be well tolerated.
More potent beta-emitting radionuclides, such as 90Y,
have also been used increasingly as stable chelation
methods have developed [60]. The few clinical trials of
RAIT thus far published have focused mostly on CEA,
MUC1, TAG-72, L6, and Thomsen-Friedenreich (Tn)
antibodies, and have been early studies by single groups
of investigators.

Optimization of RAIT

Strategies to improve RAIT reduce to five basic goals: (a)
enhance antibody uptake and distribution in tumor by
increasing tumor vascular permeability and flow, using
smaller molecules, and possibly exploiting pretargeting
strategies; (b) decrease nontargeted antibody in the blood
by in vivo clearance or ex vivo adsorptionmechanisms, as
well as the pretargeting approaches, (c) protect normal
organs from radiotoxicity, e.g., by using hematopoietic
growth factors and peripheral blood stem cell reconsti-
tution, and by blocking readsorption of antibody frag-
ments by the kidneys with cationic amino acids, amino
sugars, and their polymers; (d) decrease the immuno-
globulin’s immunogenicity by humanization or use of
human antibodies, or immunosuppressing the host; and
(e) improve the radiation dose and dose rate in tumor
without concomitantly increasing cumulative radiation in
normal organs, which is accomplished by many of the
other strategies and perhaps also by adjusting the anti-
body dose and the dose schedule (e.g., dose fractionation)
of the radiopharmaceutical. Since these topics have been
covered in other publications [5, 16, 20, 21, 29, 30, 34, 42,
47, 52, 57, 91, 99, 114, 129], they will be addressed here
only briefly and mostly in reference to clinical studies.

Dose fractionation

Regardless of which antibody or radionuclide is used in
RAIT, consideration of how this is administered is now
receiving considerable attention. Should the radioim-
munoconjugate be given in a bolus as a single, maxi-
mally tolerated dose, or should it be administered in
smaller, fractionated doses, as now practiced with ex-
ternal beam radiation therapy? The convention of ad-
ministering external beam radiotherapy by fractionated
doses has suggested that the same improved effects could
be achieved with fractionated RAIT. One possible rea-
son for such an improvement is that fractionation of the
amounts of radionuclide delivered may contribute to a
more uniform distribution of radiation dose throughout
the tumor, with different tumor regions radiated with
each dose, especially if tumor size and cell numbers de-
crease with the first injections, making the remaining
viable cells more amenable to subsequent cytotoxic ir-
radiation. The evidence and rationale supporting the
advantage of fractionated RAIT suggest that fraction-
ated RAIT provides more uniform distribution of anti-
body and radiation dose, reduced toxicity, increased
maximal tolerated dose and tumor radiation, and pro-
longation of tumor response [36, 91, 114]. Disadvan-
tages of fractionated RAIT have also been listed, such as
lower radiation dose rate, a more complicated therapy
schedule, increased cost, and a potential delay in tumor
regression. In a clinical study comparing dose fraction-
ation with single doses of radiolabeled antibody, it was
found that the former produced a modest increase in the
therapeutic window, because bone marrow suppression
was statistically significantly less than with fractionated
RAIT [114]. Such dose fractionation, however, requires
the use of a nonimmunogenic antibody, such as human
or humanized (CDR-grafted) forms, since fractionated
small doses of foreign immunoglobulin, such as murine
antibodies, would result in human anti-murine anti-
bodies that affect the kinetics of the radiolabeled anti-
body with subsequent doses [114].

Combination RAIT and chemotherapy

Most efforts to improve RAIT have focused on
increasing the uptake of the radioimmunoconjugate,
improving its penetration and distribution within the
tumor, and enhancing tumor to nontumor localization
ratios, so as to afford a more selective tumor targeting.
Since these have been reviewed elsewhere, as discussed
above, they will not be discussed again here. Even more
than external beam irradiation, RAIT is potentially used
optimally in combined therapy modalities, since the
carrier antibody can also deliver other therapeutic
agents, radiosensitizers, and vascularization and bio-
logical response modifiers. Since the foremost dose-
limiting toxicity of RAIT is bone marrow suppression,
hematopoietic cytokines and autologous blood stem cell
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grafting can be combined with RAIT in order to over-
come myelosuppression.

The combination of radiolabeled antibodies with
drugs has received increased interest and investigation in
recent years. Studies have been concerned with choice of
antibody and radionuclide, drug, tumor type, sequence
of the application of the two modalities, and relative
doses of each. It is still too early to make generalizations,
but current evidence suggests the beginning with the
radiolabeled antibody may be more effective than initi-
ating the drug first, followed by RAIT [42]. But it is not
established yet whether this is true for all tumor systems
and all RAIT and drug choices. It seems that the more
radiosensitizing the drug, the better the combination
performs, but less radiosensitizing agents have not been
studied as much. Since combined modality RAIT is, in
my view, a rational improvement over either modality
alone, some of the interesting studies published will be
discussed further. Most preclinical experiments involv-
ing xenografted human tumors in nude mice have shown
evidence of improved therapeutic efficacy for the com-
bination, but there is a paucity of data supporting any
particular schedule for the two modalities. Except for
the study by DeNardo et al. [42], few investigators have
reported on the effect of scheduling of the two modali-
ties, and how dose scheduling may be influenced by the
tumor and its clinical setting. It has even been found that
external beam irradiation can improve therapeutic effi-
cacy when combined with radiolabeled CEA antibodies
[27, 28]. In experimental systems, RAIT has also been
found to affect tumor vascularization and vascular per-
meability, as well as hypoxia [16, 20, 21], which may be
one mechanism explaining how subsequent therapies,
including drugs, could be affected.

The few clinical studies reported on the combination
of chemotherapy with RAIT indicate an acceptable
toxicity and some antitumor activity, but as yet no ad-
ditive or synergistic effects have been shown in a ran-
domized trial. Another problem in such trials is the
generally poor condition of the study subjects, most of
whom have large, progressing tumors that have relapsed
after prior chemotherapy. This is why patient selection,
emphasizing more limited disease, is essential for the
true assessment of RAIT alone or RAIT in combination
with other modalities.

Pre-targeting strategies

In order to increase the tumor-to-background ratios in
antibody targeting, several promising pretargeting
strategies separating antibody targeting from radionu-
clide delivery are being developed. These methods are
intended to minimize the systemic radiation resulting
from prolonged circulation of antibodies directly con-
jugated with isotopes, so that delivery of the radionu-
clide is accomplished only after most antibody has
cleared from normal tissues. In general, a nonradioac-
tive antibody containing a second recognition site, such

as to a radiolabeled small molecule (or a hapten), is
injected. At the time of maximal tumor accretion and
circulatory clearance of the antibody, the relevant hap-
ten bearing the radionuclide is injected as a second step.
The radiolabeled hapten binds to the second recognition
site of the tumor-localizing antibody, whereas unbound
hapten is rapidly cleared from the body. Compared to
directly labeled antibodies, these methods achieve higher
tumor-to-blood and tumor-to-normal tissue ratios, but
timing and the doses given are critical [4, 5, 31, 57, 58,
98, 99, 119].

One approach has been the noncovalent interaction
between avidin or streptavidin and biotin, which have a
high binding affinity, in the order of Ka=1015 M)1 [65].
Avidin or streptavidin conjugated to antibody is tar-
geted first, followed by the administration of radiola-
beled biotin. Conversely, the targeting antibody can be
biotinylated and, after being injected, avidin or strep-
tavidin is administered in order to bind to the antibody
at the tumor. The final step involves injection of radio-
labeled biotin, which attaches to avidin at the tumor.
Modifications of both approaches are being made, in-
cluding the use of clearing agents that reduce the
amounts of the targeting antibody at nontumor sites [4].
Thus, these can involve two or multistep procedures, all
intended to increase tumor-to-nontumor ratios. How-
ever, both endogenous biotin and the immunogenicity of
avidin and streptavidin can be problematic [31, 57, 58,
98, 99, 119].

Despite impressive results in animal studies of biotin/
avidin methods [4], clinical trials have been less en-
couraging. A phase I clinical dose-escalation study
found that nonmyeloablative doses exceeding 200 mCi
of 90Y could be tolerated, with radioactivity in the tumor
equaling that achieved with conventional RAIT [25, 26,
75]. However, untoward side-effects, particularly intes-
tinal toxicity, limited further escalation and resulted in
these particular studies being abandoned. Using another
system involving CD20 antibody for the treatment of
non-Hodgkin’s lymphoma, doses up to 50 mCi/m2 of
90Y-DOTA biotin resulted in evidence of tumor regres-
sion [131]. Since this hematopoietic neoplasm is very
radiosensitive, and has responded well to virtually all
forms of RAIT, it is not clear whether this result rep-
resents a demonstration of the advantage of this pre-
targeting method or of the optimal results obtained with
radiosensitive lymphomas. Nevertheless, in a preclinical
study comparing conventionally labeled CD20 mAb
with pretargeted RAIT with 90Y, higher tumor-to-non-
tumor tissue ratios and markedly better therapeutic re-
sults were obtained with the pretargeting approach [105].

Paganelli and co-workers have pioneered a three-step
pretargeting method that involves biotinylated antibody
given in the first step, the administration of streptavidin
or avidin to clear circulating antibody and to couple to
biotinylated antibody localized at the tumor as the sec-
ond step, and finally the administration of radiolabeled
biotin [94, 98, 99]. In a phase I/II clinical trial of high-
grade glioma, 48 patients with residual disease or
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recurrence were treated with 90Y-DOTA biotin at
60–80 mCi/m2. The primary biotinylated antibody was
an anti-tenascin mAb. An objective response of 25%
and stable disease in 52% of the patients were reported.
The mean absorbed dose to tumor, at the maximal tol-
erated dose, was 1,200 cGy per cycle. In some cases, the
duration of response was more than 1 year, which is an
encouraging finding in this tumor type [98]. A different
pretargeting approach to increase the radiation dose
delivered to tumor, as compared to blood and other
normal tissues, has involved re-engineering of the
targeting antibody molecule as a bispecific antibody
(bsAb). This is made chemically or recombinantly from
monovalent antibody fragments that target two different
antigens, one at the tumor and the other a hapten che-
late. After the bispecific antibody localizes in the tumor
and clears from normal tissues, the second agent that
binds selectively to the second arm of the antibody and
delivers the radioactivity to the tumor is administered
[5, 31]. A diagram of this method, termed the ‘‘affinity
enhancement system’’ (AES), is presented in Fig. 1. In
the most extensive work with this approach, the target-
ing antibody is against carcinoembryonic antigen (CEA)
and the second arm recognizes a DTPA-indium chelate
[5]. After the localization step, a bivalent hapten, which
is a peptide incorporating two DTPA-indium moieties as
well as tyrosine carrying a diagnostic or therapeutic ra-
dionuclide, is given. The novelty appears to include the
use of a bivalent hapten, which forms a stable complex
with two molecules of pretargeted bsAb at the tumor.
Timing of the second injection of the radiolabeled
hapten is important, in order to achieve high tumor-to-
background ratios when there is little or no bsAb cir-
culating in the blood. Excellent tumor imaging has been
obtained with this AES method in several clinical trials
[5, 6, 31, 78, 113]. Figure 2 is an image of a metastatic
CEA-expressing carcinoma targeted by the radiolabeled
hapten given as a second step in this AES system,
showing excellent targeting against virtually no

background radioactivity, as compared to the results
when the bsAb is labeled. This involved a half-human-
ized (anti-CEA), half-murine (anti-hapten) bispecific
antibody (Pentacea, IBC Pharmaceuticals, LLC, Morris
Plains, N.J.) [31].

Using a different bsAb, excellent targeting results
have been reported in a preclinical model of human re-
nal carcinoma. With the G250 bispecific antibody and
pretargeting, Boerman et al. [22] showed that tumor to
blood ratios increased up to values as high as 3,500 at
72 h post radiochelate injection. At 20 h post injection,
about 50% of the whole-body activity was localized in
the tumor. Therapy experiments in animal models have
also confirmed the efficacy of AES, including substantial
cures of xenografted human colon carcinoma [45]. This
AES approach appears to hold much promise for RAIT,
but may also be applicable to a more selective and
enhanced delivery of drugs to tumors.

The AES pretargeting technology, using an anti-CEA
bispecific antibody and a 131I-labeled hapten given 4
days later, has been studied in the treatment of patients
with disseminated small cell lung cancer [128]. Doses of
1.48–6.66 GBq (40–180 mCi) of 131I were administered,
with hematological rescue with autologous stem cells
being done at doses above 150 mCi. Tumor targeting
was excellent, and the estimated tumor doses in six pa-
tients were 2.6–32.2 cGy/mCi. Among the 12 patients
evaluated, two partial responses, one stabilization and
nine progressions were observed, with efficacy and toxi-
city being dose-related.

Fig. 1 Schematic diagram of bispecific antibody pretargeting
system, using a bivalent hapten for binding to two arms of a
tumor-localizing bispecific antibody. (Reproduced with permission
from [31])

Fig. 2 Comparison of targeting with an 131I-labeled anti-CEA
bsAb (left) to that achieved with the 131I-labeled hapten, 6 and 5
days after injection, respectively, in a patient with a CEA-
producing cancer who had lesions in the chest and liver. Some
normal thyroid and urinary bladder activity is also seen. (Repro-
duced from [31] with permission)
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Clinical results

Hematopoietic tumors

Various antibodies, labels, and treatment strategies have
been studied, and most have shown evidence of efficacy
in hematopoietic tumors, particularly non-Hodgkin’s
lymphoma (NHL). For example, antibodies against
CD20, CD22, CD37, and HLA-DR antigens have been
used with either 131I, 90Y, or, rarely, other radionuclides,
such as 186Re or 67Cu. Most initial studies showed fa-
vorable results with indolent forms of NHL, but more
recent trials have also shown efficacy in aggressive NHL.
Four agents have been studied most often in NHL: 131I-
B1, 90Y-2B8, 131I/90Y-LL2, and 131I-Lym-1. A number
of excellent reviews of progress in the RAIT of lym-
phomas have appeared in the past [32, 40, 43, 48, 67,
103, 104, 127].

The antitumor activity of RAIT is primarily due to
the associated radioactivity of the radiolabel attached to
the antibody, which emits continuous, exponentially
decreasing, low-dose-rate irradiation with a heteroge-
neous dose deposition. In some cases, as is evidenced in
lymphoma, the antibody itself may contribute to tumor
destruction. There may also be an immune response of
the host to tumor antigens released after antibody- or
isotope-mediated cell destruction, as has been suggested
in NHL treatment [41]. In summary, important consid-
erations in the efficacy of RAIT include the nature of the
antibody (specificity, affinity, avidity, dose, immunore-
activity, mechanism of action of naked antibody), the
radiolabel (emission properties, half-life, stability of ra-
dioconjugate), the antigen targeted (location, modula-
tion, stability, density, expression), and the nature of the
target neoplasm (radiosensitivity, location, size, vascu-
larization, immunogenicity, proliferative rate), as well as
such factors as heterogeneity of dose deposition, dose
rate effects and status of the host’s bone marrow and
normal organ functions following other forms of cyto-
toxic therapy. These considerations are illustrated well
in the RAIT of NHL, but are also relevant to other
neoplasms.

Non-Hodgkin’s lymphoma

Bexxar (131I-tositumomab; Corixa Corp., Seattle, Wash.)
and Zevalin (90Y-ibritumomab tiuxetan, IDEC-Y2B8;
IDEC Pharmaceuticals, San Diego, Calif.) are the two
most advanced RAIT products under regulatory review
for NHL therapy. Both are murine antibodies directed
against the CD20 antigen expressed on the surface of
normal and malignant B lymphocytes. Bexxar is conju-
gated with 131I, whereas Zevalin is labeled with 90Y.
Bexxar is used as an IgG2a murine mAb with cold mu-
rine antibody added, whereas Zevalin has the murine
antibody labeled and cold human/mouse chimeric rit-
uximab (Rituxan, IDEC/Genentech) added to the

product. Bexxar is given with a patient-specific dosi-
metric pretherapy study, whereas Zevalin has been de-
veloped so that this pretherapy dosimetry is not needed,
and is administered on a body weight basis. Both prod-
ucts, however, require a pretherapy cold antibody dosing
in order to improve tumor targeting, which involves a 1-h
infusion of 450 mg of unlabeled antibody with Bexxar
and a much longer infusion (4–6 h) of 450 mg of ritux-
imab with Zevalin. Hence, Bexxar involves three injec-
tions and three imaging sessions and Zevalin requires
only two injections, unless the early imaging with 111In
becomes required as a pretherapy step. Nevertheless, the
time involved in treating a patient with these radiolabeled
antibodies is even shorter than with nonradioactive rit-
uximab, which is administered weekly over 4–8 weeks.
Both products have shown higher and more durable
responses than naked antibodies, but they also have
dose-limiting toxicity, predominantly myelotoxicity.
Infusional adverse reactions are minimal for Bexxar, as
compared to Zevalin, and both show minimal nonhe-
matological toxicities, with no hair loss or mucositis and
generally minimal nausea. Because of the usually high
release of 131I from Bexxar, thyroid blockage is required,
yet may pose a complication of hypothyroidism even
with such blockage. Some patients have shown myel-
odysplasia after long-term follow-up following Bexxar,
but they were also heavily pretreated with chemotherapy,
which could have contributed to this complication.

Antibody responses to the injected antibody can have
adverse consequences, including anaphylaxis. When
murine antibodies are administered, a human anti-mouse
antibody (HAMA) response is usual, but this is dimin-
ished in patients with NHL who have had prior chemo-
therapy. When they are chemotherapy-na, the HAMA
response can be considerable, such as �60% for Bexxar
[130]. Also of concern is that HAMA can alter murine-
based immunoassays for analytes that may be important
for patient management, as discussed elsewhere [63]. But
most critical may be the altered biodistribution and
targeting that would preclude readministration of the
foreign protein. In fact, if HAMA is present, adminis-
tration of a chimeric antibody or even humanized anti-
body may enhance the HAMA response (personal
observations).

With the new Nuclear Regulatory Commission’s
regulations for 131I providing that patients may be re-
leased if the total effective dose equivalent to another
individual from exposure to a treated patient is
<500 mrem [121], Bexxar can be given in most (but not
all) states of the U.S. on an outpatient basis, while
Zevalin and other products using pure beta-emitters,
such as 90Y, can be used throughout the U.S. on an
outpatient basis. Both products have been studied pre-
dominately as a single-cycle therapy.

A phase III clinical trial of Bexxar in follicular, low-
grade and transformed low-grade NHL who were
heavily pretreated and chemotherapy resistant has been
completed [72], and gave a response rate of 65%, com-
pared with 28% for the last chemotherapy. A complete
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response (CR) rate of 30% was reported, with a median
remission duration of almost 5 years [72].

Bexxar has also been studied in a phase II trial in
previously untreated low-grade or transformed NHL
patients [130]. Seventy-four of the 76 patients (97%) had
an objective response, with 63% achieving a CR. None
of the patients required hematological supportive ther-
apy, but HAMA was observed in 64% of the patients. It
was found that less heavily pretreated patients re-
sponded more favorably to RAIT, at least with Bexxar
and probably also with other such agents.

Kaminski and associates recently summarized their
experience with Bexxar in 53 chemotherapy-relapsed/
refractory NHL patients [73]. They determined the
maximal total-body dose for patients not requiring
autologous stem cell transplantation (ASCT) as 75 cGy
and post-ASCT as 45 cGy. Forty-two of 59 patients
(71%) responded; 20 (34%) had CRs. Thirty-five (83%)
of 42 with low-grade or transformed NHL responded
versus 7 (41%) of 17 de novo intermediate-grade NHL
patients (P=0.005). The median progression-free sur-
vival was 12 months for all 42 responders, and 20.3
months for those with CR. Seven patients were still in
CR 3–5.7 years later. Sixteen were retreated after pro-
gression; nine responded and five had a CR. Ten pa-
tients (17%) had HAMA elevations. Long-term, five
patients developed elevated TSH levels, five were diag-
nosed with myelodysplasia and three with solid tumors.

Press and associates [106, 108], using myeloablative
doses of the B1 antibody of Bexxar labeled with 131I and
combined with peripheral blood stem cell transplanta-
tion, showed that very high objective responses of 86%,
with 79% CRs, could be achieved; 39% of the patients
survived free of any recurrences for 5–10 years without
any further therapy. This was extended in a study of 29
patients receiving therapeutic infusions of 280–785 mCi
(10.4–29.0 GBq) of 131I-murine B1 [80]. Fourteen of 29
patients remained in unmaintained remissions ranging
from 27+ to 87+ months after RAIT. The estimated
overall and progression-free survival rates were 68%
and 42%, respectively, with a median follow-up time of
42 months [80]. Nonhematological dose-limiting toxicity
was reversible cardiopulmonary insufficiency, which
occurred in two patients at RAIT doses that delivered
‡27 Gy to the lungs. Late toxicity has been uncommon,
except for elevated TSH levels found in about 60% of
the subjects. Two patients developed second malignan-
cies, but none have developed myelodysplasia [86].

When the Seattle group extended RAIT at my-
eloablative doses to include chemotherapy with etopo-
side and cyclophosphamide (followed by ASCT), an
overall survival rate of 83% and a progression-free
survival of 68% were observed after a median follow-up
of 2 years [109]. These results compared favorably with
those of a nonrandomized control group of patients
treated at the same institution with the same doses of the
drugs, but who received total-body irradiation instead of
the radiolabeled antibody (overall survival 53% and
progression-free survival of 36%). Of the 52 patients

treated, four died of opportunistic infections. In another
study by this group, using 131I-CD20 murine mAb (to-
situmomab) at a median dose of 510 mCi (18.87 GBq),
combined with high-dose etoposide (30–60 mg/kg),
cyclophosphamide (60–100 mg/kg), and infusion of
cryopreserved autologous stem cells, the respective
complete and overall response rates were 91% and
100% among 11 patients with conventionally measur-
able mantle cell lymphoma that relapsed or was refrac-
tory to treatment [59]. Fifteen of the 16 treated are alive,
with 12 having no progression of disease at 6–57 months
from transplantation and 16–97 months from diagnosis.
Overall survival at 3 years from transplantation is esti-
mated at 93%, and progression-free survival is estimated
at 61%. These appear to be the best results in this
lymphoma type, which is a radiation-sensitive malig-
nancy.

90Y-Zevalin (yttrium-90 ibritumomab tiuxetan,
IDEC-Y2B8) was studied in a phase I/II dosimetry trial
in relapsed/refractory NHL patients by Wiseman et al.
[134]. Patients received 111In-Zevalin on day 0 followed
by a therapeutic dose of 90Y-Zevalin on day 7, in a dose-
escalation (7.4–15 MBq/kg, or 0.2–0.4 mCi/kg) mode.
Both doses were preceded by an infusion of the chimeric,
unlabeled rituximab antibody. Median estimated radia-
tion absorbed dose was 3.4 Gy to liver, 2.6 Gy to lungs,
and 0.38 Gy to kidneys, with the median estimated tu-
mor radiation absorbed dose being 17 Gy. Thus, Zevalin
administered at nonmyeloablative MTDs resulted in
acceptable absorbed doses to normal organs.

Results of a prospective, randomized trial of Zevalin
in 143 patients with relapsed/refractory low-grade, fol-
licular or transformed NHL, compared to a standard
course of rituximab, showed an overall objective re-
sponse rate of 80% for the Zevalin group versus 56% in
the group who received unlabeled rituximab (P=0.002),
with a 30% CR rate for Zevalin versus 16% CR for
rituximab (P=0.04) [136]. These investigators also de-
termined that Zevalin given at nonmyeloablative doses
of 0.4 mCi/kg (15 MBq/kg) delivers acceptable radia-
tion absorbed doses to normal organs without the need
for pretherapy-based dosimetry with 111In-labeled
Zevalin.

Another study was conducted to evaluate the re-
sponse rate to Zevalin in follicular NHL patients who
were refractory to rituximab (defined as those who failed
to achieve an objective response or had progression of
disease within 6 months of the most recent course of
rituximab given weekly ·4 at 375 mg/m2). In the anal-
ysis of the 54 patients, an overall objective response of
74% and a CR rate of 15% were achieved according to
the International Workshop standards [32], or an ob-
jective response rate of 59% and a CR of 4% by the
prior IDEC criteria [138]. Duration of response was
significantly longer (7.7+ mos. vs 4 mos.) for Zevalin as
compared to prior rituximab (P<0.01). In an analysis of
211 patients receiving Zevalin, it was reported that 1.4%
developed HAMA and one patient (0.5%) developed
human anti-chimeric antibody (HACA) [137]. Zevalin
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was the first radioimmunoconjugate to achieve regula-
tory approval, being licensed by the FDA in February of
2002 for the treatment of patients with follicular and
transformed NHL.

A third antibody for NHL, targeting a different an-
tigen, CD22, is also emerging as potentially a third ra-
diotherapeutic [55], or as a second unlabeled product
[81]. This CD22 antibody, first named EPB-2 and sub-
sequently LL2, was first developed as a murine form
[100]. It was then shown, by labeling the Fab’ fragment
with 99mTc (LymphoScan, Immunomedics, Inc., Morris
Plains, N.J.), to target all forms, stages, and sites of
NHL, with only normal spleen showing accretion of the
antibody [7, 96]. Subsequently, the murine antibody was
humanized, or CDR-grafted onto human framework
regions of IgG (hLL2 or epratuzumab; Immunomedics,
Inc.) to reduce the murine component to less than 10%,
thus having more human components than the chimeric
rituximab anti-CD20 antibody. The LL2 mAb has been
determined to target the surface CD22 antigen and then
internalize rapidly into the cell [120]. Later resumption
of synthesis and expression of CD22 permits binding of
the antibody and further internal processing. This in-
ternalization has enabled the attachment of radiometals
for a higher residence time and, in turn, dose delivered,
in the tumor [116]. One of the interesting observations of
the first RAIT trial in NHL with the murine LL2 labeled
with 131I was the apparent efficacy of very low doses of
radiation [55], confirmed also in further studies by us
[61], as well as by Vose et al. [126] and Linden et al. [84].
Subsequent studies with a 90Y form of hLL2 indicated
antitumor activity at the first dose levels of a dose-es-
calation study, including patients who failed prior high-
dose chemotherapy [62]. A clinical trial comparing the
dosimetry and pharmacokinetics of hLL2 labeled with
131I or 90Y in patients with NHL showed the advantage
of the 90Y label with this antibody [70]. At present, a
phase I/II study with myeloablative doses of 90Y-hLL2
in patients with predominantly aggressive NHL, in-
cluding those who had prior high-dose chemotherapy, is
being conducted [62]. It is noteworthy that the 90Y-la-
beled hLL2 is given as a single injection with a protein
dose of about 100 mg in these studies, without the need
for a prior predosing to improve its biodistribution.
111In-hLL2 is given in advance for targeting and dosi-
metry purposes, but it is not anticipated that 90Y-hLL2
will need individualized patient dosimetry [70], as it is
not required for Zevalin [37, 134, 135, 136]. Another
difference between hLL2 and the other radiolabeled
antibodies used for NHL therapy is that this antibody
has the humanized form labeled, whereas Zevalin and
Bexxar have murine antibodies radiolabeled, thus in-
volving the administration of a murine antibody with its
potential immunogenicity and prospect of precluding
repeated administrations.

The hLL2 antibody labeled with 90Y is also being
studied in a dose fractionation schedule, beginning with
two doses given once weekly and expanded up to four
weekly doses. Initial results show responses at the

schedule of two to three weekly doses [83]. Another
phase I trial is in progress with hLL2 labeled with 186Re,
which also allows simultaneous imaging and therapy
(like 131I), and is showing antitumor activity at the initial
doses [102]. Finally, comparing myeloablative and con-
ventional doses of 131I-labeled CD20 (chimeric ritux-
imab) and hLL2 antibodies in a small series of NHL
patients, Behr et al. reported superior results with the
high, myeloablative doses [15]. These various reports
indicate that chimeric CD20 and humanized CD22
mAbs can be effective in NHL with diverse radiolabels,
such as 131I, 90Y, and 186Re, but it is premature to de-
termine which label and dose schedule will prove best for
the treatment of NHL, and how it will be incorporated
in a management paradigm. A preclinical study of
rituximab labeled with the alpha-emitter 211At also
supports its potential use with this radiolabel [3]. In
addition to antibodies against CD20 and CD22, a recent
experimental study suggests that radiolabeled CD19
antibodies may also be of value in the RAIT of
NHL [87].

A fourth radiolabeled antibody product under devel-
opment for the RAIT of NHL is Lym-1 (Oncolym,
Peregrine Pharmaceuticals, Inc., Fullerton, Calif.), which
targets the HLA-DR10b subunit expressed on most
malignant B cells [82]. DeNardo and associates, whose
work forms the basis of virtually all conclusions con-
cerning the role of this antibody, have shown that it is
useful for the treatment of NHL when labeled with 131I
or 67Cu [35, 36, 39, 82]. In a low-dose trial of131I-Lym-1,
17 of 30 (57%) patients had durable responses, including
three CRs. A maximum tolerated dose trial of this agent
yielded responses in 11 of 21 (52%), including seven CRs
[35]. Thrombocytopenia was the only dose-limiting tox-
icity. 67Cu used as the radiolabel provides both imaging
and a b-emitting therapeutic, and responses were shown
in 7 of 12 (58%) NHL patients treated [97]. Since Lym-1
is a murine antibody, these investigators studied the
HAMA response in their patients, and found a 28% re-
sponse among 43 patients treated with multiple doses of
the antibody, but with no evidence of anaphylactoid or
related complications [38]. However, HAMA activity
interrupted therapy in 6 of the 43 patients (14%). It is
interesting that the median survival for the HAMA-
positive patients was longer (18 months) than for those
who did not develop HAMA (9 months). These authors
have speculated that HAMA may contribute to the
antitumor responses [41].

The various trials of RAIT in NHL lead to the fol-
lowing tentative general conclusions [48]:

1. Durable and major responses can be achieved, even
following relapse to chemotherapy and with bulky
tumors.

2. Low radiation doses can achieve objective tumor
responses.

3. Administration of unlabeled antibody may improve
biodistribution of the labeled antibodies, either as a
predose or concomitantly.

288



4. High-dose therapy combined with autologous bone
marrow or peripheral stem cell transplantation can
result in higher overall response rates of longer du-
ration than the application of nonmyeloablative
doses.

5. Patients with low involvement of disease in the bone
marrow, with a low tumor burden and without an
enlarged spleen respond more favorably.

6. mAbs with radiometals, such as 90Y, show better
tumor dosimetry than 131I-labeled antibodies, and the
former do not appear to require the pretherapy
dosimetry essential for 131I-labeled antibodies.

7. When combined with certain chemotherapeutic
agents and autologous stem cell transplants, RAIT
may be more effective than any single modality.

8. RAIT appears to be more effective than use of the
same antibody unlabeled.

9. Long-term side-effects may include hypothyroidism
(with 131I products), myelodysplasia, and, possibly,
secondary neoplasms.

In general, fewer studies have been pursued with
RAIT in malignancies other than NHL, but efficacy in
Hodgkin’s disease, T-cell leukemia, and acute myelocy-
tic leukemia has been reported, as reviewed elsewhere
[50, 67].

Solid tumors

The more radioresistant solid tumors have not been as
responsive to RAIT as the hematopoietic neoplasms, and
for this reason a number of strategies to improve results
are being pursued. Clinically, the major interests have
been colorectal, ovarian, breast, medullary thyroid, and
brain cancers, with some early studies being reported also
in urinary bladder cancer, prostate carcinoma, and other
tumors, as summarized elsewhere [50]. Many different
radionuclides, antibody forms, and methods to increase
antibody accretion and penetration are under investiga-
tion, and in fact a number of approaches appear to be
promising. On the other hand, methods to prevent or al-
leviate dose-limiting side-effects, such as myelosuppres-
sion, are also of interest because they potentially enable
the administration of higher radiation doses. However, at
this moment no radiolabeled antibody has yet shown
sufficient antitumor activity in advanced metastatic dis-
ease of any solid tumor type to suggest that it represents a
new therapy modality. Nevertheless, recent results in the
therapy of small-volume or micrometastatic disease, such
as in colorectal and ovarian cancers, suggest that these
neoplasms, in the minimal disease setting, may be the best
first opportunity for systemic RAIT under current limi-
tations of the technology.

The principal antibodies being studied are against
CEA, TAG-72, MUC1, and other glycoproteins [e.g.,
Le(y)], tenascin, and prostate-specific membrane antigen
[50]. The majority are being used as directly labeled intact

IgG immunoglobulins, labeled with either 131I or 90Y, and
being either chimeric or humanized forms. Most have
been studied as a single-dose therapy, but there is in-
creasing evidence that a fractionated dose schedule is
more efficacious [91, 114]. As mentioned earlier and as
shown by a number of reviews of the progress of RAIT in
solid tumors [46, 47, 49, 50, 60, 66, 77, 92, 133], advances
have not been as impressive as in the hematopoietic ma-
lignancies, and at this time the role of RAIT in any single
neoplasm is still not established. The recent excellent
discussion of clinical RAIT by Knox and Meredith [77]
has catalogued a number of studies in solid tumors, so this
discussion will only select representative reports of inter-
est. It should be noted that almost all of the trials reported
are phase I–II dose-escalation studies, so that suboptimal
doses were used inmany cases. Indeed, the antibodies and
their forms, doses of the antibodies and the radionuclides
administered, stage of the disease studied, and radiation
absorbed doses accreted in the tumors have varied con-
siderably among the clinical trials. Most investigations
have involved a single dose of 131I- or 90Y-labeled anti-
body, mainly at low but occasionally at myeloablative
doses requiring hematopoietic support. The majority of
trials have involved advanced cancer patients who had
failed other forms of therapy, thus constituting a difficult
patient populations in terms of therapeutic response. Al-
though complete responses are rare, partial and minor
responses, and durable disease stabilization, have been
observed, suggesting that optimization of RAIT in future
clinical trials could improve the prospects of RAIT in
solid tumors. Examples of solid tumorRAITwill be given
for central nervous system and colorectal cancers. The
majority of human solid tumors express CEA, so that
antibodies to this antigen have been studied in colorectal,
pancreas, lung, breast, and medullary thyroid cancers
[13]. In the study by Behr et al. [13], tumor doses were
found to be inversely related to the tumor mass, and
ranged between 2 and 218 cGy/mCi; doses between 44
and 268 mCi of 131I-NP-4 murine anti-CEA antibody
(Immunomedics, Inc.) were administered. Modest anti-
tumor effects were seen in 12 of 35 assessable patients,
comprising one partial response, four minor/mixed re-
sponses, and sevenwith stabilization of previously rapidly
progressing disease. The authors proposed that small tu-
mors are more suitable for RAIT, and that bulky tumors
will probably require myeloablative doses. More modest
progress is being made in the RAIT of breast cancer [51],
although it seems that this would be an optimal tumor
type for this technology, since radiation has a role in the
management of this disease. A review of results in diverse
solid tumor types has appeared elsewhere [50].

Brain and other CNS cancers

Results from numerous studies have shown that the best
efficacy has been achieved by locoregional administra-
tion or by systemic administration for the treatment of
small tumors or minimal disease. Brain and central

289



nervous system (CNS) tumors are particularly good
candidates for locoregional therapy. Using anti-tenascin
antibodies labeled initially with 131I and more recently
with 90Y, Riva et al. [111] injected these into the tumor
bed after surgery of malignant gliomas, and reported
impressive growth control. The median survival time for
patients with glioblastoma was prolonged to 25 months
for the 131I-labeled antibody and 31 months for the 90Y
group. In many cases, significant tumor shrinkage was
observed. Compared with the 131I-labeled antibody, the
90Y-radioimmunoconjugate showed more favorable ef-
fects in bulky lesions, and had fewer radioprotection
problems. Employing another anti-tenascin antibody
labeled with 131I and injected directly into surgically
created resection cavities of patients with malignant
gliomas, average absorbed doses in the tumor cavities
were 41 Gy [1]. In yet another study with a different 131I-
anti-tenescin antibody (81C6) given at a dose of 120 mCi
in the intraresection cavity of patients with newly diag-
nosed glioma, 11 of 33 patients were alive at a median
follow-up of 93 weeks, showing an increase as compared
to historical controls treated with conventional radio-
therapy and chemotherapy [110]. Nine patients (27%)
developed reversible hematologic toxicity, and treat-
ment-related neurologic toxicity was reported in five
patients (15%). These results encourage conducting a
randomized trial with this agent.

Systemic or intra-arterial RAIT has also been ex-
plored for brain tumors with 131I- and 125I-labeled an-
tibodies, and these have provided evidence of objective
responses without significant toxicities [23, 71]. Both in
studies involving established disease and in investiga-
tions of its use as an adjuvant therapy, 125I-anti-epi-
dermal growth factor receptor antibody 425 has been
shown to be active in the treatment of patients with
primary glioblastoma multiforme, the results having
included a 20% objective response rate [23, 24, 93]. The
intra-arterial route of administration did not appear to
offer any advantage over i.v. infusions, as was also
found by others [139].

In addition to using radiolabeled 3F8 antibody in
neuroblastoma therapy, Cheung and co-workers have
studied this RAIT for leptomeningeal cancer by an in-
traventricular administration route, with estimated radi-
ation doses of 14.9–56 cGy/mCi to the cerebrospinal fluid
and less than 2 cGy/mCi to blood and other organs out-
side the CNS [79]. Intrathecal RAIT has also been applied
to patients with medulloblastoma and neuroblastoma,
resulting in objective and durable responses in some of the
patients, such as in 5 of 11 recurrent neuroblastoma pa-
tients, and a CR was noted in 3 of 15 recurrent primitive
neuroectodermal tumor patients [74, 110].

Colorectal cancer

Experimental studies have shown that radiolabeled CEA
antibodies can be curative of minimal metastatic disease
[8, 10, 18, 19, 117]. Also, clinical findings have observed

that the highest radiation doses delivered to tumors are
inversely proportional to tumor size [14]. Similar calcu-
lations and predictions were made by Sgouros [115].
Clinical studies with humanized CEA antibodies labeled
with 131I confirmed these animal studies, since patients
with colorectal cancer metastases of small volume, after
unsuccessful chemotherapy, showed encouraging re-
sponses [9, 11]. In an ongoing trial of RAIT with hu-
manized anti-CEA MN-14 IgG (Immunomedics, Inc) in
an adjuvant setting following resection of metastatic
colorectal cancer, seven of nine patients showed no re-
lapse at up to 36 months, in contrast to 67% in a control
group at the same institution [9].

Early studies with 131I-labeled CEA and B72.3 mu-
rine antibodies in colorectal cancer showed modest an-
titumor effects at nonmyeloablative doses. Four of 15
patients showed an objective response with B72.3 and
other antibodies [112], while CEA antibodies showed
antitumor effects in 12/35 patients with colorectal and
other CEA-expressing cancers [13]. Studies with diverse
CEA antibodies have also shown modest therapeutic
responses with nonmyeloablative doses of 131I-labeled
antibodies [12, 42, 68].

Buchegger and associates have suggested, in early
clinical studies [27, 28], that RAIT in close association
with external beam irradiation is more efficient in an
adjuvant setting after surgery. Clinically, six patients
with limited liver metastases from colorectal cancer were
treated with RAIT using 20 mCi 131I-labeled anti-CEA
antibody F(ab’)2 fragments combined with fractionated
external beam radiation of 20 Gy to the entire liver.
Spontaneously reversible bone marrow toxicities of
grades 3 and 4 and reversible liver toxicity of grades 1–3
were observed. Three of the patients showed stable dis-
ease and one had a partial response, while two had
disease progression.

A phase II RAIT trial with 131I-CC49, which is the
second-generation murine B72.3 pancarcinoma anti-
body, reported no objective tumor responses at the
MTD dose of 75 mCi/m2 [94, 95]. Twelve of 13 patients
developed HAMA at 6–8 weeks post infusion. High-
dose RAIT with autologous stem cell replacement was
then undertaken with 131I-labeled murine mAb CC49 in
15 patients with gastrointestinal cancers in a dose-esca-
lation study from 50 to 300 mCi/m2 [124]. Tumor
localization was excellent, the percent injected dose per
kg of tumor ranged from 0.2 to 2.1, and the absorbed
dose in metastatic tumor sites ranged from 630 to
3,300 cGy. These authors then tested the same antibody
labeled with 90Y [125], and found a heterogeneous liver
and splenic uptake, photopenic lesions in the liver for
metastases, and generally poor uptake of the antibody in
metastases. The absorbed tumor doses ranged from 180
to 3,000 cGy, but tumor to normal liver dose ratios were
less than 1. No objective responses were observed. Doses
up to 0.5 mCi/kg could be administered with reversible
grade IV myelotoxicity.

Another target for colorectal cancer RAIT is the A33
antigen, which is a transmembrane glycoprotein of the
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immunoglobulin superfamily [64]. A study of 23 patients
who failed prior chemotherapy were treated with esca-
lating doses of 131I-A33 murine mAb, and the MTD was
found to be 75 mCi/m2 in these heavily pretreated pa-
tients [132]. The antibody showed variable uptake in the
normal bowel, and no objective responses.

The NR-LU-10 pancarcinoma antibody (NeoRx
Corp) was also studied in colorectal cancer patients by
the pretargeting scheme using a streptavidin conjugate
of the antibody [75]. Twenty-five patients were treated
with a single dose of 110 mCi/m2 of 90Y-DOTA-biotin,
24 h after a clearing agent was given to remove the NR-
LU-10/streptavidin. Diarrhea was the most frequent
grade 4 nonhematological toxicity. A modest overall
response rate of 8% was reported, with four patients
having stable disease with freedom from progression of
10–20 weeks. These results do not confirm the promising
preclinical studies with the same reagents and technol-
ogy [4].

Pretherapy dosimetry

Methods for estimating tumor and organ doses prior to
RAIT have been derived from external beam radiation
calculations but appear to be less accurate for RAIT,
thus provoking some controversy on the role of this
technology for treatment planning. In contrast to ex-
ternal beam therapy, there are fewer sample points and
an inhomogeneous dose distribution; there can be a wide
dose variability for different lesions in the same patient
[77, 122].

Dose estimations for RAIT are made on the basis of
calculating the volume of tumors and normal organs,
the cumulative radioactivity estimated as accreted in the
organs and tumors, and the pharmacokinetics of the
radioactivity given with the antibody. Various methods
have been used to gain these data, including serial
gamma camera imaging and biopsy [44, 61, 70, 80, 89,
90, 94, 95, 122, 135], for most organs and tumors, but
the bone marrow dose estimates have been based upon
blood pharmacokinetics and/or imaging of bone in areas
of active marrow, such as the spine or sacrum [122].
When a therapeutic isotope has a gamma imaging en-
ergy, then it can be used in tracer doses for pretherapy
dose estimates. In the case of pure beta emitters, such as
90Y, a surrogate gamma-imaging isotope, such as 111In,
is used to predict the therapeutic dose. Tracer studies
often predict the doses obtained from subsequent RAIT
well, but variations, even in the same patient, can be
experienced [44, 90, 94].

A major problem with pretherapy dosimetry has been
a failure to achieve a consistent dose-response relation-
ship for RAIT. For example, tumor doses in patients
with lymphoma show a tenfold range, from 0.5 to
5.4 mGy/MBq, and have had a variable correlation be-
tween the estimated dose delivered and the response
[122]. But at the extremes there is evidence for a rela-
tionship between estimated tumor doses and response

rates [89, 135]. Nevertheless, RAIT appears to achieve
responses at dose estimates which are far lower than
those calculated for external beam therapy [63, 123].
Normal organ doses from RAIT have ranged from 0.2
to 2.2 mGy/MBq, with considerable variability between
patients [122]. When very high doses of RAIT are given,
such as in the myeloablative studies performed by the
Seattle group, secondary organ toxicity involved car-
diopulmonary complications in patients who received
more than 27 Gy to the lungs [107]. Thus, it appears that
the low-dose-rate irradiation given by RAIT is tolerated
relatively well by normal organs [122]. An inverse rela-
tionship between tumor size and dose delivered has also
been observed [14], indicating that small-volume tumors
and micrometastases may be the best targets for current
RAIT methods. Indeed, this is supported by both ex-
perimental [8, 10, 18, 117], and clinical studies [9, 11]. In
a comprehensive evaluation of 119 tumors in 93 patients
given the 131I-NP-4 and -MN-14 anti-CEA murine
mAbs, it was reported that an inverse logarithmic rela-
tionship exists between tumor size and antibody uptake
[12]. The most important factor determining the radia-
tion dose to the tumor was found to be the absolute
tumor uptake of the radiolabel, and the second most
important factor was the biological half-life of the an-
tibody in the tumor. Different antibody affinities did not
appear to affect tumor uptake. At comparable masses,
colorectal and medullary thyroid cancers had signifi-
cantly higher uptake of antibody, as well as tumor-to-
red marrow dose ratios, than other cancer types. Thus, it
appears that tumor uptake of the antibody is the most
important dose-determining factor, so that both colo-
rectal and medullary thyroid cancers seem to be good
targets for CEA antibodies used in RAIT.

It is well known from external beam irradiation that
higher dose rates result in higher therapeutic efficacy [2,
85], but this has not been investigated well with internal
emitters [10]. Recent studies in experimental models [8,
10] have begun addressing this issue, and it seems that
dose rate effects are very important, not only at the
comparatively high levels experienced with external
beam therapy but also in the lower ranges associated
with internal emitters and RAIT.

Based on the observation that during the recovery
period after anticancer myelosuppressive therapy, he-
matopoietic progenitor cells become mitotically active in
order to replenish the bone marrow compartment, and
remain hyperproliferative even after normalization of
blood counts of leukocytes and platelets, Blumenthal
et al. [17] conducted a retrospective study of the blood
levels of several hematopoietic cytokines following a
single dose of RAIT with CEA antibodies in CEA-ex-
pressing solid tumors. It was found that the plasma level
of Flt3-ligand could predict excessive platelet toxicity
caused by additional cytotoxic therapy. This encourag-
ing report suggests that the measurement of this
hematopoietic cytokine may be a reliable surrogate
marker of the status of the bone marrow following cy-
totoxic therapy, thus perhaps predicting how aggressive
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a therapy, whether RAIT or chemotherapy, may be
undertaken in any individual patient. In a more recent
study, the use of Flt3-L blood levels to adjust bone
marrow dose estimates in RAIT-treated patients with
solid tumors was demonstrated [123]. Studies of this
kind may be more clinically relevant than current bone
marrow dosimetry methods.

Conclusion

RAIT of cancer has had a more than 20-year history,
and during this time profound advances have been
achieved in the development of tumor-seeking, human-
ized antibodies, in radiochemistry with diverse
radionuclides, in the mitigation of dose-limiting myelo-
suppression, and in the improved targeting and delivery
of radiation doses to tumors of different types and in
diverse locations. Hematopoietic neoplasms have shown
the best responses to RAIT, despite the delivery of rel-
atively low doses of radiation; this has resulted in several
radiolabeled antibodies advancing toward commercial-
ization for the treatment of NHL. These results are due,
perhaps, to good vascularization, high antigen density
on a more homogenous tumor cell population, and
possibly the involvement of concomitant apoptotic and
immune mechanisms. In contrast, solid tumors fail to
receive the radiation doses required to achieve similar
responses. Although RAIT of solid tumors represents
the principal challenge of the future, it is already ap-
parent that use of this modality in a minimal disease
setting, in locoregional applications, in combination
modalities, in fractionated dose schedules, and in pre-
targeting strategies shows sufficient promise to justify
continued optimism for its future role in the manage-
ment of cancer.
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