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Abstract Standard allogeneic stem cell transplantation
(alloSCT) has provided a cure for chronic myeloid leu-
kaemia (CML) over the last 25 years, but is only an
option for a minority of patients. It was hoped that the
introduction of imatinib mesylate (IM), a specific tyro-
sine kinase inhibitor that targets the Bcr-Abl oncogene
product, would provide long-term remission or even
cure for those patients without a donor, but studies have
shown that IM does not eliminate leukaemic stem cells
in CML patients. To overcome this problem of molec-
ular persistence, research is underway to combine
reduced intensity stem cell transplant or non-donor-
dependent immunotherapies with IM with the aim of
increasing cure rate, reducing toxicity and improving
quality of life. The alternative approach is to combine
IM or second-generation agents with other novel drugs
that interrupt key signalling pathways activated by Bcr-
Abl. This article will focus on the latest immunotherapy
and molecularly targeted therapeutic options in CML
and how they may be combined to improve the outcome
for CML patients in the future.
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Introduction

Chronic myeloid leukaemia (CML) is a clonal disease of
stem cell origin which is characterised by the presence of
the Philadelphia chromosome (Ph+), which is desig-

nated t(9;22)(q34;q11) [78], and its fusion gene product,
Bcr-Abl, a constitutively active tyrosine kinase. Bcr-Abl
activates a range of intracellular signalling pathways and
alters the behaviour of CML stem cells in a number of
ways. It increases stem cell turnover of Bcr-Abl+ cells
and thereby confers a proliferative advantage over nor-
mal haemopoietic stem cells, allowing the malignant
clone to suppress and replace normal haemopoiesis [12,
33]. In addition, it has transforming activity both in vi-
tro and in vivo [25], alters cellular adhesion [9] and
triggers multiple pathways which block apoptosis [6].

Chronic myeloid leukaemia has three stages: the
chronic phase (CP), accelerated phase (AP) and blast
crisis (BC). CP is characterised by a leucocytosis due to
increased granulopoiesis with hepatosplenomegaly as a
result of leukaemic infiltration and can last from several
months to several years. In AP there is an increase in the
number of immature cells in the bone marrow (BM) or
blood, and it may be associated with additional cyto-
genetic abnormalities (i.e. clonal evolution). BC may be
of myeloid or lymphoid lineage and behaves like an
acute leukaemia. It carries a very poor prognosis.

Numerous research studies have shown that CML is a
disease that is likely to be susceptible to immune attack
(as reviewed in [16]). The use of allogeneic stem cell
transplantation (alloSCT) and donor lymphocyte infu-
sion (DLI) in the treatment of CML offers not only the
possibility of cure, but also demonstrates the effective-
ness of immunotherapy in malignant disease. As well as
being a paradigm for the use of immunotherapy, with the
introduction of the Abl-specific tyrosine kinase inhibitor
imatinib mesylate (IM; Glivec, Gleevec, formerly known
as STI571), CML has become a model disease for the use
of molecularly targeted therapies in malignant disease.

Immunotherapy based on availability of a suitable donor

Despite the advances in understanding the molecular
biology of CML and the development of new therapies,
in particular IM, only a minority of patients are cured.
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The first evidence that cancer cells were susceptible to
immune attack was discovered in the early 1960s with
the animal models used for haemopoietic SCT [63]. It
was more than 20 years until this was reproduced in
human SCT [37, 56], with the observation that patients
who survived alloSCT had a lower relapse rate
compared with autologous, syngeneic [38], or T-cell–
depleted SCT [41, 54]. The power of the graft-versus-
leukaemia (GvL) effect was first demonstrated in CML
using steady state unprimed DLI to induce remission
following relapse post-alloSCT and in the setting of
minimal residual disease (MRD) [59]. The GvL effect
relies on major and minor HLA mismatches between
donors and recipients for disease eradication [86],
although donor T lymphocytes may also recognise and
destroy as-yet-unidentified leukaemia-specific antigens
[5]. Donor T-cell responses to minor histocompatibility
antigen differences may contribute up to 35% of the
total GvL response in leukaemic patients [58].

Donor lymphocyte infusion is given in incremental
doses with the aim of harnessing the GvL effect. A re-
sponse to DLI can be expected between 3 and 12 months
postinfusion. The success rate of DLI for relapse of
CML posttransplant is at least 70% for patients with
haematologic relapse and as high as 90% in patients
with molecular relapse only [60]. The GvL effect is
greatest in those patients who have posttransplant graft-
versus-host disease (GvHD), with GvL and GvHD
being driven by minor genetic mismatches between do-
nor and recipient. However, alloSCT/DLI is only an
option for a minority of patients (�30%) who are young
(<50–55 years of age) and have a matched donor. The
procedure is associated with significant morbidity and
mortality (20–40%), most commonly due to opportu-
nistic infections and GvHD [81, 84]. For those patients
who do receive an alloSCT, this type of immunotherapy
offers a leukaemia-free survival rate of up to 70% [24].

With the success of alloSCT/DLI in curing CML by
exploiting the GvL effect, interest in the late 1990s
focused on reduced intensity ‘mini’ transplant regimens
(reduced intensity stem cell transplant, RISCT). These
less intense transplant conditioning regimens allow
transplantation of older patients (up to age 70) and
reduce regimen related toxicities as compared with
standard alloSCT [21, 85]. A recent study [71] showed
that of 24 patients with CML transplanted in first CP, 21
remained alive and disease free after a median of
42 months of follow-up. The GvL effects induced by
donor immunocompetent lymphocytes eradicated all
host haemopoietic cells, as evidenced by molecular
testing.

Molecularly targeted therapy

The limited availability of alloSCT as an option for
many patients and its associated morbidity and
mortality has led to a continued search for specific drug
therapies for CML. One such therapy is IM, which

targets abl, kit and PDGFR. This compound was de-
signed by Ciba-Geigy (now Novartis), and its structure
was based on that of the protein kinase ATP-binding
site; IM competes with ATP to block abl-coded kinase
activity [13].

In vitro studies showed that IM inhibited prolifera-
tion of Bcr-Abl+ cells both in CML cell lines and CML
patient samples [27, 30]. Further in vivo work showed
that IM eradicated Bcr-Abl+ tumours in nude mice [61].
The effectiveness of IM in these studies led to its rapid
introduction into clinical trials [32].

The introduction of IM has radically changed the
treatment options for newly diagnosed patients with
CML. A recent prospective, multicentre, phase III,
randomised study (the IRIS trial) [20, 69] compared IM
with interferon-a plus cytosine arabinoside (IFN-
a+Ara-C) (the most successful nontransplant option for
treatment of CML prior to the introduction of IM) in
newly diagnosed CML patients in CP. The rate of major
cytogenetic response (MCR; 0–35% of cells in metaphase
Ph+) at 18 months was 87.1% in the IM group compared
with 34.7% in the IFN-a+Ara-C group (p<0.001). The
rates of complete cytogenetic response (CCR) were
76.2% and 14.7%, respectively (p<0.001). At
24 months, only 7.5% of patients remained on IFN-
a+Ara-C, so analysis focused on the IM arm, in which
86% and 79% remained in MCR and CCR, respectively.
In addition, at 18 months, progression-free survival
(PFS) in the IM arm was 96.7% compared with 91.5% in
the control arm, and at 24 months, PFS in the IM arm
was 90% with an overall survival of 96%. IM was also
better tolerated than IFN-a+Ara-C [49]. Therefore,
these studies demonstrated the superiority of IM to IFN-
a+Ara-C in terms of disease response and tolerability,
but did not show an absolute survival advantage for IM.
During the course of this study, molecular responses were
assessed at regular intervals by RT-PCR in peripheral
blood (PB) for bcr-abl transcripts [35, 55]. Patients
responding to IM had a three to four log reduction in
transcript levels compared with their starting value.
Therefore, other than alloSCT, IM induces a much
higher rate of CCR than any other licensed therapy.

However, an emerging problem in CP CML is
molecular persistence. With IM, approximately 75% of
patients in CP achieve a CCR, but remain RT-PCR
positive [35, 57]. It is hypothesised that this MRD is due
to the quiescent stem cell population, as in vitro, qui-
escent CML stem cells [51, 52] are completely insensitive
to IM at concentrations up to ten times higher than
those achievable in vivo [44], while proliferating cells
remain exquisitely sensitive. In addition, an in vivo study
to assess presence of Bcr-Abl+ cells by fluorescence in
situ hybridisation (FISH) and levels of Bcr-Abl mRNA
by RT-PCR demonstrated that samples from different
CML patients collected at different time points
displayed persistence of Bcr-Abl+ progenitors despite
continued IM therapy [10]. This is further indication
that IM does not eliminate malignant primitive
progenitors in CML patients.
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Although more common in AP and BC, another
problem seen in CP CML is resistance to IM. This has
resulted in IM being less successful in advanced disease
[31, 82, 89]. Some patients in AP do respond well, and
although many patients treated in BC achieve some
haematological improvement, these benefits are not
maintained, with the majority of patients in the advanced
stages of CML developing resistance to IM. Resistance
can be primary, i.e. no response to IM after initial
therapy, or secondary, i.e. loss of response. The most
common mechanisms of IM resistance are mutations of
the Bcr-Abl kinase catalytic domain that interfere with
IM binding (P-loop) [83] and over-expression of the
Bcr-Abl gene [43].

Alternative immunotherapeutic approaches

As alloSCT is only available to a minority of CML
patients, and IM alone is unlikely to be curative, a
number of different approaches have been investigated
to harness the patient immune response to combat
MRD and induce long-lasting remission (Fig. 1). In
CML immunotherapy, the priority is to capitalise on the
MRD state established after IM therapy, and push the
immune response to eliminate the ‘silent minority’ of
quiescent leukaemic stem cells.

The adaptive immune response is a complex
interaction between antigen-presenting cells (APCs),
effector cells such as cytotoxic T lymphocytes (CTLs)
and costimulatory factors. Experimental approaches to
autologous CML immunotherapy use vaccines, leukae-
mic and nonleukaemic APCs and CTLs to direct the
immune system against defined or undefined CML
antigens.

The ideal vaccine candidate would be an antigen
expressed only on tumour cells but common to all
patients and tumour types. It should be highly

immunogenic, able to induce both humoral and cellular
immune responses and should be essential for tumour
cell survival, and thus not susceptible to mutation or
deletion.

CML-specific antigens

Chronic myeloid leukaemia is particularly attractive as a
model for immunotherapy. Bcr-Abl, or the reciprocal
fusion Abl-Bcr [8], would appear to be ideal candidate
targets for immunotherapy, as they express novel
epitopes (fusion point peptides) that are recognised by
the immune response (Table 1). T cells specific for the
Bcr-Abl b3a2 fusion point have been observed in CML
patients, but restricted to those with HLA-A3, A11 or
B8 haplotypes [23]. Phase I and II vaccination studies
are underway in CML patients using Bcr-Abl b3a2
peptides plus adjuvant, and show interesting preliminary
results. Vaccination of patients was well tolerated with
no significant side effects, and resulted in peptide-specific

Fig. 1 Immunotherapeutic approaches for the treatment of CML
post-IM. Diagnosis of CP CML is by detection of Ph+ or
Bcr-Abl+ cells in PB and BM. It is now clear that there is also a
population of quiescent leukaemic stem cells resident in PB and
BM. IM therapy induces CCR and establishes MRD in the
majority of patients. However IM-resistant quiescent cells remain
and if therapy is withdrawn or resistance occurs, these cells
eventually proliferate and induce relapse. AlloSCT or RISCT offer
the best chance for lasting remission or cure, with or without
supplementary graded DLI. In patients without a suitable donor,
several immunotherapy approaches are being investigated. These
include vaccination with Bcr-Abl peptides, HSP complexes, or
adoptive therapy with expanded tumour-specific CTLs. Leukaemic
APCs naturally expressing tumour antigens, or DCs primed with
additional tumour antigens are also being studied as vaccine
agents. Interleukin 2 (IL-2) and IFN-a can be used singly or as an
adjunct to IM therapy as immunostimulatory agents, improving
overall response through a variety of mechanisms
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T-cell proliferation [76]. Peptide-specific IFN-c–pro-
ducing CD8+ cells were also observed, but only in
HLA-A3 or A11 patients [18]. In another recent phase I
study in IM-treated CML patients with stable disease
for at least 6 months, three to six vaccination cycles
resulted in reduced Ph+ levels in nine of the nine
patients, and five of the nine went on to CCR. Of the
patients in CCR, three of the five were also negative by
Q-RT-PCR. Patients receiving IFN-a therapy also
responded positively to Bcr-Abl peptide vaccination
[11]. This indicates that b3a2 Bcr-Abl vaccination is a
strong candidate for immunotherapy of CML in com-
bination with IM or IFN-a therapy. Further trials are
currently underway using Bcr-Abl peptide vaccination in
CML patients, examining dose escalation in b3a2-posi-
tive patients responding to IM, regardless of HLA type
(R.E. Clark, personal communication).

Shared tumour antigens

A number of proteins are present at greatly increased
levels in CML and other malignancies, but are absent or
expressed at low levels in normal cell lineages. These
proteins may be involved in maintenance of the
leukaemic phenotype and are therefore useful targets for
directed immunotherapy. Proteinase-3 (Pr3) or myel-
oblastin is highly expressed in myeloid haematological
malignancies. Pr3-specific CTLs have been identified in
CML patients and are implicated in clearance of
malignant cells [67]. A multimeric peptide derived from
Pr3 (Pr1 nonamer) has been used in vaccination trials,
and resulted in both immunological and clinical
responses in CML patients. Good clinical response was
correlated with the induction of Pr1-specific CTLs with a
central memory (CCR7+) phenotype, indicative of a
self-renewing population [95]. However, there is good
evidence that IM therapy down-regulates Pr3 expression
on CML tumour cells, which could potentially affect
CTL recognition and clearance [14]. Another candidate
molecule is Wilms’ tumour 1 (WT-1) protein, present in
both haematological and solid tumour malignancies.
Studies have identified WT-1–specific CTLs in CML
patients [7]. Animal and in vitro models have demon-
strated that these CTLs deplete leukaemic, but not
normal CD34+ stem cells [39, 40], suggesting they may
be effective in eradicating the quiescent stem cells present
in MRD.

Other potential targets for immunotherapy include
survivin, an antiapoptotic molecule preferentially
up-regulated in CML cells by the Bcr-Abl/MAPK
signalling pathway [17, 96], and telomerase, an enzyme
involved in disease progression and potentially linked to
IM resistance [3]. Other leukaemia-associated molecules
have been identified by serological screening, including
RHAMM, CML66 and CML28 antigens [3, 47, 48].
However, a potential problem with targeting a single
protein or epitope for immunotherapy is the possibility
of immune escape. Under pressure from the immune

response, the malignant clone may down-regulate,
mutate or delete the target epitope, evading specific CTL
attack [75]. By targeting a range of different defined and
undefined tumour antigens, the possibility of immune
evasion is concomitantly lessened.

Heat shock protein vaccines

Heat shock proteins (HSPs) are ubiquitous protective
intracellular molecules induced by cellular stress, which
act as chaperones for peptides. HSPs isolated from
tumour cells carry an array of tumour-specific peptides
capable of inducing specific immune responses (Table 1).
Phase II clinical trials are currently underway using
patient-specific HSP immunization (AG858 and Onco-
phage trials, http://www.antigenics.com). In phase I
trials, vaccination with AG858 (composed of HSP70
complexes) produced no adverse effects and resulted in
maintenance of stable disease in 14/14 patients, and
measurable reduction in Ph+ cells and Bcr-Abl expres-
sion in 10 of the 14 patients. Increased IFN-c expression
in T cells was seen in eight of the ten responders [62].
Recent preclinical studies have shown that chaperone-
rich cell lysates (CRCLs) from tumour cells have a
greater ability to stimulate mixed leukocyte reactions
and proinflammatory IL-12 expression than separate
individual HSP fractions [45], which may simplify
preparation of vaccine material.

Cell-based immunotherapy

Dendritic cells (DCs) are now recognised as central to
the specific induction of immune responses to cancer,
and much research has gone into harnessing such
responses for cancer immunotherapy [91]. DCs for use in
immunotherapy may be obtained by a number of dif-
ferent methods (Fig. 2). Prior to the introduction of IM,
the majority of DCs obtained by these methods would
have been Ph+, and there is evidence that circulating
Ph+ DCs have altered function [34, 65]. After IM
therapy, immune function has been shown to improve
via eradication of Ph+ DCs [94]. Antigen-presenting
activity of recovering Ph� DCs is also increased [66, 80].
However, new evidence is emerging which suggests that
IM administration can inhibit the development and
function of DCs from CD34+ progenitors [1, 87], and
can inhibit mitogen-mediated T-cell proliferation [29]. In
both cases, this seems to be modulated through
down-regulation of NFjB levels, and implies that
long-term treatment with IM may interfere with some
aspects of the immune response.

Circulating DCs are present in the PB of CML
patients, but only at low levels (<1%), making their
collection for immunotherapy impractical. Furthermore,
preliminary results from their use in clinical studies have
been disappointing [88]. Large numbers of DCs can be
generated ex vivo from patient CD34+ stem cells
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cultured with GM-CSF and TNF-a [19], or monocyte
precursors cultured with GM-CSF plus IL-4, IL-13 or
IFN-a [36, 68, 79]. The latter method has been favoured
in CML. Although potentially compromised function-
ally, DCs generated from Ph+ precursors have been
shown to induce CML-specific T-cell responses that
have immunotherapeutic potential [22]. Autologous
Bcr-Abl+ DCs have been administered to patients in a
number of phase I trials with minimal side effects.
However, clinical response has generally been poor, with
few remissions reported [74]. The immune responses
induced by this vaccination approach rely on presenta-
tion of leukaemic antigens inherently expressed by the
leukaemic DC. An alternative approach is to generate
more specifically targeted responses (and hopefully more
effective responses) by loading (or ‘priming’) the Ph+ or
Ph� DCs with tumour-specific antigens.

DCs generated from monocyte precursors go through
an initial immature phase, characterised by an increased
ability to uptake and process exogenous tumour
antigens which may be presented to the DCs as autol-
ogous tumour lysate, purified peptides (e.g. b3a2) or in
conjunction with HSP. An alternate approach to DC
priming is to load DCs by transfection with tumour
antigen mRNA, such as survivin [96]. DC priming for
CML therapy is still relatively uncommon in compari-
son with other malignancies [77]. Priming is usually
followed by a second maturation step (Fig. 2). There is
evidence that immature DCs do not migrate correctly,
and can induce tolerogenic responses [28], so it is crucial
that DCs achieve a fully mature state if they are to be
used as an anticancer therapy.

Immature DCs are converted to a mature phenotype
using microbial products, cytokines or CD40 ligand [4].
Mature DCs secrete inflammatory cytokines (IL-2,
IL-12) [46], express costimulatory markers (CD80/
CD83/CD86) and chemokine receptors involved in
migration to lymph nodes (CCR7) and are highly
effective at converting naı̈ve T cells into tumour antigen–
specific CTLs. Takahashi et al. [88] used b3a2 fusion
peptide-primed DCs in a pilot clinical trial, and observed
peptide-specific immune responses in three of the three
patients vaccinated with mature DCs but only one of the
three patients given immature DCs. No clinical
improvement was observed in either group. However, a
recent study using a murine Bcr-Abl+ leukaemia model
combined CRCL-loaded DCs and IM to improve
tumour-specific immune responses and survival, and
demonstrated that IM could successfully be used in
conjunction with immunotherapy [97].

A further adaptation of these approaches has been
reported by Osman et al. [72, 73]: rather than using pa-
tient-derived DCs, donor DCs were primed with peptides
or tumour cells to induce donor CTLs ex vivo. These
donor DCs or ex vivo generated tumour-specific CTLs
could be used as a supplement to alloSCT, with the aim
of increasing the GvL effect without exaggerating GvHD
[72, 73].

T
a
b
le

1
C
u
rr
en
t
a
p
p
ro
a
ch
es

fo
r
im

m
u
n
o
th
er
a
p
y
o
f
C
M
L
.
A
g
s
a
n
ti
g
en
s,
A
P
C
a
n
ti
g
en
-p
re
se
n
ti
n
g
ce
ll
,
C
R
C
L
ch
a
p
er
o
n
e-
ri
ch

ce
ll
ly
sa
te
,
C
T
L
cy
to
to
x
ic
T
ly
m
p
h
o
cy
te
,
D
C
d
en
d
ri
ti
c
ce
ll

T
a
rg
et

M
et
h
o
d
o
f
d
el
iv
er
y

A
d
v
a
n
ta
g
es

D
is
a
d
v
a
n
ta
g
es

S
ta
g
e
o
f
d
ev
el
o
p
m
en
t

C
M
L
-s
p
ec
ifi
c
A
g
s

(b
3
a
2
B
cr
-A

b
l
fu
si
o
n
p
ep
ti
d
es
)

V
a
cc
in
e
o
r
D
C

lo
a
d
in
g

E
a
sy

to
m
o
n
it
o
r
re
sp
o
n
se
;

u
b
iq
u
it
o
u
s
C
M
L
A
g

C
er
ta
in

H
L
A

ty
p
es

m
a
y

h
a
v
e
b
et
te
r
re
sp
o
n
se

th
a
n
o
th
er
s

P
h
a
se

II

T
u
m
o
u
r-
a
ss
o
ci
a
te
d
A
g
s

(P
r3
/m

y
el
o
b
la
st
in
,

W
T
1
,
su
rv
iv
in
,
et
c.
)

V
a
cc
in
e
o
r
A
g
-s
p
ec
ifi
c

C
T
L
is
o
la
ti
o
n

E
a
sy

to
m
o
n
it
o
r
re
sp
o
n
se
;

A
g
s
ex
p
re
ss
ed

a
t
h
ig
h

le
v
el
s
in

C
M
L

ce
ll
s

S
in
g
le

A
g
ta
rg
et
in
g
ca
n
le
a
d
to

tu
m
o
u
r
es
ca
p
e
m
ec
h
a
n
is
m
s;

A
g
s
a
ls
o
ex
p
re
ss
ed

o
n
o
th
er

ti
ss
u
es

P
re
cl
in
ic
a
l
a
n
d
p
h
a
se

I
st
u
d
ie
s

T
u
m
o
u
r-
d
er
iv
ed

m
a
te
ri
a
l

H
S
P
co
m
p
le
x
es

(H
S
P
7
0
,
G
rp
9
4
,
C
R
C
L
)

V
a
cc
in
e

A
ll
tu
m
o
u
r
A
g
s
a
v
a
il
a
b
le
;

sp
ec
ifi
c
m
ec
h
a
n
is
m

fo
r
u
p
ta
k
e

C
o
m
p
le
x
p
re
p
a
ra
ti
o
n
fo
r
in
d
iv
id
u
a
l

p
a
ti
en
ts
;
d
iffi

cu
lt
to

m
o
n
it
o
r

sp
ec
ifi
c
re
sp
o
n
se
s

P
h
a
se

II

L
eu
k
a
em

ic
A
P
C

D
C

d
er
iv
ed

fr
o
m

P
h
+

C
D
3
4
+

ce
ll
s
o
r
m
o
n
o
cy
te
s

A
ll
tu
m
o
u
r
A
g
s
a
v
a
il
a
b
le
;

su
p
p
li
es

co
st
im

u
la
to
ry

fa
ct
o
rs

to
im

p
ro
v
e
im

m
u
n
e
re
sp
o
n
se

P
h
+

D
C

le
ss

effi
ci
en
t
A
P
C

th
a
n
n
o
rm

a
l
D
C
;

d
iffi

cu
lt
to

m
o
n
it
o
r
sp
ec
ifi
c
re
sp
o
n
se
s

P
il
o
t
a
n
d
p
re
cl
in
ic
a
l
st
u
d
ie
s

Im
m
u
n
o
st
im

u
la
to
rs

(I
F
N
-a
,
IL

-2
)

S
u
b
cu
ta
n
eo
u
s

In
d
u
ce

a
v
a
ri
et
y
o
f
im

m
u
n
e

re
sp
o
n
se
s
w
h
ic
h
ca
n
a
tt
a
ck

C
M
L

R
eq
u
ir
es

lo
w

tu
m
o
u
r
ce
ll
b
u
rd
en
;

ca
n
b
e
a
ss
o
ci
a
te
d
w
it
h
to
x
ic
it
y

IF
N
-a

cu
rr
en
t
th
er
a
p
y
;

IL
-2

p
h
a
se

II
a
s
si
n
g
le
-a
g
en
t
p
il
o
t

st
u
d
ie
s
co
m
b
in
ed

w
it
h
IM

301



Immunostimulators

IFN-a has been a standard therapy for CP CML for
over 10 years. The introduction of IM has largely
replaced its role as a first-line agent, but its pluripotent
effects may still play a key part in eradication of MRD.

It has numerous antitumour effects, including increased
tumour cell apoptosis, activation and up-regulation of
IL-2 and IFN-c production by T cells, and increased
NK cell cytotoxicity [26]. IFN-a also induces rapid
differentiation of monocytes into activated DCs [36],
which may be a key mechanism in CML tumour
eradication. The T-cell growth factor IL-2 can induce
tumour-specific CTLs and memory T-cell proliferation
and expression of IFN-c, which consequently maintains
antitumour activity. Low-dose IL-2 has been used as
a therapy for advanced CML [42, 92], and IL-2 and
IFN-a in combination have been used to prevent re-
lapse in high-risk CML patients after alloSCT [93].
Both agents have been used singly or together, and
combined with IM significantly reduced Bcr-Abl levels
in stable disease, but were only effective in patients with
low tumour burdens [15]. This suggests their role
should be to boost and maintain immune responses

Fig. 3 Signal transduction
pathways affected by Bcr-Abl
and sites of inhibition. Bcr-Abl
can affect many downstream
signalling pathways including
Jak/Stat, PI3K/Akt and Ras/
Raf/MEK/ERK. Sites of
inhibition and their inhibitors
are indicated in the figure. Inh
inhibitor, FTI farnesyl
transferase inhibitor

Fig. 2 DC types available for clinical use. DCs may be generated
from Ph+ or Ph� precursors. Circulating DCs, CD34+ cells and
monocytes are collected by apheresis and enriched using magnetic
beads coated with monoclonal antibodies specific for surface
markers. DCs may be generated from CD34+ cells by ex vivo
culture with cytokine cocktails such as GM-CSF, FlT-3 and
TNF-a. Monocytes can be converted to fully mature DCs via a
two-stage process. Monocytes are cultured with cytokine cocktails
such as GM-CSF and IL-4/IL-13/IFN-a to produce immature
monocyte-derived DCs (MoDCs), antigen primed and then
cultured with TNF-a/prostaglandin E2/CD40L cocktails to
generate fully mature DCs
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induced by cellular immunotherapy of CML, once IM
has established MRD.

The future

Due to the success of IM, other candidate agents for
targeted therapy in CML are rapidly emerging (Fig. 3).
It is anticipated that to enhance disease eradication and
prevent emergence of resistant clones, rationally
designed combinations of drugs to interrupt key survival
pathways in the most appropriate cell population will be
required. To date, a wide range of conventional and
novel agents have been combined with IM in vitro (e.g.
hydroxyurea, Ara-C, IFN-a, arsenic trioxide and FTI
[90]). Although many of these studies have been infor-
mative, few have addressed cytotoxicity at the stem cell
level [53]. Evidence of additive or synergistic effects of
combinations in vitro with cell lines and primary CML
patient material formed the basis for phase I/II trials of
IM with IFN-a [50, 70] or Ara-C [64]. However,
evidence of improved response rates and survival will be
reliant upon the results from large randomised trials
such as the German CML study IV (http://www.kom-
petenznetz-leukaemie.de) or the SPIRIT trial about to
launch in the UK (http://www.spirit-cml.org). Although
some signal transduction inhibitors have been shown to
potentiate the leukaemia-specific cytotoxicity of con-
ventional agents, others induce cell cycle arrest, thus
antagonising the action of agents that require prolifer-
ative activity to elicit cytotoxicity. Therefore the choice
of agents to combine and the scheduling of multiple
drugs will be critical to improve the treatment of CML.

Another therapeutic approach is to combine molec-
ularly targeted therapy, e.g. IM, with RISCT. This gives
the possibility of inducing tolerance in the recipient to
donor T cells in a relatively nontoxic fashion, thereby
creating an engraftment pattern which would be
sensitive to further manipulation with effector T cells
given in the form of graded DLI. A number of studies
looking at this are currently underway [2].

In our opinion, a number of strategies need to be
pursued to eradicate quiescent CML stem cells. Firstly,
further investigation is required to elucidate the most
effective drug combinations for eradicating disease and
preventing resistance. Secondly, for patients with a
matched donor, clinical trials combining IM with
RISCT/DLI to achieve a molecular ‘cure’ need to con-
tinue and be expanded. Thirdly, much research is still
necessary to determine the optimum immunotherapeutic
approach in the absence of a matched donor, and,
critically, all those in the immunotherapy field need to be
encouraged to continue their research and not consider
immunotherapy redundant in the era of IM.

In conclusion, a truly effective, long-lasting immuno-
therapy for all CML patients is still some way off. Future
developments in CML therapy seem likely to combine
different approaches to integrate and reinforce the
patient immune response against remaining quiescent

CML stem cells in conjunction with combinations of
drugs which reverse quiescence and target the genetic and
molecular abnormalities present in CML cells.
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