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Abstract Preneoplastic lesions are more common than
clinical cancer and define a population at increased risk
for the development of malignancy. Recent studies
suggest that the immune system has the capacity to
recognize these lesions, and enrichment of preneoplasia-
specific immune effectors can be detected in the tumor
bed of some preneoplastic lesions such as monoclonal
gammopathies. Here, I discuss the promise and chal-
lenges of harnessing the immune response against
preneoplasia. Approaches to boost the natural host re-
sponse to these lesions may have a major impact on
reducing net cancer burden.
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Introduction

Carcinogenesis is a multistep process involving complex
genetic and epigenetic changes in the tumor cells and
their microenvironment [1]. In humans, this process
takes several years/decades and remains clinically
undetected for a large part of its life history. The process
of cellular transformation and its key characteristics,
including the alterations in oncogenes, anti-oncogenes,
and expression of telomerase, are now much better
understood [2]. However, the most common clinical
outcome of clonal expansion of transformed cells in vivo
in humans is not progressive cancer, but clinically

indolent expansions in the form of preneoplasia. This is
particularly evident in the case of some hematologic
premalignancies such as gammopathies, wherein clo-
nality can be easily established and surgical resection is
not possible, thereby allowing the natural history of
these lesions to be fully manifest.

Recent application of methods to study global gene
expression signatures and interphase cytogenetics in
human tumors have yielded the surprising finding that
preneoplastic cells are a lot closer to their malignant
counterparts than previously anticipated [3–5]. In many
instances, the preneoplastic cells also have genetic
instability and already carry many of the same chro-
mosomal abnormalities or translocations seen in malig-
nant tumors [6]. For example, nearly all of the
chromosomal translocations initially identified in tumor
cells in myeloma can also be observed in the tumor cells
from its preneoplastic counterpart, monoclonal gamm-
opathy of undetermined significance (MGUS) [5]. Why
does the clinical behavior of MGUS then differ so much
from that of myeloma? One possibility is that the clinical
malignancy is regulated at least in part at the level of the
interactions of tumor cells with their microenvironment
[7]. In other words, host–tumor interactions in early
tumors may have a profound impact on the clinical
behavior of tumors. Several components of the tumor
microenvironment including stromal cells, fibroblasts,
new blood vessels, and immune cells play key roles in
influencing carcinogenesis. Here, I will focus on the
immune component of this microenvironment.

Natural host response in human preneoplasia

In principle, genetic and epigenetic changes in preneo-
plastic cells, as well as their microenvironment, can
provide the source of antigenic targets for the immune
system. The next key question therefore is whether the
immune system can in fact recognize these cells. To
address these questions in the context of a well-defined
human preneoplasia, we turned to patients with MGUS.
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These patients have a clonal expansion of transformed
plasma cells in the bone marrow, that often remains
clinically stable for several years without the develop-
ment of clinical malignancy [8]. An advantage of this
model is that both preneoplastic and immune cells from
the tumor bed can be readily isolated for study, without
the need for ex vivo culture and enzyme treatments. In
prior studies, we had observed that freshly isolated
T cells from the myeloma marrow did not respond
detectably to autologous tumor [9]. However, T cells
from this microenvironment could be readily expanded
using tumor-loaded dendritic cells (DCs), to kill
autologous tumor cells in vitro. In contrast, when we
studied patients with preneoplastic gammopathy, freshly
isolated T cells from the bone marrow were enriched for
T cells secreting interferon-c in response to autologous
tumor–loaded DCs [10]. This tumor-specific T-cell
response could be detected without the need for ex vivo
culture and consisted of both CD4+ and CD8+ T cells,
with the former being the dominant population.
Furthermore, the T cells were also capable of in vitro
expansion and of recognizing preneoplastic cells in
direct assays. Importantly, this response was specific for
the pattern of antigens expressed by autologous
preneoplastic cells, as DCs loaded with allogeneic
preneoplastic cells were not recognized. Together, these
data provide direct evidence that the immune system is
capable of reacting to antigens on preneoplastic cells,
and that the tumor bed of these lesions may be enriched
for tumor-reactive killer T cells. It would now be of
interest to test patients with epithelial preneoplastic
lesions for similar enrichment of tumor-reactive T cells
in the tumor bed. Presence of infiltrating T cells in other
preneoplastic lesions (e.g., dysplastic nevi) has already
been observed, although the specificity of these T cells
was not tested [11].

Antigenic targets in human preneoplasia

Our initial studies measured the immune reactivity at
the level of the whole preneoplastic cells. Ongoing
studies are trying to further characterize the nature of
specific antigens recognized by preneoplasia-specific
T cells. In principle, genetic and epigenetic changes in
these preneoplastic cells can provide a plethora of
antigenic targets, which may vary between different
patients. However, most of the current effort at antigen
discovery in human cancer has focused on established
tumors. Systematic analyses of antigenic profiles in
human preneoplasia have not yet been performed.
Recently, this has begun to change. Preclinical studies
have yielded some targets such as MUC-1, and cyclin-
B1, which are expressed in human preneoplasia and can
be targets of immune responses [12–14]. Most of the
existing data in this regard are restricted to humoral
responses, and evaluation of T-cell immunity to defined
antigens in preneoplasia is needed. Application of
existing methods of antigen discovery to human

preneoplasia is an essential first step to designing
rational approaches for immune prevention. To begin
to address these issues, we and others have now begun
larger collaborative efforts to prospectively correlate
genomic and biologic features of tumor cells with host
response in patients with preneoplastic lesions such as
MGUS.

Immune surveillance, immune stimulation, or both?

The new studies of immune recognition of preneoplastic
cells in humans raise important but yet unanswered
questions about the biologic and clinical impact of
immune recognition of preneoplasia on the natural
history and biology of human tumors. The immune
surveillance hypothesis postulated by MacFarlane and
Burnet, including its critics and supporters, has occupied
a central place in tumor immunology for the last
4 decades [15, 16]. Recent elegant studies in immune-
deficient mice have provided support for the role of both
interferon-c and innate as well as adaptive lymphocyte-
dependent mechanisms in immune control of cancers
[15].

On the other hand, evidence has also accumulated
that under some circumstances, chronic immune acti-
vation or inflammation may promote the persistence of
tumor cells in vivo [17–19]. It is important to point out
that these two possibilities are not mutually exclusive.
For example, a low-level immune response may help
suppress tumor growth but fail to eradicate it, depending
on the proliferative rate and clonogenic potential of the
targeted subpopulation, and the nature of tumor antigen
being targeted. At the same time, growth factors/
chemokines in the inflammatory microenvironment may
promote genomic instability, for example by down-reg-
ulating p53 function, and eventually promoting tumor
immune escape [19]. Immune recognition of preneopla-
sia may therefore be a two-edged sword, and contribute
to sculpting of tumors with reduced immune respon-
siveness and a greater potential to grow independent of
their microenvironment over time [15]. The dependence
of early tumor growth on the microenvironment is now
being increasingly appreciated [7]. This microenviron-
ment also includes tumor-specific immune cells. The
degree to which this immune element of the tumor
environment modulates the biology or evolution of tu-
mor and other cells in the tumor bed in vivo remains to
be fully clarified.

Lessons from animal models

The difficulties with addressing some of the mechanistic
questions directly in humans have encouraged the use of
animal models to investigate immune-cancer interac-
tions. Studies with tumor xenografts have been used to
establish the ability of the immune system to reject tu-
mors and clarify the nature of rejection antigens [20].
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More recent studies have also emphasized the
importance of tumor stroma or microenvironment as an
important barrier for effective immunity [21, 22]. Both
tumors and their microenvironment evolve during tu-
mor progression. The latter in particular may represent a
formidable challenge for therapeutic vaccination of ad-
vanced tumors.

Pioneering studies in animals have also provided
some of the early proof of concept for immune preven-
tion. For example, mammary carcinogenesis in trans-
genic mice over-expressing rat HER-2/neu
protooncogene can be inhibited by vaccination with
proteins or peptides, or by DNA plasmid vaccination
[23–26]. Boosting natural immunity with IL-12 or IL-2
also hampers the development of mammary tumors,
albeit less so than specific DNA immunization [27].
Immune control of preneoplastic lesions is substantially
better than that of even small established tumors. Pro-
tection seems to depend on both interferon-c–based
delayed-type hypersensitivity and antibody responses
[26]. Mice with spontaneous pancreatic cancers develop
MUC-1–specific CTLs that do not protect spontaneous
tumors. However, upon transfer to naı̈ve mice, they can
fully protect against challenge by MUC-1–expressing
tumors [28]. Importantly, there was no evidence for
toxicity against non-neoplastic tissues or enhancement
of carcinogenesis in these experiments. A recent study
extended immune prevention to genetic models of
spontaneous preneoplasia. Hybrids of DCs with
preneoplastic cells were shown to protect against colon
polyps in a mouse model of spontaneous cancer [29].
Interestingly, tumor protection required both humoral
and cellular immunity. Thus, a rapidly growing body of
data in animals now supports the feasibility of targeting
preneoplastic lesions for the immune prevention of
cancer.

Limitations of animal models

One of the major limitations with many existing models
is that they do not fully replicate human preneoplasia or
cancer. Recent advances in mouse modeling of cancer,
including inducible and tissue-selective targeting, are
allowing for technologically much improved modeling of
human cancer including preneoplastic lesions [30]. A
recent elegant example is the mouse model for pancre-
atic cancer and preneoplastic lesions [31]. Such models
may serve as valuable tools to study early tumor-im-
mune interactions. However, improved mouse modeling
of human cancer has also come with new insights into
key biologic differences between human and mouse cells.
For example, fundamental differences in telomerase
biology and p53/Rb pathways in cellular senescence, and
biology of the immune system in mouse and man may
well impact the interpretation of experimental inhibition
of carcinogenesis in mice, and its applicability to hu-
mans [32, 33]. Therefore, I feel that while mouse models
are invaluable to establish certain principles, they must

be complemented by carefully designed studies in hu-
mans to gain direct and fundamental insights into the
interactions between preneoplasia and innate/adaptive
immunity.

Preneoplasia: commotion in the tumor microenvironment

Studies of antitumor immune effectors in the myeloma/
gammopathy model point to the dominant impact of
tumor microenvironment on antitumor T-cell function
in vivo. Indeed, tumor-reactive T cells are present and
can be expanded ex vivo from the tumor bed in both
myeloma and gammopathy, but differ greatly in anti-
tumor effector function when freshly isolated. Several
features of the tumor bed, including cytokines, tumor-
derived shed molecules, or other immune regulatory cells
(such as regulatory T cells), may contribute to the
inhibition of tumor immunity in the tumor bed in pro-
gressive tumors [34, 35]. Tumor-derived cytokines or
other factors may also inhibit the maturation of DCs in
the tumor bed [36]. Inhibition of DC maturation may
also shift the balance of immune recognition from
immunity toward tolerance [37]. At least some of the
potentially negative aspects of the tumor bed (e.g.,
angiogenesis) are known to be more evident in tumors
versus in preneoplastic lesions. A major limitation of the
current assays to measure antitumor T-cell responses in
humans is that the T cells must be removed from the
tumor microenvironment before study. Recent advances
in measuring and visualizing immune responses in vivo,
particularly in animal models [38], or methods to
recreate the tumor bed ex vivo, may allow improved
understanding of the differences between immune rec-
ognition of preneoplasia versus overt cancer.

Targeting preneoplasia for cancer prevention: challenges
and opportunities

Patients with premalignancies are at an increased risk
for the development of cancer, although only a pro-
portion (but not all) will develop clinical cancer in their
lifetime. This, coupled with the long natural history of
these lesions, provides an opportunity to target these
lesions for prevention of cancer. Much of this effort to
date has focused on drugs. One example is cyclooxy-
genase-2 (COX-2) inhibitors, which are under active
clinical investigation [39]. Another potential approach is
to specifically harness the immune system’s capacity to
resist cancer [40]. Interestingly, COX-2 inhibitors may
also modulate antitumor immunity in mice [41]; how-
ever, the degree to which this might occur in patients
needs further study.

In principle, targeting the immune system for the
prevention of cancer may involve both high-risk popu-
lations or those with precursor lesions. Both approaches
are of value, but involve very different considerations in
the clinic. Only the latter is the focus of this discussion.
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One distinct advantage for targeting preneoplasia is that
the clonal tumor itself can be a surrogate for efficacy.
However these patients exhibit considerable heteroge-
neity, and therefore an important first step is to under-
stand the clinical heterogeneity of these tumors. Those at
higher risk for malignant transformation may then be
suitable candidates for targeted prevention. The nature
of host response to preneoplasia (e.g., identifying those
with a blunted or altered response) may itself allow the
identification of target high-risk populations. Another
challenge will be to understand the antigenic (both
intraclonal and interclonal) heterogeneity of these
tumors. As discussed earlier, tumors and preneoplastic
lesions in many ways represent specialized organs [42],
and therefore local factors that impact the efficacy of
preventive approaches may be tissue specific and differ
between different tumors.

The field of tumor immunotherapy has provided the
basis for several approaches to boost immunity,
including peptides, DNA vaccines, viral vectors, cyto-
kines, and DC vaccines [40]. In principle, these ap-
proaches can also be tested for boosting immunity for
prevention of cancer. Our emphasis has been on the use
of DCs as potent antigen-presenting cells for boosting
immunity [43, 44]. An important aspect of DCs is their
ability to acquire and cross-present antigens from tumor
cells and efficiently stimulate both CD4+ and CD8+ T-
cell responses [45]. In addition to boosting adaptive
immunity, DCs are also particularly adept at stimulating
innate lymphocytes such as NK or NKT cells [46, 47].
Recruiting both innate and adaptive immune effectors
may be essential for effective immune prevention.

Optimizing trial designs for clinical testing of early
therapeutic cancer vaccines is an area of active research
[48]. Endpoints for these trials are generally based on
short-term toxicity, measures of tumor regression (or
lack of progression), and surrogate endpoints. The long
natural history of preneoplastic lesions, often coupled
with their appearance in otherwise healthy individuals,
poses additional challenges for optimal clinical testing of
preventive vaccines. Here, safety considerations need to
include long-term effects. Improved surrogate markers
for immune efficacy of preventive vaccines are therefore
needed and will greatly facilitate the design of these
studies. Such studies should also carefully consider host-
related and disease-related features that may impact the
outcome of immunologic interventions [49].

Conclusion

In this article, I have argued for increased attention to
preneoplastic lesions as attractive targets for immune
mediated prevention of cancer. While much remains to
be learned in animal models, this change in focus for
tumor immunology should also include direct immuno-
logic study of patients with preneoplastic lesions. There
is little doubt that there are several challenges that must
be overcome. However, some of the greatest successes of

immunology have come from prevention (e.g., small
pox) rather than immune therapy of disease. Targeted
immune-mediated prevention of cancer may therefore
have a similar effect on human cancer burden, as with
infectious diseases.
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