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Abstract The clinical development of interleukin 12
(IL-12) as a single agent for systemic cancer therapy has
been hindered by its significant toxicity and disap-
pointing anti-tumor effects. The lack of efficacy was
accompanied by, and probably related to, the declining
biological effects of IL-12 in the course of repeated ad-
ministrations at doses approaching the maximum tol-
erated dose (MTD). Nevertheless, IL-12 remains a very
promising immunotherapeutic agent because recent
cancer vaccination studies in animal models and humans
have demonstrated its powerful adjuvant properties.
Therefore, IL-12 may re-enter the arena of cancer ther-
apy. Here, we review the immune modulating charac-
teristics of IL-12 considered responsible for the adjuvant
effects, as well as the results of animal and human cancer
vaccination studies with IL-12 applied as an adjuvant.
In addition, we discuss how studies with systemic IL-12
in cancer patients, and several other lines of evidence,
indicate that IL-12 may exert optimal adjuvant effects
only at low dose levels. Therefore, the MTD may not
constitute the maximum effective dose of IL-12 for
adjuvant application.
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Introduction

Specific immunity against cancer, if present, is usually
not effective, as shown by the course of most human

cancers. Therefore, the discovery of tumor-associated
antigens for an increasing number of human malignan-
cies [15, 132] has raised expectations of effective vacci-
nation therapy of cancer, with the goal to induce
immunity against cancer. Apparently, an effective im-
mune response is not elicited by the tumor antigens ex-
pressed by cancers that have become clinically manifest.
Indeed, in animal models, antigenic tumor cells have
been shown to grow in immune-competent hosts without
stimulating an acute or memory T-cell response [166,
147]. An important role in the ineffective immune re-
sponses to cancer is thought to be played by the mech-
anism of immune tolerance. Some tumors are capable of
in vitro tolerance induction in T lymphocytes that are
specific for their tumor antigens [148]. The reversal of
immune tolerance into immune activation may be one
of the mechanisms by which cancer vaccination can
become an effective treatment modality.

Among the strategies to stimulate an effective im-
mune response against tumor antigens is the presenta-
tion of antigens together with an appropriate immune
adjuvant. Recently, IL-12 has been identified as a
powerful adjuvant substance in a variety of vaccination
models of infectious disease. Promising results have also
been obtained in animal cancer vaccination studies using
either local or systemic co-administration of IL-12 or
IL-12 gene-transduced cellular vaccines. The first results
in humans clearly demonstrate that IL-12 enhances
tumor-specific cellular responses [85, 51]. IL-12 has
several characteristics that seem essential for its adjuvant
effects. In the vaccination area, IL-12 activates innate
immune cells and promotes production of cytokines and
chemokines, thereby mediating the attraction of other
innate as well as specific immune cells to this region. We
hypothesize that the co-administration of tumor anti-
gens together with the strong pro-inflammatory cytokine
IL-12 provides the environment with inflammatory
danger signals required to activate antigen-presenting
dendritic cells (DC) and prevents tolerance induction
towards the tumor antigens. In addition, IL-12 directs
the development of T-helper lymphocytes towards the
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type 1 (Th1) functional profile that promotes cellular
immune responses and stimulates the proliferation of
antigen-specific cytotoxic T lymphocytes (CTL) and
thereby the establishment of immune memory.

The beneficial adjuvant properties of IL-12 that were
demonstrated in infectious disease models [56] may not
apply to tumor immunology. Various theoretical models
of immune activation share the view that tumor cells and
infectious pathogens are differently recognized by the
immune system. The ‘‘danger model’’ hypothesizes that
specific immune activation, as opposed to tolerance, is
initiated when innate immune cells recognize danger
signals [91]. Invasion of pathogens is usually accompa-
nied by local inflammation and tissue destruction,
resulting in danger signals and activation of antigen-
presenting cells (APC), which then provide co-stimula-
tory signals to initiate specific immune responses. In
contrast, when tumor antigens arise during malignant
transformation, tissue destruction is initially minimal.
The consequent absence of adequate danger signals is
thought to result in immune tolerance towards the an-
tigen. The ‘‘innate immune recognition model’’ assumes
that specific immune responses are only activated when
innate immune cells recognize conserved microbial
structures with their pattern recognition receptors (PRR)
[92]. Once the PRR identify a pathogen-associated
molecular pattern, the innate immune cells are triggered
to perform their effector functions and activate specific
immune cells. Tumor cells are unable to activate PRR,
and hence do not trigger innate immune cells to activate
specific immune cells. Because of these essential differ-
ences between the immune recognition of tumor cells
and infectious pathogens, the present discussion is
restricted to results obtained in experimental tumor
models and cancer patients.

Molecular structure, production and cellular receptors

Interleukin-12 is composed of two disulfide-linked sub-
units with molecular weights of 40 kDa (p40) and
35 kDa (p35) [77, 115]. The human p35 and p40 sub-
units are structurally unrelated and have been mapped to
chromosomes 3p12–3q13.2 and 5q31–q33, respectively
[141]. Cells require co-expression of both genes to secrete
biologically active IL-12 [167]. IL-12 is primarily pro-
duced by phagocytic cells and antigen-presenting cells
(APC) such as monocytes, DC and activated B lym-
phocytes [156, 64, 138], and production is strongly
stimulated by infectious pathogens and their products
[37, 134]. The other important stimuli for IL-12 synthesis
are interactions between CD40 and its ligand (CD154),
on APC and B cells or T cells, respectively [140].

Natural killer (NK) and T cells were first shown to
express high affinity receptors for IL-12 composed of
two sub-units, designated b1 and b2 [121]. Subsequently,
several other cell types, such as neutrophils, DCs, B
lymphocytes and eosinophils, were shown to respond to
IL-12 in vitro [38, 109, 104, 160, 22, 19, 2]. Signal

transduction through the high affinity receptors on
lymphocytes involves tyrosine phosphorylation of the
Tyk2 and Jak2 kinases and of the transcription factors
STAT3 and STAT4 [11, 12, 69].

Clinical studies of systemic IL-12 as a single
therapeutic anti-tumor agent

Recombinant human IL-12 has been studied as a single
agent for systemic treatment in patients with various
types of cancer. The development of IL-12 has pro-
ceeded along usual, FDA-required lines, with initial
phase I studies to determine tolerability and safety [9,
117, 57, 111] and subsequent efficacy studies [86, 100,
68]. The maximum tolerated dose (MTD) of IL-12, i.e.,
one dose level below the dose that caused dose-limiting
toxicity, was defined between 200 and 500 ng/kg in
several intravenous (i.v.) and subcutaneous (s.c.) sched-
ules consisting of three to six injections per 3 weeks.
Common side effects consisted of fever and flu-like
symptoms, nausea, fatigue, mucositis and elevation of
liver enzymes. IL-12 appeared to have an exceptionally
long elimination half life, estimated to be between 9 to
25 h, in comparison with other cytokines, [117, 9, 99, 13,
111]. A remarkable decrease of the area under the plasma
concentration time curve (AUC) occurred after repeated
injections of IL-12 [117, 124, 13]. This reduction in AUC
was possibly due to up-regulation of IL-12 receptors on
lymphocytes in the course of treatment, in accordance
with results obtained in a mouse model, and unrelated to
anti-IL-12 antibody production [154].

The first phase II study unexpectedly resulted in se-
vere toxicity and deaths. IL-12 was administered at the
MTD defined in a previous phase I study [9], and the
schedule was identical except for the omission of a
treatment-free period after the first dose [86, 31]. Sub-
sequent animal studies revealed that insertion of a
treatment-free period of a week after the first adminis-
tration of IL-12, conforming with most phase-I studies,
reduced the toxicity of subsequent injections [86, 133].
Moreover, the phase-I studies also revealed that the re-
duction of side effects that occurred upon repeated in-
jections [117, 99] was accompanied by reduced IFN-c
induction [133, 86, 13, 119, 124, 57, 9]. In vitro, de-
creased IFN-c secretion by T cells was related to cellular
depletion of the signaling component STAT4 after
prolonged IL-12 stimulation [161]. Since IFN-c is con-
sidered to be the key regulator of IL-12-mediated anti-
tumor effects, the down-regulation of its induction in the
course of IL-12 treatment raised concerns [18, 105, 50].
In addition, our group showed that the down-regulation
of biological effects also comprises the induction of
TNF-a, IL-8 and IL-6 and the effect on leukocyte subset
counts in the circulation. The concentrations of IL-10
remained elevated upon repeated IL-12 administrations
[119, 13, 111, 100]. It has been hypothesized that IL-10,
as an endogenous counter regulator of many IL-12-
mediated effects, is produced during IL-12 therapy to
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protect the body from the resultant ongoing and dam-
aging inflammatory activity [96]. This hypothesis was
supported by in vitro results, demonstrating that IL-12
induces high levels of inhibitory IL-10 production by
lymphocytes [55, 166]. The results of phase-II studies,
performed in patients with advanced renal cell and
ovarian cancer, were disappointing, with overall re-
sponse rates of only 7% and 4%, respectively [100, 68].
The lack of efficacy in these studies may be due to down-
regulation of biological effects, including potential anti-
tumor effects, due to endogenous IL-10 induction that
occurs at relatively high dose levels of IL-12.

In the development of IL-12 as a vaccine adjuvant,
strategies that do not result in long-term systemic ex-
posure to high concentrations of IL-12, such as admin-
istration of low doses or infrequent administrations,
may therefore be necessary to prevent down-regulation
of effects.

Properties of IL-12 that can mediate adjuvant effects

Effects on the innate immune system

Inflammation

As a strong pro-inflammatory cytokine, IL-12 induces
the production of multiple other cytokines. Although
the induction of IFN-c predominates, it also enhances
production of other pro-inflammatory cytokines such as
GM-CSF, TNF-a, IL-8, IL-6, IL-15 and IL-18 in hu-
mans [119, 111, 57]. Importantly, IFN-c operates in a
positive feedback mechanism, as IFN-c in turn stimu-
lates IL-12 synthesis by phagocytic cells [25]. In accor-
dance with previous results in non-human primates [83],
we have shown activation of multiple inflammatory
mediator systems in patients with advanced renal cell
cancer after s.c. IL-12 [120].

In vitro, binding of IL-12 to receptors on neutrophils
results in activation of Ca2+ and tyrosine-signaling
pathways [33]. We also observed activation and de-
granulation of neutrophils in humans. The activation of
neutrophils might be a prominent adjuvant property of
IL-12, as neutrophils can operate as intermediates
between innate and adaptive immunity, not only
responding to cytokines, but also producing cytokines
and chemokines that enable the attraction of other
immune effector cells [34, 43]. For example, platelet-
activating factor, released from human neutrophils in
response to IL-12, attracts other neutrophils and NK
cells via chemotaxis [22]. The potentially important role
played by neutrophils in cancer immune surveillance was
demonstrated with tumor cells engineered to produce
pro-inflammatory cytokines, such as IFN-c and TNF-a.
Vaccination with these cells resulted in anti-tumor
immunity against wild-type parental tumors depending
on neutrophils and CTL [101].

Another inflammatory effect observed in humans
after IL-12 administration, was an increase in serum

concentrations of secretory phospholipase A2 (sPLA2)
[120]. Secretory phospholipase A2 may be released from
endothelial cells in response to IL-12-mediated TNF-a
and IL-6 synthesis, both known promotors of sPLA2

production. This lipolytic enzyme releases fatty acids,
often arachidonic acid, from membrane phospholipids
[35]. These are considered strong mediators of the in-
flammatory response.

Fibrinolysis and coagulation were also activated by
IL-12 in humans [118]. The coagulation system is inte-
grally related to the innate immune response and its
activation promotes other inflammatory responses [113].
Thrombin formation occurred in 50% of patients after
IL-12. Thrombin induces up-regulation of P-selectin and
E-selectin; as a result aggregation of platelets with neu-
trophils, and interactions of neutrophils and monocytes
with endothelial cells are promoted [39, 6].

In conclusion, the pro-inflammatory properties of
IL-12 can mediate activation and attraction of innate
immune cells, resulting in the recruitment of specific
immune cells.

IL-12 may also promote immune activation against
tumor antigens because the activation of multiple in-
flammatory systems results in danger signals [91]. IL-12
production by phagocytic cells and APC is an early
event shared by a variety of pathological states that
evoke activation of the innate and, subsequently, anti-
gen-specific immune responses [146]. During sepsis and
endotoxemia, IL-12 is produced [63, 70, 62], and the
inflammatory response in these situations seems depen-
dent on IL-12, as neutralizing antibodies against IL-12
can arrest the inflammatory cascade following bacterial
lipopolysacharide administration [168]. Therefore, we
propose, that co-administration of IL-12 and tumor
antigens results in a local inflammatory response, with
release of neutrophil elastase and other proteases, and
synthesis of thrombin and lipid mediators, resulting in
micro environmental damage [163, 112, 81]. This pro-
vides danger signals required for immune activation. As
a result, local APC are activated and can provide
co-stimulatory signals and activate T cells.

Notably, stimulation of IL-12 production is also
considered an important working mechanism in vacci-
nation, whereby classical adjuvant substances exert their
effects. This was shown, for example, for immune-stim-
ulating complexes containing saponin Quil A and nu-
cleic acid vaccines containing unmethylated CpG tracts
[142, 134, 28].

Natural killer cells

NK lymphocytes are also activated by IL-12, in fact, it
was initially discovered in 1989 as NK cell stimulatory
factor [77]. IL-12 promotesNK cell cytotoxicity, cytokine
production, in particular high levels of IFN-c [8, 107, 127]
and mediates NK cell chemotaxis [4, 47]. In cancer
patients, IL-12 indeed enhances the cytolytic activity of
NK cells and increases the expression of CD2, LFA-1 and
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CD56 molecules that mediate NK cell migration [128]. In
a mice Leishmania infection model, NK cells were shown
to exert an intermediate function between the innate and
specific immune responses. The strong Th1 response,
obtained after administration of leishmanial antigens in
combination with IL-12 to mice, depended on NK cells
and could be completely abrogated by in vivo depletion
of NK cells [3]. NK cells also have direct cytotoxic effects
against MHC class-I deficient tumors [155]. Tumor
eradication after vaccinations supported by adjuvant
IL-12 is dependent on NK cells in several animal models
[74, 144, 79]. In this context it is of interest that IL-12
deficient mice are more sensitive to chemical carcinogens
and develop increased numbers of metastases following
injection of transplantable tumor as compared to wild-
type controls and that this immune surveillance defect is
related to sub-optimal NK-cell function [143].

Dendritic cells

Moreover, IL-12 enhances the function of DC, which
are professional APC capable of processing antigen in
the setting of vaccination, as they provide high concen-
trations of peptide/MHC ligands for T-cell receptor
engagement required to activate specific immunity. DCs
express IL-12 receptors, and their occupation initiates
nuclear localization of members of the NF-jB family of
transcription factors [59]. They are supposed to increase
the maturation of DC and enhance their capability to
present antigen [114], e.g., by up-regulation of class II
MHC expression [60]. Furthermore, IL-12 promotes the
differentiation and maturation of DC indirectly, via the
induction of pro-inflammatory cytokines. The pro-in-
flammatory cytokines TNF-a, IL-6 and GM-CSF have
been shown to mediate migration of DC to T-cell-rich
areas of lymphoid organs in order to form clusters with
antigen-specific T cells, creating the appropriate envi-
ronment for T-helper-cell differentiation [10, 73]. In
addition, IFN-c enhances antigen processing by DC and
their MHC class I-presentation of antigen [17, 48].

In recent years, DC based vaccines have received in-
tense interest [126]. DC can be generated in vitro [169]
and loaded with tumor cell lysates or tumor peptides
before administration to the patient. In this way the
physiological process that recruits antigen-specific T
cells is mimicked to some degree. Although mature DC
themselves are potent producers of IL-12, co-adminis-
tration of IL-12 improves the results of DC-based vac-
cines. In vitro, CTL responses, triggered by autologous
human monocyte-derived DC that were modified to
express melanoma antigens, could be enhanced by co-
transfecting these DC with IL-12 genes [158]. In situa-
tions where antigen presentation by DC without IL-12
co-administration induced T-cell anergy, IL-12 could
reverse or prevent development of tolerance in favor of
immune activation [58]. Similarly, IL-12 was shown to
be able to convert DC from a state of tolerance to ac-
tivity. In patients that presented simultaneously with

progressing and regressing metastases, tissue DC from
progressing metastases appeared unable to induce T-cell
proliferation and did not produce Th1 cytokines, in
contrast to DC from regressing metastases, and this
defect could be overcome by IL-12 addition [42].

In conclusion, IL-12 plays an important role in the
activation of innate immunity and potentially provides
tumor antigens with a background of inflammatory ef-
fects with resultant ‘‘danger’’ signals that can promote
activation of specific immunity.

Effects on specific immune cells

Cellular immune response

The cytokines present in the micro-environment at the
time of initial antigen stimulation direct the differentia-
tion of naive T cells into effector T-cell subsets. MHC-
restricted, Ag-specific T lymphocytes are considered to
be an important effector mechanism against cancer.

In the presence of IL-12, naive T cells differentiate
into the functionally defined Th1 subset [66] that is in-
volved in cell-mediated immunity. Subsequently, IL-12
is an important co-stimulus for proliferation and further
activation of fully differentiated Th1 cells and their
secretion of IFN-c [53, 88].

T lymphocytes respond to IL-12 through high affinity
receptors, which are composed of two sub-units, termed
b1 and b2 [121]. Th1 cells express both sub-units.
However, if T helper cells differentiate along the Th2
pathway, supporting humoral immune responses, they
selectively lose IL-12Rb2 and thereby become unre-
sponsive to IL-12 [149]. Th1 commitment is enhanced by
IFN-c, which further up-regulates the IL-12 receptor
[110, 156]. Once a Th1 response is induced in vivo, IL-12
is in most cases not necessary for maintaining this re-
sponse [52]. This observation is important for vaccina-
tion strategies, as it implies that the addition of IL-12 to
the vaccine only would be sufficient to induce and
maintain the desired response.

In addition, IL-12 modulates a number of genes in-
volved in Th1 trafficking and regulates the migration
and homing of these cells. IL-12 can attract and main-
tain Th1 cells to the site of administration by the up-
regulation of the Th1-specific adhesion molecule and
their ligands. For example, IL-12 selectively increases
the expression of integrin-a6/b1 and chemokine receptor
CCR1 on Th1 cells in vitro [32]. Also, IL-12 upregulates
the expression of glucosyltransferase enzymes that in-
crease the expression of P-selectin and E-selectin ligand
on Th1 cells, which enables their recruitment to inflamed
tissues [164]. Finally, IL-12 strongly induces the
expression of IP-10 in various cell types in vitro [139].
IP-10 is the ligand of chemokine receptor CXCR3,
selectively expressed on Th1 cells [89]. In accordance,
peripheral blood mononuclear cells (PBMC) and tumor
biopsies from cancer patients showed increased expres-
sion of IP-10 after IL-12 treatment [61, 21].

136



DCs play an essential intermediate function in the
facilitating interaction between T helper cells and anti-
gen-specific cytotoxic CD8+ T lymphocytes (CTL).
Priming of CTL is enabled by the ligation of CD40 on
DC and its ligand CD154 on activated CD4+ cells [137,
14]. The strong induction of IL-12 synthesis that occurs
as a result of CD40 ligation suggests an important role
for IL-12 in the molecular mechanisms responsible for
the CTL priming. This contention is further supported
by studies using latex microspheres coated with various
combinations of class I MHC-peptide complexes and co-
stimulatory molecules, thus avoiding the use of APCs
whose function may be affected by cytokines. It was then
shown that IL-12, in the presence of antigen, acts
directly on the naive CD8+ CTL to promote clonal
expansion and differentiation [36].

That IL-12 plays an important role in the establish-
ment of immunological memory was demonstrated in an
experimental system in which a small number of antigen-
specific CD8+ CTL were adoptively transferred into
naive, syngeneic mice, in order to monitor responses
to peptide immunization in the absence or presence of
IL-12. Peptide immunization without simultaneous
IL-12 administration induced a weak and transient
expansion of CD8+ CTL, whereas in the presence of
IL-12, a large clonal expansion of CD8+ T cells was
induced in the draining lymph nodes. These cells were
capable of antigen-specific killing in in vitro assays.
Additionally, a stable memory T-cell population was
generated that responded to a second challenge with
IL-12 and peptide [135]. A strong specific CTL response
was observed in patients with advanced melanoma after
administration of IL-12. The numbers of tumor-specific
CTL increased in the circulation and influx of specific-
memory CD8+ T cells into metastasized lesions was
documented [98].

Humoral immune response

With respect to humoral immunity, the addition of
IL-12 to protein and hapten vaccinations strongly
up-regulates the synthesis of Ag-specific, complement-
fixing IgG2a, IgG2b and IgG3 antibody subclasses [54,
20]. Further experiments in mice revealed that the
elevation of these antibody isotypes is dependent on
IFN-c induction [95]. However, in IFN-c knock-out
mice, IL-12 still significantly enhances the synthesis of
specific IgG1 and IgG2b. Therefore, a two-step model
of humoral immune enhancement by IL-12 was pro-
posed [95]. Initially, the IL-12 induced production of
IFN-c by Th1 and NK cells would mediate early
switching of B cells towards IgG2 immunoglobulin
secretion with temporal suppression of IgG1 produc-
tion. Subsequently, IL-12 would stimulate the switched
B cells to secrete increased amounts of antibody,
regardless of their isotype [94].

IL-12 was also identified as a pivotal molecule se-
creted by activated human DC that promote the differ-

entiation of naive B cells into IgM-secreting plasma cells
and hence plays an important role in the generation of
primary antibody responses that are initiated by DC
[40]. Finally, IL-12 may exert indirect effects on B cells
via the induction of other cytokines than IFN-c. We
have shown in patients with renal cell cancer that IL-12
induces the elevation of serum levels of IL-6 [119], which
is a prominent stimulator of B-cell differentiation and
immunoglobulin synthesis [159].

Adjuvant effects of IL-12 in animal studies

The addition of IL-12 to different types of cancer vac-
cines has been extensively studied in animal (mostly
murine-) models. The first vaccination protocol
addressed the co-administration of IL-12 with tumor-
derived peptide and resulted in the induction of peptide-
specific CTL in naive, tumor-bearing mice and the
eradication of established tumors [108]. Several studies
used cancer cells as vaccines that had been transduced to
express IL-12 [151, 152, 129, 44, 45, 136, 26, 30, 116, 65,
87, 102, 49, 41, 23, 1, 84, 103]. Alternative approaches
also resulted in the presence of IL-12 at the site of tumor
antigen. Recombinant viral vectors, encoding IL-12 [16,
24, 12, 125, 46] or fibroblasts, transfected for IL-12
production, were injected near the tumor [150, 90]. More
recently, studies have applied the co-administration of
genes encoding for IL-12 and various tumor antigens
[153, 145, 5, 76]. The addition of IL-12 to these vaccines
clearly enhanced the anti-tumor effects, with resultant
inhibition of tumor growth and eradication of estab-
lished tumors. Additionally, immune memory was
established with the rejection of tumor cells at a subse-
quent challenge. In several studies, separate analyses
have demonstrated that IL-12 plus vaccine was more
effective than either component alone [123, 129, 84, 49,
65, 71, 1, 26, 41, 44, 45]. In vivo depletion of cellular
subsets [1, 41, 87, 101, 123, 162, 122] and knockout mice
[122, 67, 145] have been used to investigate the anti-
tumor mechanism of IL-12. Additionally, the cellular
infiltrate in tumor metastases after vaccination has been
characterized [67, 46, 106]. In most studies, lymphocytes
were pivotal effector cells. The lymphocyte subsets
involved, such as CD 8+ T cells, CD4+ T cells, NK
cells or a combination of these, varied with the specific
vaccine and the tumor model studied. Infrequently,
other immune effector cells such as macrophages have
been implicated in the anti-tumor effects of IL-12 [157].
Additionally, IL-12 was shown to stimulate humoral
immunity. In a model of colon carcinoma, vaccination
with IL-12 transduced tumor cells cured 40% of tumor-
bearing mice. Favorable anti-tumor responses were
related to the synthesis of antibodies against tumor-
associated antigens that induced tumor cell lysis in
a complement dependent cytotoxicity assay [129].
Moreover, IL-12 increased anti-neu antibody synthesis
in a model in HER-2/neu transgenic mice. Although
antibody levels were not correlated with anti-tumor
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protection, vaccination with a combination of plasmids
encoding the neu oncogene and IL-12 resulted in pro-
tection against mammary tumors that normally develop
spontaneously in these mice [5].

In several recent studies IL-12 has been combined
with other strategies aimed at promoting effective
immune responses against tumor antigens. The admin-
istration was systemic, together with tumor cells trans-
duced to express co-stimulatory molecules such as B7–1
or MHC class II [72, 123]. A important and promising
vaccination strategy consists of the addition of IL-12 to
DC-based vaccines [93, 170, 45, 80]. In a mouse model of
chemically induced fibrosarcoma, DC were pulsed with
tumor peptides, that had been eluted with acid from
autologous tumor [170]. These DC were combined with
intra-peritoneal administration of IL-12. Alternatively,
antigen-loaded DC were transfected with a retroviral
vector or a pro-viral construct encoding murine rIL-12.
Both strategies augmented the anti-tumor effect of the
vaccine, enhanced the growth arrest of established
tumors and increased specific cytotoxicity of splenic T
cells, as compared to treatment with non-transfected,
peptide pulsed DC or IL-12 alone. A recent experiment
with DC in MHC-1 transgenic mice demonstrated that
IL-12 can even reverse tolerance in vivo. MUC1 is
over-expressed in human breast and other cancers.
Administration of MUC-1 expressing DC to the MUC-
1-transgenic mice only elicited a specific anti-MUC im-
mune response, if IL-12 was co-administered along with
the DC [80]. MUC-1-specific CTL were also induced
when antigen pulsed PBMC, instead of DC, served as
APC. Because peptide-loaded autologous human PBMC
can be obtained relatively easy, in contrast to DC, this is
an attractive approach to translate for clinical use and
indeed, similar studies are now performed in humans.

Adjuvant effects of IL-12 in human studies

Clinical experience in humans is still limited. Results of
two studies with tumor peptide vaccination and IL-12
co-administration in patients with malignant melanoma
were recently published [51, 85]. One study was per-
formed in patients with metastasized melanoma using a
vaccine consisting of autologous PBMC pulsed with
MAGE-3 or MelanA peptides and co-administration of
recombinant IL-12 [51]. Fifteen HLA-A2 positive pa-
tients with metastases expressing MAGE-3 or Melan-A
were vaccinated with these tumor peptides at least three
times at 3-week intervals. Different doses of IL-12 were
used (0, 30, 100 or 300 ng/kg) and IL-12 was admnis-
tered s.c., adjacent to the vaccination site, on days 1, 3
and 5. Only one out of four patients treated with pulsed
PBMC without IL-12, but all patients treated with 30 or
100 ng/kg of IL-12, developed a specific CD8+ T-cells
response after three immunizations. Remarkably, only
one out of three patients treated at the highest dose level
of 300 ng/kg of IL-12 did so. Furthermore, grade 2 or 3
toxicity (fatigue, depression and decreased numbers of

peripheral blood cells) only occurred with the highest
dose of IL-12. Most importantly, six of eight patients
with tumor-specific CD8+ T cells showed regression of
all or part of their metastases. In the second study,
patients with stage III or IV malignant melanoma who
had undergone complete resection of macroscopic tumor
were vaccinated with peptides derived from the tumor
antigens gp100 and tyrosinase, emulsified with incom-
plete Freund’s adjuvant [85]. Patients received for
26 weeks a total of eight vaccinations, with or without
30 ng/kg IL-12. The combination augmented gp 100-
specific DTH reactivity and boosted the gp100- and
tyrosinase-specific production of IFN-c by peripheral
blood T cells after repeated vaccinations. The number
of gp100 specific CTL as measured by tetramer flow
cytometry was also augmented by IL-12. Of note, the
generation of specific CTL responses took several vac-
cinations over multiple months. This observation con-
firmed the clinical impression that patients with rapidly
progressive disease may not benefit from therapeutic
vaccination. Time to relapse was not influenced by the
addition of IL-12 to the regimen and did not correlate
with any of the immunological results. In a third study,
the treatment of six patients with advanced melanoma
with weekly vaccinations using IL-12 gene-transfected
autologous irradiated tumor cells resulted in one mixed
response (disappearance of part of the metastases). Two
of six patients had an increased specific CTL response,
as measured 2 weeks after the third vaccination, one of
whom had a mixed response, the other stable disease
[97]. In this study, lymphokine-activated killer cell
activity was induced in the majority of patients, but was
not related to the clinical outcome. In another clinical
protocol, peritumoral injection of IL-12 transfected
fibroblasts was shown feasible, and reduction of tumor
masses near the injection site were observed [75].

Inverse dose response effect

In a human study that bears similarities to the study by
Lee [85], patients with advanced malignant melanoma
were treated with a vaccine consisting of gp100 mela-
noma tumor antigen in incomplete Freund’s adjuvant
[131]. The vaccine elicited the generation of anti-peptide
and anti-tumor T-cell precursors in the circulation, while
42% of patients exhibited objective tumor regression,
but unfortunately without attaining a clinical response.
In sharp contrast with results by Lee, co-administration
of IL-12 reduced the number of T-cell precursors, and
anti-tumor responses were no longer observed. However,
IL-12 was administered i.v. at a relatively high dose
level, i.e. 250 ng/kg per day, on five consecutive days
after each peptide vaccination.

In analogy with clinical studies of systemic single
agent IL-12 administration, the biological effects of IL-
12 may be down-regulated at the higher dose levels.
Additional lines of evidence indicate that IL-12 in the
setting of vaccination studies does not exert optimal
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immune modulation at high dose levels and that above a
certain threshold level, the dose response relationship
may revert [108, 71, 82]. A very low dose of 1 ng per day,
eight times in 2 weeks, co-administered with a p53 tu-
mor peptide vaccine, induced tumor rejection and CTL
generation in a murine sarcoma model, whereas doses
higher than 10 ng per day failed to do so [108]. In a rat
glioma model, vaccination with irradiated tumor cells in
combination with subcutaneous IL-12 resulted in max-
imal tumor eradication and optimal protective immunity
against repeated tumor challenge at the lowest applied
dose of 1 ng of IL-12 per day, for 28 days [71]. In
contrast, treatment with high doses of 250 ng per day for
10 days prevented the generation of tumor-specific CTL
induced by immunization with GM-CSF-transfected
tumor cells [82]. A possible inhibitory role for IL-10 has
been suggested in a model of adoptive transfer of specific
CTL in immuno-deficient mice bearing autologous tu-
mor. In these mice, tumor growth suppression by CTL
increased after injection of 100 ng of IL-12 into the tu-
mor, every 2 to 3 days, but not after higher doses of
1,000 ng. [7]. In vitro, it was then shown that high-dose
IL-12 stimulated, in addition to IFN-c, the production
of high levels of IL-10 from the tumor specific CTL, and
furthermore, anti-IL-10 polyclonal antibodies could
abrogate the inhibition of tumor cell lysis observed after
high dose IL-12. Since IL-12 and IL-10 have opposite
effects on the accessory function of DC and other APC
[78], dose-finding studies for IL-12 as an adjuvant in
therapeutic anti-tumor vaccination should focus on
those dose levels that do not induce IL-10 reduction.

Conclusions

IL-12 is a promising adjuvant for cancer vaccination and
has the potential to activate an effective immunological
response to cancer. Firstly, it has strong inflammatory
properties and causes the induction of other pro-
inflammatory cytokines, degranulation of neutrophils,
the formation of lipid mediators and activation of the
coagulative and fibrinolytic systems that together can
provide an environment of multiple danger signals for
tumor antigens, suitable for the activation of profes-
sional APC. In addition, IL-12 directly and indirectly
activates innate immune effector cells such as neu-
trophils and NK cells and promotes their secretion of
substances that alter the microenvironment and promote
expression of adhesion molecules that mediate traffick-
ing and homing of APC and specific immune cells.
Moreover, IL-12 enhances the maturation and antigen-
presenting efficacy of DC and promotes T helper cell
differentiation towards the Th1 type necessary for
cellular immune responses. Finally, it stimulates the
differentiation and lytic capacity of antigen-specific CTL
and promotes immune memory.

The strong adjuvant properties of IL-12 have been
demonstrated in a variety of animal models using dif-
ferent vaccination strategies that united tumor antigens

and IL-12. Sophisticated vaccines have been constructed
with antigen-pulsed DC or PBMC, transduced to
express increased IL-12. In these animal cancer models,
IL-12 was shown to clearly enhance the eradication of
established tumor and moreover was capable of inducing
a specific anti-tumor immune memory. The first human
studies addressing the co-administration of systemic
IL-12 to cancer vaccines have shown development of
tumor-specific CTL in the course of multiple vaccina-
tions, and although clinical responses were limited, CTL
responses were clearly correlated with clinical tumor
regressions. Several lines of evidence indicate that the
optimal immune regulatory effects of IL-12 are confined
to the lower dose levels at which the induction of IL-10
does not take place. The maximally effective dose,
schedule and route of administration remain to be
defined.

Based on the reviewed data, we anticipate the revival
of IL-12 as an adjuvant for therapeutic vaccination
against cancer.
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