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comprehensive genome profiling-based precision oncology
T. Kubo1,2y, K. Sunami1,3y, T. Koyama4, M. Kitami1, Y. Fujiwara5,6, S. Kondo4,7, K. Yonemori4,8, E. Noguchi8, C. Morizane7,
Y. Goto5, A. Maejima8,9, S. Iwasa4,10, T. Hamaguchi11, A. Kawai12, K. Namikawa13, A. Arakawa14, M. Sugiyama14,
M. Ohno15, T. Yoshida16, N. Hiraoka17, A. Yoshida17, M. Yoshida17, T. Nishino1, E. Furukawa18, D. Narushima18, M. Nagai18,
M. Kato18, H. Ichikawa2,19, Y. Fujiwara8, T. Kohno3,19 & N. Yamamoto4�
1Department of Laboratory Medicine, National Cancer Center Hospital, Tokyo; 2Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo;
3Division of Genome Biology, National Cancer Center Research Institute, Tokyo; 4Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo;
5Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo; 6Department of Thoracic Oncology, Aichi Cancer Center Hospital, Aichi; 7Department of
Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo; 8Department of Medical Oncology, National Cancer Center Hospital, Tokyo; 9Department
of Urology, National Cancer Center Hospital, Tokyo; 10Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo; 11Department of Medical
Oncology, Saitama Medical University International Medical Center, Saitama; 12Department of Musculoskeletal Oncology and Rehabilitation, National Cancer Center
Hospital, Tokyo; 13Department of Dermatologic Oncology, National Cancer Center Hospital, Tokyo; 14Department of Pediatric Oncology, National Cancer Center Hospital,
Tokyo; 15Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo; 16Department of Genetic Services and Medicine, National Cancer
Center Hospital, Tokyo; 17Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo; 18Division of Bioinformatics, National Cancer Center Research
Institute, Tokyo; 19Division of Translational Genomics, National Cancer Center Exploratory Oncology Research & Clinical Trial Center, Tokyo, Japan
*Corresp
Therapeuti
104-0045,
E-mail: n

yThese a
2059-70

European S
CC BY-NC-

Volume 9
Available online xxx
Background: Comprehensive genome profiling (CGP) serves as a guide for suitable genomically matched therapies for
patients with cancer. However, little is known about the impact of the timing and types of cancer on the therapeutic
benefit of CGP.
Materials and methods: A single hospital-based pan-cancer prospective study (TOP-GEAR; UMIN000011141) was
conducted to examine the benefit of CGP with respect to the timing and types of cancer. Patients with advanced
solid tumors (>30 types) who either progressed with or without standard treatments were genotyped using a
single CGP test. The subjects were followed up for a median duration of 590 days to examine therapeutic response,
using progression-free survival (PFS), PFS ratio, and factors associated with therapeutic response.
Results: Among the 507 patients, 62 (12.2%) received matched therapies with an overall response rate (ORR) of 32.3%.
The PFS ratios (�1.3) were observed in 46.3% (19/41) of the evaluated patients. The proportion of subjects receiving
such therapies in the rare cancer cohort was lower than that in the non-rare cancer cohort (9.6% and 17.4%,
respectively; P ¼ 0.010). However, ORR of the rare cancer patients was higher than that in the non-rare cancer
cohort (43.8% and 20.0%, respectively; P ¼ 0.046). Moreover, ORR of matched therapies in the first or second line
after receiving the CGP test was higher than that in the third or later lines (62.5% and 21.7%, respectively;
P ¼ 0.003). Rare cancer and early-line treatment were significantly and independently associated with ORR of
matched therapies in multivariable analysis (P ¼ 0.017 and 0.004, respectively).
Conclusion: Patients with rare cancer preferentially benefited from tumor mutation profiling by increasing the chances
of therapeutic response to matched therapies. Early-line treatments after profiling increase the therapeutic benefit,
irrespective of tumor types.
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INTRODUCTION

Next-generation sequencing (NGS)-based comprehensive
genomic profiling (CGP) is commonly used to examine somatic
and germline mutations of 10 or more cancer-related genes.
The technique is carried out to guide suitable genomically
matched therapies in patients with advanced cancer through
the identification of actionable genomic alterations. The CGP-
based precision oncology is often undertaken in a tumor-
agnostic manner, based on the prediction that patients would
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respond to molecular-targeted therapies according to their
gene alterations. Several pan-cancer studies, including ours,
have demonstrated that w18% of patients were enrolled in
genomically matched clinical trials based on CGP findings
(Supplementary Table S1, available at https://doi.org/10.1016/
j.esmoop.2024.102981).1-7 In a few of the studies, the thera-
peutic responses of the trials were also reported to be favor-
able2,4,6,7 (Supplementary Table S1, available at https://doi.
org/10.1016/j.esmoop.2024.102981). These findings underpin
the authenticity of the strategy for CGP-based precision
oncology.

In clinical settings, however, genomically matched ther-
apies are also undertaken mainly through standard treat-
ments (as published by regulatory authorities) and off-label
use of the approved drugs other than enrollment in clinical
trials of investigational drugs. In fact, CGP is beneficial to
patients in such a real-world setting, including enrollments
into clinical trials and compassionate and/or off-label use of
drugs.8,9 However, it has not yet been fully investigated
whether patients with certain types of cancer or on timing
(treatment lines) are more likely to benefit from CGP-based
precision oncology.

Here, we conducted a hospital-based prospective obser-
vational study to determine the impact of the types of
cancer and timing (treatment lines) on the derivable ther-
apeutic benefits from CGP.
MATERIALS AND METHODS

Study description

This study was undertaken as a hospital-based prospective
observational study (Trial of Onco-panel for Gene-profiling
to estimate both adverse events and response during can-
cer treatment; TOP-GEAR, UMIN 000011141) to address the
clinical and genetic factors that can influence clinical ben-
efits from CGP-based precision oncology.10,11 This study was
approved by the Institutional Review Board of the National
Cancer Center. All patients signed a written informed con-
sent document. Between May 2016 and March 2018, 657
patients were enrolled at the National Cancer Center Hos-
pital (NCCH). A total of 91 patients were eliminated due to
ineligibility for this study (n ¼ 35), insufficient quality of
DNA (n ¼ 28), or insufficient quantity of DNA (n ¼ 28), and
566 patients were analyzed with NCC Oncopanel.10,11 De-
tails of the enrollment are presented in Figure 1. Patients
who met the following criteria were eligible for inclusion:
presentation of advanced solid tumors with disease pro-
gression during standard therapies or without appropriate
standard treatments, rare cancers (with an incidence rate of
<6 per 100 000 per year),10 or cancer of unknown primary;
and age (�16 years from May 2016, and �1 year from April
2018). There was no limitation on the number of previous
treatments taken by the patients.
Genomic profiling of tumors

The NCC Oncopanel was designed to examine somatic
and germline mutations, amplifications, and homozygous
2 https://doi.org/10.1016/j.esmoop.2024.102981
deletions within the entire coding region of 114 genes
of clinical or preclinical relevance11,12 (Supplementary
Table S2, available at https://doi.org/10.1016/j.esmoop.
2024.102981). Moreover, there were fusions of 12 onco-
genes in the panel. For analyses, 5 or 10 sections of 10- or
4- to 5-mm sections, respectively, were prepared from
archival formalin-fixed and paraffin-embedded tumor
specimens. Two additional slides were prepared and he-
matoxylin eosin-stained to confirm that the tumor cell
content was at least 10%. Peripheral blood (2 ml) collected
from the same patients was used as a control to allow
discrimination of somatic and germline mutations.
Sequencing libraries were prepared from 200 ng of DNAs
using the SureSelect XT reagent (Agilent Technologies, Santa
Clara, CA) and a KAPA Hyper Prep kit (KAPA Biosystems,
Woburn, MA), and analyzed on the Illumina NextSeq plat-
form with 150 bp paired-end reads (Illumina, San
Diego, CA). NGS reads were mapped to the human refer-
ence genome with the BurrowseWheeler Aligner (BWA)
and BWAeSmitheWaterman algorithm (BWA-SW). Variants
in the tumor and nontumor DNAs were detected using the
cisCall program.13 All the variants studied in the present
study were confirmed with manual inspection using the
Integrative Genomics Viewer.14 The test system has been
approved as the OncoGuideTM NCC Oncopanel System by
the Pharmaceuticals and Medical Devices Agency. The cost
is reimbursed by the National Health Insurance System of
Japan.15

Molecular tumor board and treatment decision

A multidisciplinary molecular tumor board (MTB) was
formed to establish the treatment decision. They comprised
molecular biologists, medical oncologists, bioinformaticians,
pathologists, and genetic counselors, as the ‘expert panel’.
The panel met weekly to review NGS reports by prioritizing
and selecting the actionable genomic alterations according
to the consensus criteria of the Japanese Society of Medical
Oncology, Japan Society of Clinical Oncology, and Japanese
Cancer Association.16 They also made reference to two
publicly available knowledge bases, CIViC17 and OncoKB.18

The MTB evaluated the pathogenicity of the detected var-
iants, recommendations of genomically matched molecular-
targeted agents, and the necessity of referral for genetic
counseling.

Analysis of clinical outcome

Patients who commenced a genomically matched therapy
were followed up according to the clinical trial protocol
with which they were referred or according to the routine
medical practice. Analyses of clinical data for patients who
were enrolled up to 30 March 2018, with molecular ana-
lyses, were completed and examined by the MTB before 8
June 2018. The dates were gathered from the medical re-
cord and evaluated on 31 March 2022 (data cut-off).

Progression was determined with imaging evaluations or
clinician assessments. The best response to the therapy was
determined by various medical oncologists via a review of
Volume 9 - Issue 4 - 2024
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Patients with CGP data available: n = 507 (89.6%)

Patients receiving matched therapy: n = 62 (12.2%)

Patients enrolled in the TOP-GEAR study: n = 657

Eliminated due to ineligibility for this study (n = 35)
- small tissue or low tumor content (<10%) or demineralized tissue (n = 23)
- patients with a history of hematopoietic stem cell transplantation (n = 2)
- cancellation by patients request or disease progression (n = 10)

Insufficient quality of DNA (n = 28) or insufficient quantity of DNA (n = 28)

Patients subjected to CGP: n = 566

Low depth (mean depth < 100) (n = 30)
Cross-contamination suspected (n = 29)

Figure 1. CONSORT diagram for outcome survey in the TOP-GEAR study.
CGP, comprehensive genome profiling.
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practical medical/radiological records, using the Response
Evaluation Criteria in Solid Tumors (RECIST version 1.1).
Progression-free survival on matched treatment (PFS2) was
referred to as the time from the commencement of treat-
ment to progression (as defined by RECIST 1.1), clinical
progression, or death from any cause. Progression-free
survival on previous therapy (PFS1) was defined as the
time from the commencement of the last treatment to
progression (as defined by RECIST 1.1) or clinical progres-
sion. The PFS ratio (PFS2/PFS1) is that in which the PFS on
matched therapy (PFS2) was compared with the PFS for the
most recent therapy on which the patient had just experi-
enced progression (PFS1).19
Statistical analysis

Data analyses involved the use of R software, version 4.0.3
(R Foundation for Statistical Computing, Vienna, Austria).
Inferential statistical tests such as the c2 test, Fisher’s exact
test, Wilcoxon rank sum test, and multivariable logistic
regression were carried out to analyze the data. Multivari-
able analysis was carried out on cancer types (rare versus
non-rare), the number of regimens received that matched
the genetic abnormality (first or second versus third or
more), performance status (0 versus non-zero), and type of
drug [kinase inhibitor versus immune checkpoint inhibitor
(ICI) versus others] as independent variables. Significance
level of P value was set at 0.05.

RESULTS

Patient characteristics

In all 657 enrolled patients, the median age was 53 years
(range, 1-90 years). Most patients, 554 (84.3%), had an
Eastern Cooperative Oncology Group performance status of
0 or 1. The 657 patients presented with a variety of cancers
(>30 tumor types); notably, 432 (65.8%) had rare cancers.
The most frequently presented cancer type was soft-tissue
sarcoma (25%), followed by non-small-cell lung cancer
Volume 9 - Issue 4 - 2024
(NSCLC) (10.5%), breast cancer, and ovarian cancer (both
4.7%) (Figure 2A). The genomic profiling data were obtained
from 507 (89.6%) patients. Among the 507 patients, the
frequently presented cancer types were also soft-tissue
sarcoma (24.9%), NSCLC (10.7%), breast cancer, and
ovarian cancer (both 4.9%) (Figure 2B). One or more gene
alterations were observed in 390 patients (76.9 %). Among
the 507 patients, 332 (65.5%) were followed up in the NCCH
after MTB, and the fraction of the patients followed up at
NCCH was higher among the patients with rare cancer than
patients with non-rare cancer (69.0% versus 58.7%,
P ¼ 0.022) (Table 1).
Patients receiving genomically matched therapy

Throughout the study period, 12.2% (62/507) of the study
sample received 71 genomically matched therapies
(Figure 2C, Supplementary Table S3, available at https://doi.
org/10.1016/j.esmoop.2024.102981), which consisted of 29
(40.8%) clinical trials of investigational drugs, 28 (39.4%)
approved drug treatments, and 14 (19.7%) off-label treat-
ments (Figure 2C). The most common matched regimens
were ICIs for the tumor mutation burden (TMB) high (�10/
Mb in all or exon regions) phenotype (n ¼ 17), followed by
EGFR tyrosine kinase inhibitors (TKIs) for EGFR mutation
(n ¼ 9), ALK-TKIs for ALK fusion (n ¼ 6), and pan-RAF or ERK
inhibitors for KRAS mutations (n ¼ 5). Eight patients
received more than two regimens of matched therapies, of
which three patients each either received ICIs or EGFR-TKIs,
while two patients received ALK-TKIs sequentially
(Supplementary Table S3, available at https://doi.org/10.
1016/j.esmoop.2024.102981).

Among the 62 patients, NSCLC was the most frequent
(31.6%) type of cancer, followed by soft-tissue sarcoma
(14.0%), ovarian cancer (10.5%), cancer of unknown primary
(8.8%), breast cancer (5.3%), and colorectal cancer (5.3%)
(Supplementary Table S4, available at https://doi.org/10.
1016/j.esmoop.2024.102981). However, in each type of tu-
mor, the fractions of patients receiving genomically matched
https://doi.org/10.1016/j.esmoop.2024.102981 3
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Figure 2. Cancer type distribution and patients who received genomically matched therapy. (A, B) The outer graph shows the distribution of cancer types in 657
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therapy were high in NSCLC (33.3%), ovarian cancer (24.0%),
cancer of unknown primary (26.3%), breast cancer (12.0%),
and colorectal cancer (14.3%), while they were low in soft-
tissue sarcoma (6.3%) and other rare cancers (<5%)
(Supplementary Table S4, available at https://doi.org/10.
1016/j.esmoop.2024.102981). Accordingly, the proportion
of matched therapies in rare cancer patients was lower than
that in non-rare cancer patients among the 507 patients
(17.4% and 9.6%, respectively; P ¼ 0.010) and in all 657
enrolled patients (13.3% and 7.4%, respectively; P ¼ 0.014)
(Figure 2D and E).
4 https://doi.org/10.1016/j.esmoop.2024.102981
Clinical and genomic factors affecting response to
genomically matched therapy

Among 71 genomically matched regimens undertaken by
the 62 patients, 2 (BRAF and KIT inhibitors treatments,
2.8%) and 19 (26.8%) patients showed complete and partial
responses (PRs), respectively (Figure 3). Therefore, the
overall response rate (ORR) estimated by each regimen was
29.6%. Therapeutic response was observed in 20 patients
(32.3%, Table 1). PFS ratio of the matched therapy
compared with the one just before the matched therapy
Volume 9 - Issue 4 - 2024
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was evaluated in 41 patients. PFS ratios ranged from 0.09 to
18.32 (Figure 3). Patients with a calculated PFS ratio
demonstrated a median of 64.5 days [95% confidence in-
terval (CI) 55.8-92.1 days] and 54.7 days (95% CI 53.2-76.6
days) in these intervals between imaging evaluations for
PFS1 and PFS2, respectively. PFS ratio �1.3 was observed in
19 (46.3%) patients, and these were also more frequently
observed in rare cancer patients than in non-rare cancer
patients (52.2% and 38.9%, respectively; P ¼ 0.397). Simi-
larly, the first- or second-line therapies after the CGP test
showed more PFS ratios than that in the third and subse-
quent therapies (50.0% and 45.7%, respectively; P ¼ 0.846),
as presented in Figure 3. However, no statistical distinction
was observed in the PFS ratio for rare cancer or early
treatment.

The ORR in patients with rare cancer was higher than
those with non-rare cancer (43.8% and 20.0%, respectively;
P ¼ 0.046) as represented by results of soft-tissue sarcoma
(five of eight; 62.5%) in Figure 4A and B. Regarding the
timing of performing the CGP test, the ORR of matched first-
or second-line therapies after CGP was higher than that in
the third and subsequent therapies (62.5% and 21.7%,
respectively; P ¼ 0.003, Figure 4C). Additionally, ORRs with
genomically matching therapies using unapproved (off-label
use or investigational) drugs were better than those using
approved drugs (40.0% and 18.2%, respectively; P ¼ 0.079,
Supplementary Figure S1A, available at https://doi.org/10.
1016/j.esmoop.2024.102981). Among 14 patients
receiving ICI therapy, favorable response occurred in one of
six (16.7%) with approved drugs and four of eight (50.0%)
with non-approved drugs, and these therapies with non-
approved drugs showed a good response compared to
ones with approved drugs (Supplementary Figure S1B,
available at https://doi.org/10.1016/j.esmoop.2024.
102981). In addition, one patient treated with the
approved drug (best response: not evaluable) and two pa-
tients treated with the non-approved drug (best response:
both were PR) were shown to have hyper mutation (�100
mutations/Mb) or microsatellite instability (MSI)-high
(Supplementary Table S3, available at https://doi.org/10.
1016/j.esmoop.2024.102981). However, ORRs were not
significantly different as regards the treatment (Figure 4D)
and type of agents (Figure 4E) (P ¼ 0.208 and P ¼ 0.406,
respectively). Multivariable analysis showed that the rare
cancer and early treatment line (first or second line) were
the parameters significantly impacting the response rate of
matched therapies in multivariable analyses [odds ratio
(OR) ¼ 6.98, 95% CI 1.55-41.44, P ¼ 0.017 and OR ¼ 10.49,
95% CI 2.41-61.37, P ¼ 0.004, respectively].
DISCUSSION

The present single hospital-based pan-cancer prospective
study (TOP-GEAR) provided evidence on the impact of timing
and types of cancer on the benefit of CGP-based precision
oncology. Genomically matched therapies were administered
with standard treatment of approved drugs, off-label use of
the approved drugs, and enrollment in clinical trials of
https://doi.org/10.1016/j.esmoop.2024.102981 5
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investigational drugs. Therapeutic response was preferen-
tially observed in rare cancers compared to non-rare cancers.
It was noted that patients with rare cancers were less
frequently treated with genomically matched agents than
those diagnosed with non-rare cancers. Matched treatment
for rare cancers, such as sarcoma, was also infrequent in
recent pan-cancer CGP studies.6,7 However, our finding in-
dicates that the rare cancers responded well to the
molecular-targeted agents if treated with matched therapy.
In fact, five of eight soft-tissue sarcomas with actionable
alterations in our study showed response to agents linked to
the alterations, notably MDM2 amplification (n ¼ 2, MDM2
inhibitor), TMB-high (n ¼ 2, anti-PD-L antibody), and BRAF
mutation (n ¼ 1, anti-BRAF and MEK inhibitor)
(Supplementary Table S5, available at https://doi.org/10.
1016/j.esmoop.2024.102981). Our findings are consistent
with recent studies, which indicated that CGP-based treat-
ments could lead to clinical benefit in a substantial propor-
tion of patients with advanced rare cancers.8,9 The reason for
6 https://doi.org/10.1016/j.esmoop.2024.102981
the difference is still unclear at present. The rare cancers in
our cohort have less number of mutations than non-rare
cancers, which is consistent with the results of recent
genome-wide mutational studies (Supplementary Figure S2,
available at https://doi.org/10.1016/j.esmoop.2024.102981).
Fewer co-mutations might have reduced the drug resistance
by increasing oncogene addiction status. Additionally, recent
whole-genome studies revealed that driver mutations for
rare cancers, including sarcoma, are more clonal than those
of common cancers.20 Therefore, molecular-targeted therapy
might be effective for the former due to the low frequency
of emergence of drug-resistant clones, enhanced by intra-
tumor heterogeneity.21,22

The present study also indicated that therapies in the first
or second line after CGP showed higher responses than
those in the third and subsequent therapies. These findings
further stress the existing fact that clinical outcomes of
patients with early-line enrollments in clinical trials are
often better than those with late-line enrollments.
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Therefore, genomically matched therapy using the appro-
priate drugs should be done not only for the right patients
but also at the right time.23 The present study, on the other
hand, showed no significant difference in therapeutic
response with reference to the approval status of the
treatments and types of agents. This outcome is thought to
be influenced by the study period with different available
agents and therapeutic approaches used. According to the
previous finding, the situation might change as time goes
by, since the number of regimens, including ICI agents,
could dramatically increase.24

There are several limitations to be acknowledged in this
study. Firstly, it was a single-arm nonrandomized study
without a control arm of patients without CGP. The clinical
benefit of CGP was examined only in a patient cohort with
CGP data, and the analysis presented was not based on
Volume 9 - Issue 4 - 2024
intent to treat. Furthermore, the study was conducted as a
clinical study up to MTB implementation after CGP, after
which the selection of treatment options and evaluation of
treatment efficacy were conducted in real clinical practice.
We hereby suggest a clinical setting where most advanced
cancer patients are subjected to CGP to select therapeutic
option(s) in future studies. Secondly, molecular analysis was
carried out using archival tissue in most patients; thus,
some novel molecular profiles, which were acquired by
progression and therapies after the CGP, might have influ-
enced the therapeutic response. Thirdly, the outcome of the
therapies undertaken outside clinical trials was recorded in
the clinical practice setting. Thus, the quality of the clinical
data might be different between therapies both within and
outside of the clinical trials. Fourthly, this study was carried
out with a relatively small cohort of patients with rare
https://doi.org/10.1016/j.esmoop.2024.102981 7
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cancers, coupled with limited numbers of patients with
each type of cancer. Therefore, the present conclusion
should be validated in a larger cohort of patients.

Conclusions

Our study demonstrates that certain types of cancer and
timing (treatment lines) could influence the clinical benefit
derived from CGP-based precision oncology by the patients.
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