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Abstract

Background: Mortality due to immune-mediated thrombotic thrombocytopenic pur-

pura (iTTP) remains significant. Predicting mortality risk may potentially help individ-

ualize treatment. The French Thrombotic Microangiopathy (TMA) Reference Score has

not been externally validated in the United States. Recent advances in machine learning

technology can help analyze large numbers of variables with complex interactions for

the development of prediction models.

Objectives: To validate the French TMA Reference Score in the United States

Thrombotic Microangiopathy (USTMA) iTTP database and subsequently develop a

novel mortality prediction tool, the USTMA TTP Mortality Index.

Methods: We analyzed variables available at the time of initial presentation, including

demographics, symptoms, and laboratory findings. We developed our model using

gradient boosting machine, a machine learning ensemble method based on classifica-

tion trees, implemented in the R package gbm.

Results: In our cohort (n = 419), the French score predicted mortality with an area

under the receiver operating characteristic curve of 0.63 (95% CI: 0.50-0.77),

sensitivity of 0.35, and specificity of 0.84. Our gradient boosting machine model

selected 8 variables to predict acute mortality with a cross-validated area under the

receiver operating characteristic curve of 0.77 (95% CI: 0.71-0.82). The 2 cutoffs

corresponded to sensitivities of 0.64 and 0.50 and specificities of 0.76 and 0.87,

respectively.

Conclusion: The USTMA Mortality Index was acceptable for predicting mortality due

to acute iTTP in the USTMA registry, but not sensitive enough to rule out death.

Identifying patients at high risk of iTTP-related mortality may help individualize

care and ultimately improve iTTP survival outcomes. Further studies are needed to

provide external validation. Our model is one of many recent examples

where machine learning models may show promise in clinical prediction tools in

healthcare.

mailto:yazan.abou-ismail@hsc.utah.edu
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• A previous prediction model had subop

• Our machine-learning model predicted a
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purpura
cytopenic purpura (iTTP) mortality may help individualize care.

timal performance using the United States Thrombotic Microangiopathies database.

cute iTTP mortality with a cross-validated area under the receiver operating characteristic curve of

s Thrombotic Microangiopathies iTTP Mortality Index (ustma.org/calculator) may aid clinicians.
1 | INTRODUCTION

Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is a

rare, life-threatening thrombotic microangiopathy (TMA) caused by a

severe acquired deficiency of ADAMTS13 [1]. iTTP was associated

with a mortality rate greater than 90% in early reports [2,3] as a result

of microvascular thrombosis that can lead to tissue ischemia and

multiorgan failure [4]. Treatment with therapeutic plasma exchange

(TPE) and immunosuppression significantly lowers iTTP-related mor-

tality rates [3,5]. Yet, despite improvements in diagnosis and treat-

ment of iTTP, the most recent mortality rate estimates remain around

5% to 10% in the past decade [6–10].

Predicting the risk of iTTP-related mortality may potentially help

individualize treatment based on disease severity. In 2012, the French

Thrombotic Microangiopathy (TMA) Reference Score was developed

as a predictive model for acute TTP mortality and incorporates age,

lactate dehydrogenase (LDH) level, and cerebral involvement [8].
The score was validated in the French TMA registry; however,

external validation in a large United States population has not been

performed and thus the score’s applicability is unclear in this popu-

lation. The United States Thrombotic Microangiopathy (USTMA)

registry was established in 2014 and contains demographics and

outcome data on 771 patients diagnosed with iTTP from 15 high-

volume TTP referral centers across the nation between 1985

and 2019.

Therefore, we utilized the USTMA registry to validate the French

TMA Reference Score and to subsequently develop a novel mortality

prediction model. Initially, we used the Least Absolute Shrinkage and

Selection Operator to create a prediction model, which demonstrated

poor performance after performing cross validation [11]. We then uti-

lized machine learning to create a novel prediction model. Recent ad-

vances in machine learning have generated growing interest and

promise in its applicability to medicine, particularly for the development

of outcome prediction models [12–14]. Traditional predictive models

http://www.ustma.org/calculator
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are typically developed from regression models with a small number of

candidate variables. In contrast, machine learning methods can explore

a large number of predictor variables, flexibly modeling their relation-

ships to the outcome as potentially nonlinear and utilizing interactions.

These models can then be made publicly available for clinical use as

online calculators [13,15]. These advanced capabilities make machine

learning methods suitable for analyzing large numbers of variables

from a registry such as ours to predict clinical outcomes.
2 | METHODS

2.1 | Patient selection

We included all participants who had available data on their first

episode of iTTP (n = 419) from the USTMA registry (n = 771) between

1985 and 2019. Patients who did not have any available information

on their presenting episode were excluded. The study cohort included

participants with iTTP diagnosis based on the presence of thrombo-

cytopenia (platelet count < 100 × 103/μL), microangiopathic hemolytic

anemia (defined as hemoglobin [Hgb] levels of less than the lower limit

of normal with schistocytes on the peripheral blood smear), and either

ADAMTS13 activity <10% or ADAMTS13 activity <20% with an anti-

ADAMTS13 inhibitor or antibody. For participants diagnosed before

the ADAMTS13 assay was available (2006), the iTTP diagnosis was

based on the clinical course and absence of alternative causes; we

could not exclude these participants due to the low number of fatal

outcomes in our database. We were not able to calculate the PLAS-

MIC score [16], a tool that can distinguish between patients with and

without severe ADAMTS13 deficiency, as some of the necessary

variables were not part of the USTMA Registry. We instead compared

the baseline variables of those with and without ADAMT13 confir-

mation. We defined acute iTTP mortality as death caused by iTTP

occurring from the time of presentation until 30 days of last TPE. The

outcome mortality was not adjudicated or investigated, and was

determined by each participating center and entered into the USTMA

database. Data availability was dependent on whether the local

investigator entered the data into the USTMA registry. All local IRBs

approved the USTMA registry studies.
2.2 | Statistical analysis

All study variables were summarized and stratified by mortality status,

and were analyzed as either continuous variables (eg, laboratory

values and age) or categorical variables (eg, presence of symptoms and

sex). Continuous variables were summarized as mean, standard de-

viation (SD), median, interquartile range (IQR), and range. Categorical

variables were summarized as count and percentage. Missingness in-

formation was provided for each variable stratified by mortality
status. We similarly compared ADAMTS13-confirmed vs ADAMTS13

not tested on the top 5 influential variables from our gradient

boosting machine (GBM) model.
2.3 | Validation of French TMA Reference Score

Weassigned risk scores of 0 to 4 to patients in our registry according to

the French TMA Reference Score based on age, LDH level, and the

presence of neurologic symptoms.We assessed the performance of the

risk score in our dataset using the area under the receiver operating

characteristic curve (AUC) and its 95% CI.
2.4 | Development of the USTMA TTP Mortality

Index

2.4.1 | Machine learning method: gradient boosted

trees

We used GBM, a machine learning ensemble method based on clas-

sification trees, implemented in the R package gbm [17], to develop

our prediction model for acute mortality. GBM has the flexibility of

incorporating complex interactions among variables as well as

enabling nonlinear relationships between predictor variables and

outcomes. Furthermore, it can make predictions in the presence of

missing data. Thus, we consider all baseline variables for prediction

without imputation. We included 18 baseline variables available at the

time of initial presentation, including age, sex, symptoms, and labo-

ratory measures (Table 1). The tuning parameters did not have a big

impact on results, so we used a fixed set of parameters for all models

(see Supplementary Appendix for details).

Our reportedGBMmodel was developed on the full dataset, but the

performance of the model was assessed using cross-validation as

describedbelow.We reported relative influences of all variables selected

by theGBMmodel, where relative influence is defined as the percentage

of prediction error reduced by each variable relative to the total error

reduced by all selected variables. We made our reported GBM model

available in the form of an online calculator (www.ustma.org/calculator).
2.4.2 | Assessment of model performance

Repeated (100 times) 10-fold cross-validation was used to evaluate

model performance by estimating AUC, as well as sensitivity, speci-

ficity, and positive predictive value (PPV) at selected thresholds.

On each iteration, the data were divided into 10 folds, where each

fold was used as the test set to evaluate the GBMmodel developed on

the remaining 9 folds of data (training). The results from the 10 test

folds were combined to calculate the AUC (ie, on the full data set,

http://www.ustma.org/calculator


T AB L E 1 Patient and disease characteristics corresponding to
first episode by mortality.

Variable Dead (n = 24) Alive (n = 395)

Demographic variables

Age (y)a

Mean (SD) 50.3 (17.6) 43.3 (15.3)

Median (IQR) 51.2 (40.3, 59.5) 41.6 (32.3, 54.8)

Range (12.0, 78.9) (3.6, 83.7)

Age < 18 1 (4.1%) 15 (4.2%)

Age ≥ 60 6 (25%) 57 (15.6%)

Sexa

Female 13 (54.2%) 283 (71.6%)

Male 11 (45.8%) 112 (28.4%)

Race

White/Caucasian 10 (41.7%) 145 (37.3%)

Black/African American 13 (54.2%) 230 (59.1%)

Other 1 (4.2%) 14 (3.6%)

Symptom variablesa

Fever 7 (29.2%) 74 (18.7%)

Chest pain 0 (0%) 39 (9.9%)

Abdominal pain 7 (29.2%) 97 (24.6%)

Fatigue 8 (33.3%) 128 (32.4%)

Petechiae or easy bruising 3 (12.5%) 104 (26.3%)

Dark urine 3 (12.5%) 53 (13.4%)

Presence of any neurologic

symptoms

15 (62.5%) 227 (57.5%)

Confusion 7 (29.2%) 105 (26.6%)

Seizure 1 (4.2%) 25 (6.3%)

Memory deficit 1 (4.2%) 19 (4.8%)

Stupor or coma 4 (16.7%) 21 (5.3%)

Headache 4 (16.7%) 91 (23%)

Stroke or TIA 6 (25%) 86 (21.8%)

Presence of any symptoms 23 (95.8%) 353 (89.4%)

Laboratory variables

ADAMTS13 activity—mean (SD) 3.1 (6.1) 2.3 (6.9)

Median (IQR) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0)

Range (0.0, 17.0) (0.0, 53.0)

Inhibitor present 11 (45.8%) 255 (64.6%)

Antibody present 5 (20.8%) 34 (8.6%)

Hemoglobin (g/dL)a—mean (SD) 9.8 (2.2) 8.4 (1.9)

Median (IQR) 9.5 (7.8, 11.2) 8.1 (7.1, 9.4)

Range (6.8, 14.3) (3.5, 13.9)

(Continues)

T A B L E 1 (Continued)

Variable Dead (n = 24) Alive (n = 395)

Platelet counta (× 103/μL)—mean

(SD)

18.3 (14.3) 21.6 (24.1)

Median (IQR) 16.0 (11.0, 19.5) 14.0 (9.5, 26.0)

Range (2.0, 66.0) (2.0, 233.0)

Lactate dehydrogenase (U/L)a—

mean (SD)

1954.6 (1475.6) 1646.1 (1395.2)

Median (IQR) 1455.0 (1262.0,

2370.0)

1223.0 (779.0,

1911.0)

Range (397.0, 7101.0) (138.0, 9349.0)

Creatinine (mg/dL)a—mean (SD) 2.0 (1.0) 1.5 (1.2)

Median (IQR) 1.8 (1.2, 2.5) 1.2 (0.9, 1.7)

Range (0.4, 4.8) (0.4, 16.0)

Peak troponin—mean (SD) 1.0 (1.4) 1.8 (4.0)

Median (IQR) 0.5 (0.2, 1.0) 0.4 (0.1, 1.5)

Range (0.1, 3.8) (0.0, 26.1)

Missing values (number among dead/number among alive): age = 0/29,

aged ≥60 years = 0/29, aged <18 years = 0/29, race = 0/6, ADAMTS13

activity = 7/62, hemoglobin level = 5/18, platelet count = 1/8, lactate

dehydrogenase = 7/22, creatinine = 2/26, and peak troponin = 18/269.
aConsidered for our prediction model.
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n = 419), and then, the AUCs were averaged across the 100 iterations.

The 95% CI for the AUC was determined from the 2.5th and 97.5th

percentiles of its distribution. We fixed the tuning parameters across

all folds and iterations as they had little impact on our model results

(see Supplementary Appendix for details). Two methods were used to

identify thresholds in the training dataset: the Youden Index

(sensitivity + specificity - 1) and the smallest predicted death proba-

bility of those who actually died. These approaches were then applied

to the test data to determine sensitivity, specificity, and PPV. We also

evaluated our model using a calibration plot to compare observed

versus predicted risk of death, and we examined the impact of class

imbalance (ie, a 5.7% death rate) on model development and perfor-

mance (see Supplementary Appendix for details). To assess the

performance of our model specifically on patients with ADAMTS13-

confirmed iTTP diagnosis, we calculated the AUC by excluding those

without ADAMTS13 confirmation from each test set.
2.5 | Data sharing statement

Agreement to share publication-related data and data sharing state-

ment: data utilized for this study come from the USTMA TTP registry.

Data and R code, including (deidentified) individual participant data,

will be made available to others with written request to the USTMA

Consortium upon publication of the manuscript. To request access,

formal request must be made in writing to the corresponding PI and

include the proposed analysis. Approval of the analysis will be granted
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after review by participating members of the USTMA Consortium and

full consensus on the terms of use (including review of the analysis

and final manuscript as well as authorship arrangements) and signed

data access agreement with the University of Minnesota.
F I GUR E 1 Receiver operating characteristic curve showing the

performance of the French TMA Reference Score in predicting iTTP

mortality in our dataset. iTTP, immune-mediated thrombotic

thrombocytopenic purpura; TMA, thrombotic microangiopathy.
3 | RESULTS

3.1 | Patient characteristics

There were 24 deaths (5.7%) that occurred during the patients’ first

iTTP episode in our cohort of 419 patients. The median time to death

was 8 days (IQR: 3, 17). Baseline patient and disease characteristics

based on survivor status are summarized in Table 1.

Since some of the variables needed to calculate the PLASMIC

score were not part of the dataset, we could not compare the PLAS-

MIC scores of patients with ADAMTS13 confirmation (n = 362) with

those without it (n = 57). We instead compared their baseline char-

acteristics (Supplementary Table S1), and did not find significant

differences except for higher age and hemoglobin in the ADAMTS13-

confirmed group. All patients were treated with TPE and 81% received

steroids. Only 28% received rituximab, 10% received other immuno-

suppression, and none received caplacizumab as our study predates its

approval.
3.2 | Validation of the French TMA Reference Score

The French TMA Reference Score had an AUC of 0.63 (95% CI: 0.50-

0.77; Figure 1) predicting mortality from acute iTTP in the USTMA

cohort. Using the recommended cutoff of ≥3, the sensitivity was 0.35,

specificity was 0.84, and PPV was 0.1 in our population.
TA B L E 2 The 8 predictors selected by GBM, shown in order of
highest to lowest relative influence.

Variable Relative influence (%)

Lactate dehydrogenase (U/L) 39.76

Serum creatinine (mg/dL) 18.69

Age (years) 18

Hemoglobin (g/dL) 14.36

Platelet count (×103/μL) 4.45

Stupor or coma 3.56

Fever 0.97

Abdominal paina 0.22

aDue to its minimal influence, abdominal pain was not included in the

final model.
3.3 | Development of the USTMA TTP Mortality

Index

All variables from Table 1 were considered as candidate predictors for

constructing amortalitypredictionmodel except for race, peak troponin

(due to high missingness), and ADAMTS13 antibody/inhibitor (due to

reporting inconsistencies). Among the 18 variables considered for our

prediction model, age and LDH had the highest missingness at 7% each.

Our GBM model selected 8 variables to predict acute mortality: LDH,

hemoglobin, creatinine, age, platelet count, stupor/coma, fever, and

abdominal pain at the time of initial presentation. Their relative influ-

ence is shown in Table 2. Due to its minimal relative influence,

abdominal pain was not included in the final model. The partial depen-

dence plots are shown in Figure 2. While the probability of death is low

(generally<0.05) acrossmost values of the selected variables, there is a

complex relationship between serum creatinine and death, where

values between 2.5 mg/mL and 3.5 mg/mL were associated with a

notable probability increase. We also see an increase in the probability

of death for patients aged 65 years and older.While theGBMmodel did
not remove observations with missing values, we note that there

was 17% missingness among the variables selected by our GBMmodel

(ie, n = 348 complete case observations).
3.4 | Performance of the machine learning model

The machine learning model had an AUC of 0.77 (95% CI: 0.71-0.82)

(Figure 3). When applied to the full dataset, the threshold using the

smallest predicted death probability of those who actually died was

0.0427, which we used as the cutoff for “high-risk” disease. The

threshold of the predicted mortality that maximized the Youden Index

was 0.0908, which we used as the cutoff for “very high-risk” disease.

The sensitivities, specificities, and PPVs of both cutoffs using the full
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data and cross-validated methods are reported in Table 3. Using these

cutoffs, we risk-stratified the patients based on predicted mortality

risk as follows:

Standard risk: predicted risk < 4.27%.

High risk: predicted risk ≥ 4.27% and < 9.08%.

Very high risk: predicted risk ≥ 9.08%.

A calibration plot is provided in the Supplementary Appendix that

shows our model performs best for the risk range of 5% to 10%. It

tends to underestimate risk for patients with a risk of death of >20%,

but this does not impact our calculator’s interpretations of standard

risk, high risk, and very high risk. The observed death per risk group is

shown in Table 4.
For patients with a confirmed ADAMTS13 diagnosis, our model

had an AUC of 0.76 (95% CI: 0.69-0.83).

To increase accessibility of our model, we created an online

calculator available at www.ustma.org/calculator.
4 | DISCUSSION

Our study is the largest iTTP registry study to evaluate predictors of

iTTP-related death to date and the first to use GBM methodology to

develop a mortality prediction model. Throughout the past 3 decades,

attempts to identify predictive variables using traditional analyses in

http://www.ustma.org/calculator
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USTMA iTTP Mortality Index showing the performance of our final

model in predicting iTTP mortality. iTTP, immune-mediated

thrombotic thrombocytopenic purpura.
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the literature have repeatedly demonstrated inconsistent results

[8,18–22], likely due to the rarity and heterogeneity of iTTP biology. In

our previous logistic regression analysis [11], most variables trended

toward, but did not independently reach, statistical significance in

predicting risk of mortality, again suggesting the unreliable nature of

individual variables in predicting iTTP mortality.

In our cohort, the French TMA Reference Score demonstrated

poor ability to predict iTTP mortality with an AUC of 0.63 (95% CI:

0.50-0.77) as evidenced by the AUC’s 95% CI lower bound of 0.50. In

comparison, the AUC in the French TMA study was 0.77. This may be

related to population differences as well as differences in health care

systems in France and the United States. Additionally, the time gap

between our study and the study period of the French score (2000-

2011) may have played a role due to improvements in the manage-

ment of iTTP since then, or perhaps even a possible impact of the

score itself in the recognition of iTTP since its publication. It is not

unusual for newer prediction models to perform worse on external

datasets utilizing different patient populations, especially for a disease

as rare and heterogenous as iTTP.

With a heterogenous, rare disease such as iTTP, the use of ma-

chine learning is a promising approach. Our study demonstrated that
T AB L E 3 Sensitivity, specificity, and positive predictive value of the 2

Threshold method Threshold

Full data

Sensitivity Speci

Minimum observed risk among deceased 0.0427 1.00 0.709

Maximum Youden Index 0.0908 0.917 0.896
the machine learning model of the USTMA Mortality Index had

improved performance, with an AUC of 0.77 (95% CI: 0.71-0.82). Our

model can be used as an online calculator (www.ustma.org/calculator),

which is not yet ready for clinical practice as it lacks external valida-

tion. The calculator classifies patients with a predictive risk of <4.27%

as “standard risk” for acute mortality, 4.27% to 9.08% as “high risk”,

and >9.08% as “very high risk”. Both cutoffs demonstrated acceptable

specificity (74% and 86%). However, the sensitivity was low (63% and

50%). This means that our model could not “rule out” the possibility of

death. This is likely both a consequence of the low number of fatal

outcomes in our cohort and other limitations of our dataset described

below, as well as the heterogenous and unpredictable nature of iTTP.

The USTMA Mortality Index’s acceptable specificity for predicting

mortality suggests that it may be useful in identifying patients who are

at higher risk ofmortality. However, due to its low sensitivity, themodel

may not be suitable for identifying “low-risk” patients, and every patient

should be considered to be at risk of death. There are several ways by

which identifying high-risk patients may impact clinical care in the

future, if it can be validated in external dataset(s). Tailoring iTTP man-

agement basedon individual riskmay improve overall outcomes in high-

risk patients. For example, such patients may be considered for more

intensive therapy beyond the current standard of care. Certain ap-

proaches have been described as potentially beneficial in life-

threatening iTTP, such as the use of twice-daily TPE [23–25], earlier

introduction of rituximab, or more aggressive immunosuppression with

pulse cyclophosphamide [23]. Additionally, high-risk patients would

benefit from greater supportive care at an intensive care unit, closer

clinical monitoring, and vigilant evaluation of cardiac and renal func-

tions. Thosewith high-risk disease in the community settingmay also be

considered for urgent transfer to a center with both expertise in man-

agement of iTTP and access to novel therapeutics such as caplacizumab,

which may offer a mortality benefit [26,27].

The variables selected by our prediction model have been previ-

ously reported in some studies, but not others: these include renal

dysfunction [18–22], older age [8,18,19], cerebral involvement

[8,19,20], high LDH [8], and low platelet count [28]. Troponin has been

previously described as a predictor ofworse prognosis [7], butwe chose

not to consider it due to highmissingness (more than half of our cohort).

While ADAMTS13 inhibitor/antibody levels have also been suggested

as poor prognostic factors [29–31], wewere unable to reliably use them

in our analysis due to inconsistency of their reporting in our retro-

spective registry. Regardless, their utility in real-life mortality risk

prediction in the acute setting is limited because the test results are
cutoff points in the USTMA TTP Mortality Index.

Repeated 10-fold cross-validation

ficity

Positive

predictive value Sensitivity Specificity

Positive

predictive value

0.173 0.642 0.757 0.138

0.349 0.500 0.867 0.185

http://www.ustma.org/calculator


T AB L E 4 Observed death and predicted risk on full data.

Predicted risk Total number Number of deaths (%)

Standard risk (<0.0427) 279 0

High risk (0.0427-0.0908) 77 2 (2.6%)

Very high risk (>0.0908) 63 22 (34.9%)
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rarely available on presentation. Our model also showed that higher

Hgb concentration was independently associated with worse iTTP

survival, which has not been reported before. Of note, this finding re-

flects presenting Hgb and does not reflect the true degree of hemolysis

since baseline Hgb levels prior to iTTP onset in our patients are un-

known. One hypothesis is that nondecreased Hgb levels on admission

may have led to an underrecognition of iTTP and an ensuing delay in

diagnosis and empiric treatment, which increases the risk of mortality

beyond the first 24 hours [32]. We were unable to test this hypothesis

because the time from symptom onset until empiric treatment is not

documented in our registry. Another potential explanation for this as-

sociation is that higher baseline Hgb, and in turn, higher erythrocyte

countsmay in fact directly exacerbatemicrovascular thrombosis in iTTP

due to interactions between erythrocytes and ultralarge von Wille-

brand factor (ULVWF). Previous evidence suggests that erythrocytes

may be essential to the pathogenesis of microangiopathies by actively

binding to ULVWF [33,34], and it can be postulated that higher eryth-

rocyte levels may further exacerbate microvascular thrombosis.

Further studies on the contribution of erythrocytes to TMA-related

organ ischemia and mortality are needed.

A major limitation of our study is the low number of fatal out-

comes (5.7% of patients), which is consistent with recent randomized

trials [35], but lower than historically reported. This may be related

to improvements in early recognition and urgent treatment of iTTP

based on education efforts, clinical diagnostic scores [16], and

perhaps better access to care, which aided the early recognition of

iTTP and its empiric management in recent years. The fact that all

patients in our cohort were treated at expert referral centers may

have also lowered mortality rates and may have also created a se-

lection bias. It is also possible that fatal iTTP cases in more remote

decades were missed. The low number of fatal outcomes limited our

ability to develop a robust prediction model and potentially led to an

overoptimistic assessment of model performance. While machine

learning methods are appreciated for their flexible modeling capa-

bilities, this flexibility means that they are sensitive to noisy data and

prone to overfitting, particularly in datasets with low event rates.

This may have also impacted the performance of the logistic

regression model, which may have performed better in a different

setting. The partial dependence plots in our model indicate a complex

relationship between serum creatinine and death, which could be

evidence of overfitting. As a result, our model may not perform as

well in practice as it performed on our dataset. While the GBM

machine learning approach is able to handle missing data, there was

notable missingness in our selected model (17%). Another limitation

of our study was including patients diagnosed prior to the availability
of the ADAMTS13 assay, which may have led to the inclusion of

patients that had TMAs other than iTTP. We could not exclude those

patients due to the low number of fatal outcomes in our database.

However, the majority of our patients did have ADAMTS13 confir-

mation, and we feel confident that all cases were likely correctly

diagnosed for several reasons. We did not find major differences in

the baseline characteristics of those with and without ADAMTS13

confirmation. Most notably, serum creatinine level was similar in that

group, and the median of 1.0 g/dL strongly suggests against Shiga

toxin or complement-mediated hemolytic uremic syndrome as the

cause for TMA (Supplementary Table S1). Furthermore, when

repeating the 10-fold analysis on those with ADAMTS13 confirma-

tion only, the model had a near identical AUC performance. Another

major limitation of our study is that our patient cohort spans 3 de-

cades, during which mortality outcomes changed significantly with

time and patients from more recent years likely had better outcomes

due to improved disease recognition and treatment [36]. During our

study period, all patients received TPE, which has been the standard

of care for iTTP treatment. However, we did not have information on

any potential delays in TPE initiation in earlier decades, which could

have impacted mortality. It is also possible that with the emergence

of novel iTTP therapies, the future standard of care may evolve to

differ significantly from that of our patient population (eg, caplaci-

zumab use with or without TPE). For that reason, the accuracy of our

model may likely be reduced in the contemporary setting as practice

patterns and disease recognition continue to improve with time [36],

and our model would have to be reassessed. A final and notable

limitation is that we did not have any external validation data for our

prediction model. Future studies are needed to validate our predic-

tion model before it can reliably be used in a clinical setting,

particularly given the potential for overfitting.

In conclusion, the USTMA Mortality Index machine learning

model had acceptable performance in predicting mortality due to

acute iTTP in the USTMA registry and had good specificity in identi-

fying high-risk patients. However, it did not perform well at identifying

low-risk patients. Identifying patients at high-risk of iTTP-related

mortality may help individualize care, intensify treatment for these

patients, and ultimately improve iTTP survival outcomes. Our model is

one of many recent examples where machine learning techniques are

promising in creating new avenues in future healthcare and advancing

clinical prediction tools. However, since machine learning methods

have a tendency to overfit and yield overly optimistic performance

assessments in datasets with low event rates, further studies are

needed to externally validate our prediction tool before it is used to

guide clinical decision making. Overall, death from iTTP in the modern

era remains infrequent, yet very difficult to predict, even with the use

of machine learning.
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