ORIGINAL RESEARCH

WILEY

Safety and efficacy of direct oral anticoagulants in comparison to warfarin in obese patients with atrial fibrillation: A systematic review and meta-analysis

Alla Adelkhanova¹ | Prakash Raj Oli² | Dhan Bahadur Shrestha¹ | Jurgen Shtembari¹ | Vivek Jha³ | Ghanshyam Shantha⁴ | George Michael Bodziock⁴ | Monodeep Biswas⁵ | Muhammad Omer Zaman⁶ | Nimesh K. Patel⁷

¹Department of Internal Medicine, Mount Sinai Hospital, Chicago, Illinois, USA

²Department of Internal Medicine, Province Hospital, Birendranagar, Nepal

³Department of Internal Medicine, John H. Stroger, Jr. Hospital of Cook County, Chicago, Illinois, USA

⁴Department of Internal Medicine, Division of Cardiac Electrophysiology, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA

⁵Department of Internal Medicine, Division of Cardiac Electrophysiology, University of Maryland Medical Center, Baltimore, Maryland, USA

⁶Department of Internal Medicine, Division of Cardiology, Rudd Heart Hospital, Louisville, Kentucky, USA

⁷Department of Cardiology, Bon Secours, Richmond, Virginia, USA

Correspondence

Prakash Raj Oli, Department of Internal Medicine, Province Hospital, Birendranagar, Nepal. Email: rajoliprakash@gmail.com

Abstract

Background and Aim: Obesity affects nearly 650 million adults worldwide, and the prevalence is steadily rising. This condition has significant adverse effects on cardiovascular health, increasing the risk of hypertension, coronary artery disease, heart failure, and atrial fibrillation (AF). While anticoagulation for obese patients with AF is a well-established therapy for the prevention of thromboembolism, the safety and efficacy of different anticoagulants in this specific population are not well explored. This meta-analysis aimed to compare direct oral anticoagulants (DOAC) to vitamin K antagonists in obese populations with AF.

Methods: The PRISMA guidelines were followed for this meta-analysis, registered in PROSPERO (CRD42023392711). PubMed, PubMed Central, Embase, Cochrane Library, and Scopus databases were searched for relevant articles from inception through January 2023. Two independent authors screened titles and abstracts, followed by a full-text review in Covidence. Data were extracted in Microsoft Excel and analyzed using RevMan v5.4 using odds ratio as an effect measure.

Results: Two thousand two hundred fifty-nine studies were identified from the database search, and 18 were included in the analysis. There were statistically significant reductions in the odds of ischemic and hemorrhagic stroke in the DOAC group compared with the VKA group (OR 0.70, CI 0.66–0.75) and (OR 0.47, CI 0.35–0.62), respectively. In addition, the DOAC group exhibited lower odds of systemic embolism (OR 0.67, CI 0.54–0.83), major bleeding (OR 0.62, CI 0.54–0.72), and composite outcome (OR 0.72, CI 0.63–0.81). **Conclusion:** Based on the findings from this meta-analysis, DOACs demonstrate superior safety and efficacy in obese patients with AF compared with VKAs. These results may have significant implications for guiding anticoagulation strategies in this patient population.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2024 The Authors. Health Science Reports published by Wiley Periodicals LLC.

WILEY_Health Science Reports

KEYWORDS

anticoagulation, apixaban, atrial fibrillation, edoxaban, obesity, rivaroxaban

1 | INTRODUCTION

Obesity is a body mass index (BMI) ≥30 kg/m² among adults. It affects nearly 650 million adults worldwide, and its prevalence has almost tripled between 1975 and 2016.¹ Obesity is known to have adverse effects on cardiovascular health, increasing the risk of hypertension, coronary artery disease, heart failure, and atrial fibrillation (AF).² AF is the most common sustained cardiac arrhythmia and carries considerable morbidity and mortality.³ It has been established in the Framingham Heart Study that with every unit increase in BMI, the risk of AF increases by 4%–5%.⁴ Another meta-analysis showed that there were 10%–29% greater increased risk of incident, postoperative, and postablative AF with every 5 unit increase in BMI.⁵ Given these implications, it is imperative to explore the consequences of AF in the obese population, including its complications and management.

Embolic stroke is the most dangerous complication of AF; therefore, its prevention is an essential consideration in AF management.⁶ Patients with AF are advised to start anticoagulation to lower the risk of embolic stroke, following a thorough discussion of the risks and benefits.⁷ Direct oral anticoagulants (DOACs) have been preferred over vitamin K antagonists (VKAs), such as warfarin, due to superior safety/efficacy, lack of required laboratory monitoring, fewer interactions with other drugs, and fewer dietary considerations.⁸ Both AHA/ACC/HRS (2023) and ESC (2020) recommended the benefits of DOACs over VKAs in OAC-eligible AF patients. Still, they have not commented on the use of DOAC in AF patients with obesity, except AHA/ACC/HRS's recommendation of DOAC use among class III obesity patients with AF.^{9,10}

Obesity affects the pharmacokinetics of drugs by altering their volume of distribution (V_d), peak concentration (C_{max}), and drug exposure (area under curve, AUC), as well as drug clearance.¹¹ Thus, obesity also affected the pharmacokinetics and pharmacodynamics of DOACs among obese patients.¹² Due to concern about subanticoagulation with the use of fixed-dose regimen, International Society on Thrombosis and Hemostasis (ISTH) (2016) recommended standard DOAC dosing for patients with a BMI \leq 40 kg/m² and weight \leq 120 kg for prevention of ischemic stroke and systemic arterial embolism in nonvalvular AF while cautioning against DOAC use in patients with a BMI > 40 kg/m² or weight > 120 kg due to limited data and potential pharmacokinetics or pharmacodynamic concerns. If DOACs need to be used in such patients, they are recommended to consider monitoring drug-specific levels and, if below the expected range, consider switching to a VKA rather than adjusting the DOAC dose.¹³ Zhao et al. pointed out that obesity may have a modest effect on the pharmacokinetics of dabigatran, apixaban, rivaroxaban, or edoxaban. They highlighted that the standard doses of apixaban, rivaroxaban, and edoxaban are effective and safe in morbidly obese patients with AF. At the same time, the body weight is inversely affected by the peak concentration of dabigatran, with a significantly increased risk of gastrointestinal bleeding.¹² There are now a growing number of studies studying the effectiveness and safety of the DOAC among obese or morbidly obese patients with AF, showing that they have better outcomes compared with those with normal BMI, and it's being depicted as an "obesity paradox."¹⁴

Earlier meta-analyses on the use of DOAC compared with warfarin in morbidly obese patients with AF showed mixed results.^{15,16} However, these studies were unable to fully appraise the efficacy and safety of the DOAC compared with warfarin among obese as well as morbidly obese patients with AF. Therefore, this systematic review and meta-analysis aimed to investigate the comparative safety and efficacy of DOACs compared with VKAs in obese patients with AF, defining safety as freedom from any major bleeding event and efficacy as freedom from stroke or systemic thromboembolism.

2 | METHODS

2.1 | Protocol

The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines were followed for this systematic review and meta-analysis. The protocol is registered in PROSPERO 2023 CRD42023392711. The PRISMA checklist is included in a supplementary file (Supplementary material).

2.2 | Search strategy

PubMed, PubMed Central, Embase, Cochrane Library, and Scopus databases were searched in January 2023. An appropriate combination of search words such as "atrial fibrillation," "direct oral anticoagulant," "DOAC," "vitamin K antagonist," "Warfarin," "obesity" and applicable Boolean operators were used. The search method will be described in detail in a supplemental file.

2.3 | Eligibility criteria

This meta-analysis contained prospective and retrospective studies in which obese patients with nonvalvular AF received either DOAC or Warfarin and included case-control, cohort, and randomized control trials (RCTs). Conference abstracts, editorials, comments, qualitative and viewpoint articles, case reports, review articles, and other metaanalyses were excluded.

2.4 Outcomes measured

The primary efficacy outcome was a composite of stroke, systemic embolism, myocardial infarction (MI), or any cause of death. The secondary outcomes were ischemic stroke, systemic embolism, and all-cause mortality. The primary safety outcome was major bleeding. We also analyzed the outcome of all-cause mortality.

2.5 | Study selection

Two independent reviewers screened the titles and abstracts using Covidence, while a third reviewer resolved conflicts. Two reviewers completed the full-text review, and conflicts were resolved by another reviewer among the list of authors. Data was then extracted for qualitative and quantitative processing.

2.6 | Data extraction

A standardized form was designed in Microsoft Excel to extract pertinent data, including study authors, study details, quality, and endpoints. The endpoints of this meta-analysis were all-cause mortality, ischemic stroke, systemic embolism, a composite of ischemic stroke and systemic embolism, and a major bleeding event.

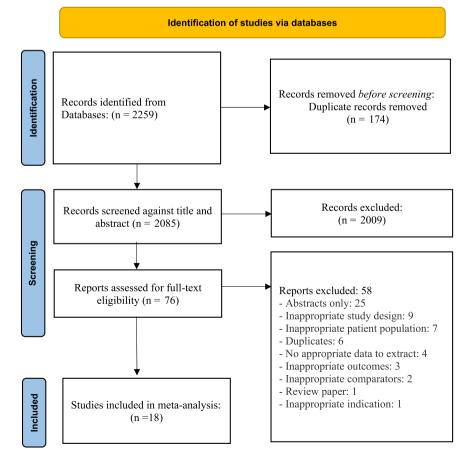
2.7 | Study quality

The quality of individual articles was assessed using the Joanna Briggs Institute's critical appraisal (JBI) tools for the risk of bias¹⁷ (Supporting Information: Table 1). ROB-2 tool used for risk of bias assessment of RCTs¹⁸ (Supporting Information: eFigure 1).

Two authors independently assessed each study design and the number of patients with each outcome. A third person then resolved conflicts.

-WILEY

2.8 | Data analysis


Data was analyzed using RevMan v5.4.¹⁹ An odds ratio (OR) was used for outcomes such as mortality, ischemic stroke, systemic embolism, composite of ischemic stroke and systemic embolism, and a major bleeding event.

Heterogeneity was measured by the l^2 test among the included studies. A random effect model was used for analysis to consider heterogeneity.

Sensitivity analysis was performed based on the type of DOAC used and BMI class to test the robustness of the analysis.

3 | RESULTS

Among 2259 studies identified from the database search, 2085 were screened for title and abstract after removing 174 duplicates. After excluding 2009 studies during title and abstract screening, full text of 76 studies were assessed for eligibility. Fifty-eight studies were excluded from the full-text review, and 18 were included in the analysis. Among the 18 studies included, 16 were retrospective cohort studies, and 2 were randomized controlled trials. The PRISMA flow diagram for the review is shown in Figure 1.

FIGURE 1 PRISMA 2020 flow diagram for the systematic review.

TABLE 1 Baseline characteristics of studies and participants, including their comorbidities.

								Gender
Study	Publication year	Country	Study design	No. of patie	nts	Intervention	Age (years), mean (SD)	Male, %
Alberts et al. ²⁰	2022	USA	Retrospective cohort	N = 95,875	Rivaroxaban <i>n</i> = 33,191	Rivaroxaban	62.97 (10.3)	65.9
			study		Warfarin <i>n</i> = 62,684	Warfarin	67.72 (10.3)	62.4
Berger et al. ²¹	2021	USA	Retrospective cohort	N = 15,635	Rivaroxaban N = 10,555	Rivaroxaban	59.3 (8.6)	69
			study		Warfarin <i>N</i> = 5080	Warfarin	59.4 (8.9)	68.1
Boivin-Proulx et al. ²²	2022	Canada	Retrospective cohort study	N = 2195	Rivaroxaban, <i>n</i> = 403	Rivaroxaban 20 mg once daily	71.91 (8.09)	45.57
					Apixaban n = 539	Apixaban 5 mg twice daily	74.22 (8.26)	44.45
					Warfarin <i>n</i> = 1253	Warfarin	72.83 (11.07)	43.71
Boriani et al. ²³	2018	46 countries	Three-group, randomized,	N = 8457	Higher-dose edoxaban n = 2876	Edoxaban 60 mg dose daily	69.96 (10.52)	59.60
			double-blind, double-dummy study		lower-dose edoxaban n = 2828	Edoxaban 30 mg dose daily	69.59 (10.31)	58.10
					Warfarin <i>n</i> = 2753	Warfarin	68.46 (10.44)	60.04
Briasoulis et al. ²⁴	2021	USA	Retrospective cohort study	N = 28,011	Apixaban (n = 6052)	Apixaban 5 mg or 2.5 mg twice daily	69.9	99
					Dabigatran (n = 4233)	Dabigatran 150 mg twice daily	65.7	99
					Rivaroxaban (n = 4309)	Rivaroxaban 20 mg or 15 mg once daily	66.7	99
					Warfarin (n = 13,417)	Warfarin	66.5	98.9
Costa et al. ²⁵	2020	USA	Retrospective cohort	N = 71,226	Rivaroxaban n = 35,613	Rivaroxaban	67.35 (11.12)	60.5
			study		Warfarin <i>n</i> = 35,613	Warfarin	68.3 (10.38)	59.8
Deitelzweig et al. ²⁶	2020	USA	Retrospective cohort	N = 88,461	Apixaban <i>n</i> = 21,242	Apixaban	71.5 (9.9)	51.9
			study		Dabigatran n = 7171	Dabigatran	69.6 (10.0)	56.2
					Rivaroxaban n = 29,146	Rivaroxaban	70.0 (10.3)	53.7
					Warfarin <i>n</i> = 30,902	Warfarin	72.8 (8.8)	51.7
Deitelzweig et al. ²⁷	2022	USA	Retrospective cohort study	N = 26,522	Apixaban <i>n</i> = 13,604	Apixaban 5 mg or 2.5 mg twice daily	75.4 (7.6)	99
					Warfarin <i>n</i> = 12,918	Warfarin	74.4 (7.9)	99
Huang et al. ²⁸	2021	USA	Retrospective cohort	N = 3318	Dabigatran (n = 1659)	Dabigatran	66.41 (9.13)	64
			study		Warfarin (<i>n</i> = 1659)	Warfarin	66.43 (10.31)	62.6
Kido and Ngorsuraches ²⁹	2019	USA	Retrospective cohort study	N = 128	DOAC (n = 64)	Apixaban, dabigatran, and rivaroxaban	64.28 (10.16)	60.94
					Warfarin (n = 64)	Warfarin	65.88 (12.18)	54.69

BMI, %			Comorbidities,	%						
30.0-34.9 kg/m ²	35.0-39.9 kg/m ²	≥40.0 kg/m ²	Hypertension	Hyperlipidemia	Diabetes mellitus	COPD	Congestive heart failure	Coronary artery disease	Cerebrovascular disease	Periphera vascular disease
49.2	15.5	35.2	85.5	64.5	53.89	13.5	22.3	16.2	11.9	12.5
52.4	15.0	32.6	81.6	60.6	70.54	19.4	34.5	16.2	18.1	18.0
		37.7	86.6	67.9	42.5	10.1	34.0	33.4	11.15	8.1
		39.0	87.1	67.9	43.1	10.2	34.0	33.4	13.76	7.6
			88.06	62.09	60.72	49.63	33.52	55.48		22.57
				61.99	62.26	47.24	43.71	56.51		20.0
			87.28	61.20	59.93	46.58	43.12	56.35		20.85
61.34	24.24	14.42	97.32		47.64		62.83		22.25	
61.60	25.32	13.08	97.21		46.92		60.08		22.70	
61.86	24.92	13.22	97.78		47.69		61.24		21.58	
			84.9		22		31.1	26.8	7	11.4
			84.5		29.1		26.2	24.8	5	8.4
			83.2		25.9		27.7	24.6	4.5	8.8
			86.8		31.8		35.8	29	7.3	12
48.0	26.7	25.2	78.9		33.7	13.5	13.5		4.7	8.4
47.9	26.7	25.4	78.9		35.4	14.5	14.0		5.3	9.0
			94.3		53.6		38.0			
			93.0		52.7		34.7			
			93.2		52.0		35.2			
			95.1		61.4		47.6			
			87		51		32	54	9	22
			87		56		37	53	10	22
5.1	23.4	71.5	68.6		54.2		47.1		4.5	35.3
4.9	23.2	71.3	69.5		54.2		47		4.6	34.9
									18.75	
									15.62	

(Continues)

TABLE 1 (Continued)

								Gender
Study	Publication year	Country	Study design	No. of patie	nts	Intervention	Age (years), mean (SD)	Male, %
Kushnir et al. ³⁰	2019	USA	Retrospective cohort	N = 429	Apixaban (n = 103)	Apixaban	65.9 (10.7)	44
			study		Rivaroxaban (n = 174)	Rivaroxaban	60.9 (12.6)	45
					Warfarin (n = 152)	Warfarin	66-8 (13-6)	41
Lip et al. ³¹	2019		Multicenter,	N = 1067	Edoxaban (n = 530)	Edoxaban 60 mg daily	62.9 (9.3)	
			prospective, randomized, open, blinded endpoint trial		Enoxaparin- Warfarin (n = 537)	Warfarin	63.2 (10.1)	
Nakao et al. ³²	2022	UK	Retrospective cohort	N = 4066	DOACs <i>n</i> = 2033	DOACs	74.83 (9.18)	53.91
			study		Warfarin <i>n</i> = 2033	Warfarin	74.95 (8.53)	55.14
Patil and Lebrecht ³³	2020	USA	Retrospective cohort study	N = 236	DOAC (n = 129)	Dabigatran 75/150 mg twice daily, rivaroxaban 15/ 20 mg daily and apixaban 2.5/5 mg twice daily	70.46 (7.05)	99.22
					Warfarin (n = 107)	Warfarin	70.52 (6.31)	97.20
Perales et al. ³⁴	2020	USA	Retrospective cohort	N = 67	Rivaroxaban (n = 37)	Rivaroxaban		
			study		Warfarin (n = 30)	Warfarin		
Peterson et al. ³⁵	2019	USA	Retrospective cohort	N = 9474	Rivaroxaban (n = 4543)	Rivaroxaban	61.8 (10.8)	55.0
			study		Warfarin (n = 4931)	Warfarin	64.4 (10.8)	52.8
Russo et al. ³⁶	2020	Italy	Retrospective cohort study	N = 960	DOACs (n = 250)	Dabigatra 110/150 mg twice daily, rivaroxaban 20 mg daily, edoxaban 60 mg daily, and apixaban 5 mg twice daily	66.5 (9.1)	48.8
					Warfarin (n = 710)	Warfarin	68.8 (10.4)	48.1
Weir et al. ³⁷	2021	USA	Retrospective cohort	N = 31,078	Rivaroxaban (n = 12,663)	Rivaroxaban	68.9 (9.5)	60.0
			study		Warfarin (n = 18,415)	Warfarin	70.8 (8.5)	57.9

3.1 | Qualitative analysis

Eighteen studies involving 387,205 obese patients with AF were included in this meta-analysis. Among 387,205 patients, 193,947 (50.09%) patients received DOAC whereas 193,258 (49.91%) patients received warfarin. Among 193,947 patients who received DOAC, 130,634 (67.36%) patients received rivaroxaban, 41,540 (21.42%) patients received apixaban, 13,063 (6.74%) patients received dabigatran, 6234 (3.21%) patients received edoxaban, and 2476 (1.28%) patients received unspecified DOAC agent. Among 386,071 patients with gender data, 249,813 (64.71%) were male while 136,258 (35.29%) were female. The average mean age was 69.16 ± 9.80 years. The baseline patient characteristics, underlying comorbidities, clinical parameters, baseline medications, and clinical outcomes were collected and analyzed, as presented in Tables 1 and 2 and Supporting Information: Table 2.

3.2 | Quantitative analysis

3.2.1 | Composite outcome

Twelve studies reported the composite events with an incidence rate of 2.71% (N = 7775/287,125) [DOAC group (2.34%; N = 3779/161,299) vs. Warfarin group (3.17%; N = 3996/125,826)]. Pooled data analysis showed a 28% lower occurrence of the composite events in the DOAC group compared with the Warfarin group (OR 0.72, 95% Cl 0.63–0.81; n = 287,125; $l^2 = 81$ %) (Figure 2). In the subanalysis comparing the specific

7 of 15
7 of 15

-WILEY-

BMI, %			Comorbidities,	%						
30.0-34.9 kg/m ²	35.0-39.9 kg/m ²	≥40.0 kg/m ²	Hypertension	Hyperlipidemia	Diabetes mellitus	COPD	Congestive heart failure	Coronary artery disease	Cerebrovascular disease	Periphera vascular disease
		100								
		100								
		100								
			84.5		25.8		48.3	19.2	4.9	2.8
			86.4		25.9		45.6	19.4	5.0	4.5
51.44	38.56		89.87		43.53	21.94	21.50	15.59	17.81	7.97
51.44	38.56		89.72		43.48	22.28	22.04	15.74	18.35	7.33
			91.47		68.22		28.68		9.30	
			92.52		59.81		37.38		8.41	
			87.2	61.1	47.7		30.8			13.6
			88.2	63.0	57.6		45.0			21.1
			48.8		14.8		20	16	6	
			49.01		13.9		20.9	15.9	5.2	
40.3	15.3	44.4	95.8	85.8		25.1	37.0	33.2	15.5	15.3

DOACs to warfarin, the composite events had significantly lower occurrence in rivaroxaban (OR 0.74, 95% CI 0.65–0.85), apixaban (OR 0.65, 95% CI 0.45–0.93), and dabigatran (OR 0.59, 95% CI 0.41–0.84), but not so for the edoxaban subgroup despite favoring it (OR 0.91, 95% CI 0.81–1.02), (Supporting Information: eFigure 2).

3.2.2 | Stroke

Twelve studies reported the ischemic stroke (IS) events with an incidence rate of 1.65% (N = 5006/302,868) [DOAC group (1.33%; N = 2246/168,336) vs. Warfarin group (2.05%; N = 2760/134,532)]. Pooled data analysis showed a 30% lower occurrence of IS events in the DOAC group compared with Warfarin group (OR 0.70, 95% CI 0.66–0.75; n = 302,868; $I^2 = 16\%$). Seven studies reported

hemorrhagic stroke events with and incidence rate of 0.48% (N = 1077/223,701) [DOAC group (0.32%; N = 408/128,690) vs. Warfarin group (0.70%; N = 669/95,011)] and pooled data showed a 53% lower occurrence of the hemorrhagic stroke in the DOAC group compared with the Warfarin group (OR 0.47, 95% CI 0.35–0.62; n = 223,701; $l^2 = 74\%$) (Figure 3).

In subanalysis comparing different DOAC agents with the warfarin group, the occurrences of ischemic stroke as well as hemorrhagic stroke were significantly lower in the rivaroxaban subgroup (ischemic stroke: OR 0.72, 95%CI 0.66–0.78 and hemorrhagic stroke: OR 0.55; 95% CI 0.45–0.66), apixaban subgroup (ischemic stroke: OR 0.61; 95% CI 0.52–0.71 and hemorrhagic stroke: OR 0.36; 95% CI 0.27–0.49), and dabigatran subgroup (ischemic stroke: OR 0.71; 95%CI 0.54–0.93 and hemorrhagic stroke: OR 0.12, 95% CI 0.03–0.49)] (Supporting Information: eFigure 3a,b).

-WILEY_Health Science Reports

TABLE 2 Clinical efficacy and safety outcomes among the included participant	TABLE 2	E 2 Clinical efficacy ar	nd safety outcomes	among the included	l participants.
--	---------	--------------------------	--------------------	--------------------	-----------------

		Composite of bleeding, or de	stroke, systemic er eath	nbolic event, n	najor	Ischemic stro	ke			
Study	Groups	Total	30.0-34.9 kg/m ²	35.0-39.9 kg/m ²	≥40.0 kg/m ²	Total	30.0-34.9 kg/m ²	35.0-39.9 kg/m ²	≥40.0 kg/m²	Hemorrhagic stroke
Alberts et al. ²⁰	Rivaroxaban	926/21,442	473/10,755	121/3040	332/7647	742/21,442	374/10,755	99/3040	269/7647	194/21,442
	Warfarin	1199/21,442		185/3040	394/7647	936/21,442	479/10,755	137/3040	320/7647	311/21,442
Berger et al. ²¹	Rivaroxaban	366/10,555			366/10,555	186/10,555				46/10,555
	Warfarin	222/5080			222/5080	106/5080				39/5080
Boivin-Proulx et al. ²²	Rivaroxaban	43/403				3/403				0/403
	Apixaban	41/539				3/539				0/539
	Warfarin	96/1253				9/1253				2/1253
Boriani, G. et al. ²³	Higher dose edoxaban	508/2876	318/1764	117/697	73/415					
	Lower dose edoxaban	445/2828	285/1742	112/716	48/370					
	Warfarin	498/2753	324/1703	114/686	60/364					
Briasoulis et al. ²⁴	Apixaban					32/6052				7/6052
	Dabigatran					29/4233				2/4233
	Rivaroxaban					26/4309				7/4309
	Warfarin					124/13,417				53/13,417
Costa et al. ²⁵	Rivaroxaban	429/35,613	212/16,821	115/9428	105/9161	399/35,613	196/16,821	106/9428	100/9161	
	Warfarin	668/35,613	343/16,821	163/9428	157/9161	586/35,613	307/16,821	142/9428	137/9161	
Deitelzweig et al. ²⁶	Apixaban	132/21,242				107/21,242				23/21,242
	Dabigatran	67/7171				56/7171				
	Rivaroxaban	226/29,146				170/29,146				41/29,146
	Warfarin	406/30,902				276/30,902				115/30,902
Deitelzweig et al. ²⁷	Apixaban	147/13,604				109/13,604				29/13,604
	Warfarin	218/12,918				148/12,918				56/12,918
Huang et al. ²⁸	Dabigatran	118/1659				118/1659				
	Warfarin	224/1659				224/1659				
Kido and	DOAC					4/64				
Ngorsuraches ²⁹	Warfarin					3/64				
Kushnir et al. ³⁰	Apixaban					1/103				
	Rivaroxaban					4/174				
	Warfarin					2/152				
Lip et al. ³¹	Edoxaban	4/530								
	Warfarin	5/537								
Nakao et al. ³²	DOAC					51/2033	38/1249			
	Warfarin					67/2033	42/1249			
Patil et al. ³³	DOAC	3/129								
	Warfarin	5/107								
Perales et al. ³⁴	Rivaroxaban									
	Warfarin									
Peterson et al. ³⁵	Rivaroxaban Warfarin	52/3563			52/3563					
Russo et al. ³⁶	Warfarin	59/3563			59/3563					
Kusso et al.	DOAC									

Systemic em	holism			Major bleedin	a					
Systemic emi	30.0-34.9	35.0-39.9	≥40.0		s 30.0-34.9	35.0-39.9	≥40.0	Intracranial		All-cause
Total	kg/m ²	kg/m ²	kg/m ²	Total	kg/m ²	kg/m ²	kg/m ²	bleeding	GI bleeding	mortality
72/21,442	34/10,755	11/3040	27/7647	421/21,442	223/10,755	53/3040	145/7647			
110/21,442	55/10,755	20/3040	35/7647	422/21,442	200/10,755	54/3040	168/7647			
26/10,555				366/3958			288/3792			
14/5080				312/2604			230/2094			
5/403				9/403				1/403	0/403	20/403
1/539				6/539				0/539	2/539	24/539
2/1253				33/1253				5/1253	15/1253	70/1253
				185/2876	119/1764	36/697	30/415			284/2876
				122/28,282	69/1742	40/716	15/370			244/28,282
				214/2753	130/1703	54/686	28/364			265/2753
				99/6052					68/6052	328/6052
				64/4233					50/4233	183/4233
				91/4309					59/4309	177/4309
				583/13,417					381/13,417	1047/13,417
				877/35,613	420/16,821	231/9428	226/9161	79/35,613		
				1382/35,613	630/16,821	352/9428	392/9161	164/35,613		
				399/21,242				38/21,242	195/21,242	
				174/7171				17/7171	110/7171	
17/29,146				1050/29,146				67/29,146	612/29,146	
20/30,902				1491/30,902				190/30,902	721/30,902	
11/13,604				398/13,604				68/13,604	210/13,604	
17/12,918				779/12,918				163/12,918	384/12,918	
10/1659								37/1659	329/1659	142/1659
13/1659								77/1659	395/1659	570/1659
				5/64						
				12/64						
				3/103						
				5/174						
				12/152						
				2/517						
				4/528						
				70/2033	47/1249					
				99/2033	63/1249					
				7/129						
				9/107						
				4/37						0/37
				0/30						3/30
				77/3563			77/3563			
				96/3563			96/3563			
5/248				8/248						1/248

(Continues)

TABLE 2 (Continued)

		Composite of bleeding, or o	^f stroke, systemic e leath	mbolic event, i	major	Ischemic stroke				
Study	Groups	Total	30.0-34.9 kg/m ²	35.0-39.9 kg/m ²	≥40.0 kg/m²	Total	30.0-34.9 kg/m ²	35.0-39.9 kg/m ²	≥40.0 kg/m²	Hemorrhagic stroke
	Warfarin									
Weir et al. ³⁷	Rivaroxaban	272/9999	120/4086	40/1485	112/4344	216/9999	94/4086	35/1485	87/4344	59/9999
	Warfarin	396/9999	168/4086	54/1485	152/4344	322/9999	129/4086	39/1485	119/4344	93/9999

3.2.3 | Systemic embolic events

Eight studies reported systemic embolism events with an incidence rate of 0.20% (N = 390/199,752) (DOAC group: 0.14%; N = 166/116,003 vs. Warfarin group: 0.27%; N = 224/83,749). Pooled data analysis showed a 33% lower occurrence of systemic embolism in the DOAC group compared with the warfarin group (OR 0.67, 95% CI 0.54–0.83; n = 199752; $I^2 = 5\%$) (Figure 4). In the subanalysis comparing different DOAC agents with the warfarin group, there were no significant difference occurrence of systemic embolic events for three DOAC agents: rivaroxaban, apixaban, and dabigatran (Supporting Information: eFigure 4).

3.2.4 | Major bleeding

Eighteen studies reported major bleeding events with an incidence rate of 3.84% (N = 12,295/320,548) [DOAC group: 3.14%; N = 5612/178,539 vs. Warfarin group: 4.7%; N = 6683/142,009). Pooled data showed a 37% lower occurrence of the major bleeding events in DOAC group compared with warfarin group (OR 0. 63, 95% CI 0.55–0.73; n = 320,548; $l^2 = 88\%$) (Figure 5). Among different bleeding event types, the DOAC group had significantly lower occurrences of these bleeding types compared with the warfarin group [Intracranial Hemorrhage (ICH): OR 0.40, 95% CI 0.35–0.46; n = 192,466; $l^2 = 0\%$ and Gastrointestinal (GI) bleeding: OR 0.57, 95% CI 0.44–0.73; n = 148,507; $l^2 = 89\%$] (Supporting Information: eFigure 5).

In the subanalysis comparing different DOAC agents with the warfarin group, there were significantly lower occurrences of the major bleedings in rivaroxaban (OR 0.73, 95% CI 0.63–0.85) apixaban (OR 0.41, 95% CI 0.35–0.47) and edoxaban (OR 0.67, 95% CI 0.56–0.81) subgroups, but not in the dabigatran (OR 0.91, 95% CI 0.51–1.62) subgroup (Supporting Information: eFigure 6). In the subanalysis comparing different DOAC agents with the warfarin group, there was a significantly lower occurrences of GI bleeding in the rivaroxaban (OR 0.58, 95% CI 0.37–0.91) apixaban (OR 0.39, 95% CI 0.34–0.44) and dabigatran (OR 0.61, 95% CI 0.43–0.85) subgroups (Supporting Information: eFigure 7).

In the subanalysis comparing different DOAC agents with the warfarin group, there was significantly lower occurrences of intracranial hemorrhages in the rivaroxaban (OR 0.43, 95% CI

0.35-0.52) apixaban (OR 0.35, 95% CI 0.28-0.43) and dabigatran (OR 0.43, 95% CI 0.32-0.59) subgroups (Supporting Information: eFigure 8).

3.2.5 | All-cause mortality

Seven studies reported the all-cause mortality events, and the pooled data showed a significantly lower occurrence of all-cause mortality in the DOAC group by 44% compared with the warfarin group (OR 0.56, 95% CI 0.34–0.94; n = 46,858; $l^2 = 97\%$) (Supporting Information: eFigure 9). In the subanalysis comparing the different DOAC agents with the warfarin group, there was a significant reductions of the all-cause mortality in the rivaroxaban (OR 0.65, 95% CI 0.46–0.91) and apixaban (OR 0.66, 95% CI 0.48–0.91) subgroups but not in dabigatran (OR 0.32, 95% CI 0.10–1.04) and edoxaban (OR 0.96, 95% CI 0.82–1.12) subgroups (Supporting Information: eFigure 10).

3.2.6 | Subanalysis based on BMI classes

Subanalysis of the clinical efficacy and safety of DOAC agents compared with warfarin use was performed based on the obesity classification: obesity class I ($30-34.9 \text{ kg/m}^2$), obesity class II ($35-39.9 \text{ kg/m}^2$), and obesity class III (> 40.0 kg/m^2). We found that the use of DOACs was associated with statistically significant reductions in the composite outcome of ischemic stroke, systemic embolism, and major bleeding across all three obesity classes. However, the individual outcomes of systemic embolism in obesity classes I and III and the major bleeding in obesity classes I and II were not significant.

3.2.7 | Composite outcome

In the subanalysis across different obesity classes, there was a significantly lower occurrence of the composite outcomes in all three obesity classes: obesity class I (OR 0.74, 95% CI 0.62–0.90), obesity class II (OR 0.76, 95% CI 0.59–0.97) and obesity class III (OR 0.72, 95% CI 0.60–0.87) in comparison to the warfarin group (Supporting Information: eFigure 11).

-WILEY-

Systemic en	Systemic embolism Major bleeding									
Total	30.0-34.9 kg/m ²	35.0-39.9 kg/m ²	≥40.0 kg/m ²	Total	30.0-34.9 kg/m ²	35.0-39.9 kg/m ²	≥40.0 kg/m²	Intracranial bleeding	GI bleeding	All-cause mortality
19/496				34/496						3/496
19/9999	9/4086	2/1485	8/4344	262/9999	103/4086	41/1485	123/4344			
29/9999	18/4086	8/1485	13/4344	285/9999	116/4086	39/1485	124/4344			

3.2.8 | Ischemic stroke

In the subanalysis across different obesity classes, there was a significantly lower occurrence of ischemic stroke in all three obesity classes: obesity class I (OR 0.73, 95% CI 0.64–0.82), class II (OR 0.75, 95% CI 0.63–0.89), and class III (OR 0.73, 95% CI 0.63–0.85) on comparison with warfarin group (Supporting Information: eFigure 12).

3.2.9 | Systemic embolism

In the subanalysis across different obesity classes, there was a significantly lower occurrence of systemic embolic events only in obesity class II (OR 0.47, 95% Cl 0.24–0.92) but not in obesity class I (OR 0.81, 95% Cl 0.37–1.79) of class III (OR 0.73, 95% Cl 0.47–1.13), in comparison to warfarin group (Supporting Information: eFigure 13).

3.2.10 | Major bleeding

In the subanalysis across different obesity classes, there was a significantly lower occurrence of systemic embolic events only in obesity class III (OR 0.75, 95% CI 0.62–0.90), however not in obesity class I (OR 0.80, 95% CI 0.64–1.01) or class II (OR 0.78, 95% CI 0.61–1.00), in comparison to warfarin group (Supporting Information: eFigure 14).

3.2.11 | Publication bias

Publication bias for the composite outcome, stroke, major bleeding, and all-cause mortality was checked with a Funnel plot, which showed the asymmetric distribution of studies signifying significant publication bias (Supporting Information: eFigure 15).

4 | DISCUSSION

Obesity is a well-established risk factor for AF, which itself carries a high risk of major life-threatening thromboembolism and ischemic stroke.³⁸ Thus, primary as well as secondary prevention of the

thromboembolism and ischemic stroke risk with anticoagulation is one of the cornerstones of AF management in suitable AF patients.³⁹ Due to the better clinical efficacy profile (systemic embolism and the stroke) as well as the clinical safety (major bleeding and intracranial hemorrhage), thus higher mortality benefit, of DOACs over the warfarin, DOACs are recommended over warfarin for the anticoagulation in AF patients in the 2023 ACC/AHA/ACCP/HRS guideline. However, there was little clinical evidence to support this clinical safety and efficacy superiority profiles of DOACs over warfarin among obese patients with AF. So, 2023 ACC/AHA/ACCP/HRS guideline recommends DOAC among AF patients with class III obesity (class of recommendation 2a and the level of evidence B-NR) only while no comments regarding which type of anticoagulants is suitable for AF patients with class I or II obesity.¹⁰ Therefore, it is imperative to investigate the safety and efficacy of anticoagulation in AF patients with obesity. This comprehensive systematic review and meta-analysis evaluated the efficacy and safety of DOACs, as compared with VKAs, within the obese patient population suffering from nonvalvular AF.

Our meta-analysis revealed that obese patients with AF who received DOACs, as compared with VKAs, had significantly lower occurrences of composite events as well as individual events: stroke (ischemic as well as hemorrhagic) and systemic embolic events, in overall. The DOACs also significantly lowered major bleeding rates, including GI bleeding, ICH, and all-cause mortality in this patient cohort. Among different DOAC agents, rivaroxaban and apixaban use had significantly lower occurrence of composite events, ischemic as well as hemorrhagic strokes, major bleeding including GI bleeding as well as ICH, and all-cause mortality compared with warfarin use. Dabigatran use had a significantly lower occurrence of composite events, GI bleeding, and ICH than warfarin use. Across all three classes of obesity, the DOAC had significantly lower occurrences of composite events as well as ischemic stroke events. Whereas only class II obesity and class III obesity had a significantly lower occurrence of systemic embolism events and major bleeding, respectively, when using DOACs compared with warfarin. None of the DOAC agents were associated with a significant reduction of systemic embolic events on individual comparison with warfarin use. Similar findings were reported on this topic in the previous other studies.

A real-world electronic health record study by Costa et al. demonstrated a significant reduction in stroke and systemic

DOACs	group	Warfarin	group		Odds Ratio	Odds Ratio
Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
3	129	5	107	0.7%	0.49 [0.11, 2.08] ←	
118	1659	224	1659	8.8%	0.49 [0.39, 0.62]	
425	57559	406	30902	11.1%	0.56 [0.49, 0.64]	
147	13604	218	12918	9.4%	0.64 [0.52, 0.79]	
429	35613	668	35613	11.4%	0.64 [0.56, 0.72]	
272	9999	396	9999	10.7%	0.68 [0.58, 0.79]	
926	21442	1199	21442	12.0%	0.76 [0.70, 0.83]	-
366	10555	222	5080	10.4%	0.79 [0.66, 0.93]	
4	530	5	537	0.8%	0.81 [0.22, 3.03] 🕇	,
52	3563	59	3563	5.9%	0.88 [0.60, 1.28]	
953	5704	498	2753	11.5%	0.91 [0.81, 1.02]	
84	942	96	1253	7.3%	1.18 [0.87, 1.60]	+
	161299		125826	100.0%	0.72 [0.63, 0.81]	◆
3779		3996				
= 57.76	, df = 11	(P < 0.0)	0001); I ²	= 81%	_	0.5 0.7 1 1.5 2
P < 0.00	001)					DOACs group Warfarin group
	Events 3 118 425 147 429 272 926 366 4 52 953 84 3779 = 57.76	3 129 118 1659 425 57559 147 13604 429 35613 272 9999 926 21442 366 10555 4 530 52 3563 953 5704 84 942 161299 3779	Total Events 3 129 5 118 1659 224 425 57559 406 147 13604 218 429 35613 668 272 9999 396 926 21442 1199 366 10555 222 4 530 5 52 3563 59 953 5704 498 84 942 96 161299 3779 3996 = 57.76, df = 11 (P < 0.0	Events Total Events Total 3 129 5 107 118 1659 224 1659 425 57559 406 30902 147 13604 218 12918 429 35613 668 35613 272 9999 396 9999 926 21442 1199 21442 366 10555 222 5080 4 530 5 537 52 3563 59 3563 953 5704 498 2753 84 942 96 1253 161299 125826 3779 3996 3779 3996 57.76, df = 11 (P < 0.00001); I ²	Events Total Events Total Weight 3 129 5 107 0.7% 118 1659 224 1659 8.8% 425 57559 406 30902 11.1% 147 13604 218 12918 9.4% 429 35613 668 35613 11.4% 272 9999 396 9999 10.7% 926 21442 1199 21442 12.0% 366 10555 222 5080 10.4% 4 530 5 537 0.8% 52 3563 59 3563 5.9% 953 5704 498 2753 11.5% 84 942 96 1253 7.3% 161299 125826 100.0% 3779 3996 57.76, df = 11 (P < 0.00001); I ² = 81% 100001); I ² 81%	Events Total Events Total Weight M-H, Random, 95% Cl 3 129 5 107 0.7% 0.49 [$0.11, 2.08$] + 118 1659 224 1659 8.8% 0.49 [$0.39, 0.62$] 425 57559 406 30902 11.1% 0.56 [$0.49, 0.64$] 147 13604 218 12918 9.4% 0.64 [$0.52, 0.79$] 429 35613 668 35613 11.4% 0.64 [$0.56, 0.72$] 272 9999 396 9999 10.7% 0.68 [$0.58, 0.79$] 926 21442 1199 21442 12.0\% 0.76 [$0.70, 0.83$] 366 10555 222 5080 10.4% 0.79 [$0.66, 0.93$] 4 530 5 537 0.8% 0.81 [$0.22, 3.03$] + 52 3563 59 3563 5.9\% 0.88 [$0.60, 1.28$] 953 5704 498 2753 11.5% 0.91 [$0.81, 1.02$]

FIGURE 2 Forest plots show a significantly lower occurrence of composite events in the DOAC group than in the Warfarin group using the random effect model.

	DOACs	group	Warfarin	group		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
1.2.1 Ischemic stroke							
Huang, CW. et al. 2021	108	1659	179	1659	6.6%	0.58 [0.45, 0.74]	
Briasoulis, A. et al. 2021	87	14594	124	13417	5.5%	0.64 [0.49, 0.85]	
Deitelzweig, S. et al. 2020	333	57559	276	30902	13.7%	0.65 [0.55, 0.76]	+
Weir, MR. et al. 2021	216	9999	322	9999	12.0%	0.66 [0.56, 0.79]	-
Costa, OS. et al. 2020	399	35613	586	35613	18.8%	0.68 [0.60, 0.77]	+
Deitelzweig, S. et al. 2022	109	13604	148	12918	6.6%	0.70 [0.54, 0.89]	
Boivin-Proulx, LA. et al. 2022	6	942	11	1253	0.5%	0.72 [0.27, 1.96]	
Nakao, YM. et al. 2022	51	2033	67	2033	3.2%	0.76 [0.52, 1.09]	
Alberts, MJ. et al. 2022	742	21442	936	21442	25.9%	0.79 [0.71, 0.87]	+
Berger, JS. et al. 2021	186	10550	106	5080	7.0%	0.84 [0.66, 1.07]	
Kido, K. et al. 2019	4	64	3	64	0.2%	1.36 [0.29, 6.32]	
Kushnir, M. et al. 2019	5	277	2	152	0.2%	1.38 [0.26, 7.19]	
Subtotal (95% CI)		168336		134532	100.0%	0.70 [0.66, 0.75]	◆
Total events	2246		2760				
Heterogeneity: $Tau^2 = 0.00$; Ch	$ni^2 = 13.06$	6, df = 11	(P = 0.29)); $I^2 = 165$	%		
Test for overall effect: $Z = 10.0$	09 (P < 0.0	0001)					
1.2.2 Hemorrhagic stroke							
Boivin-Proulx, LA. et al. 2022	0	942	2	1253	0.9%	0.27 [0.01, 5.54]	· · · · · · · · · · · · · · · · · · ·
Briasoulis, A. et al. 2021	16	14594	53	13417	12.4%	0.28 [0.16, 0.48]	
Deitelzweig, S. et al. 2020	64	57559	115	30902	18.2%	0.30 [0.22, 0.40]	
Deitelzweig, S. et al. 2022	29	13604	56	12918	14.8%	0.49 [0.31, 0.77]	_ _
Berger, JS. et al. 2021	46	10550	39	5080	15.2%	0.57 [0.37, 0.87]	_ _
Alberts, MJ. et al. 2022	194	21442	311	21442	20.9%	0.62 [0.52, 0.74]	
Weir, MR. et al. 2021	59	9999	93	9999	17.7%	0.63 [0.46, 0.88]	_ _
Subtotal (95% CI)		128690			100.0%	0.47 [0.35, 0.62]	◆
Total events	408		669				-
Heterogeneity: $Tau^2 = 0.10$; Ch	$ni^2 = 23.03$	df = 6	P = 0.000	(8); $I^2 = 74$	4%		
Test for overall effect: $Z = 5.14$							
	2						
							0.1 0.2 0.5 1 2 5 10
							0.1 0.2 0.5 1 2 5 10 DOACs group Warfarin group
Test for subgroup differences:	$Chi^{2} = 7.3$	2. $df = 1$	(P = 0.00)	7), $l^2 = 86$	5.3%		DOACS group Warrann group

Test for subgroup differences: $Chi^2 = 7.32$, df = 1 (P = 0.007), $I^2 = 86.3\%$

FIGURE 3 Forest plot showing significantly lower occurrence of stroke events in the DOAC group compared with Warfarin group using random effect model.

embolism, along with a reduction in major bleeding, with rivaroxaban in comparison to warfarin use in obese patients with AF.⁴⁰ In this study, there were no significant reductions in stroke and systemic embolism, and major bleeding events across different BMI classes. In contrast, in our study, there was a statistically significant reduction in

both systemic embolism and major bleeding across obesity classes in the DOAC group, except the systemic embolism in obesity classes I and III, and the major bleeding in obesity classes I and II, where reduction was not statistically significant. These disparities in our findings and by Costa et al. among different BMI classes seem to be

-WILEY

	DOACs	group	Warfarin group		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Deitelzweig, S. et al. 2020	17	57559	20	30902	10.9%	0.46 [0.24, 0.87]	
Russo, V. et al. 2020	5	248	19	496	4.7%	0.52 [0.19, 1.40]	
Deitelzweig, S. et al. 2022	11	13604	17	12918	8.0%	0.61 [0.29, 1.31]	
Alberts, MJ. et al. 2022	72	21442	110	21442	43.7%	0.65 [0.49, 0.88]	
Weir, MR. et al. 2021	19	9999	29	9999	13.4%	0.65 [0.37, 1.17]	
Huang, CW. et al. 2021	10	1659	13	1659	6.8%	0.77 [0.34, 1.76]	
Berger, JS. et al. 2021	26	10550	14	5080	10.8%	0.89 [0.47, 1.71]	
Boivin-Proulx, LA. et al. 2022	6	942	2	1253	1.8%	4.01 [0.81, 19.91]	
Total (95% CI)		116003		83749	100.0%	0.67 [0.54, 0.83]	•
Total events	166		224				
Heterogeneity: $Tau^2 = 0.01$; Ch	$i^2 = 7.35$,	df = 7 (F	P = 0.39);	$I^2 = 5\%$		+	0.05 0.2 1 5 20
Test for overall effect: $Z = 3.61$	(P = 0.00))03)				(DOACs group Warfarin group

FIGURE 4 Forest plot showing significantly lower occurrence of systemic embolic events in the DOAC group compared with the Warfarin group using the random effect model.

	DOACs group		Warfarin group		Odds Ratio		Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI	
Kushnir, M. et al. 2019	8	277	12	152	1.8%	0.35 [0.14, 0.87]		
Kido, K. et al. 2019	5	64	12	64	1.4%	0.37 [0.12, 1.11]		
Briasoulis, A. et al. 2021	254	14594	583	13417	8.3%	0.39 [0.34, 0.45]	-	
Russo, V. et al. 2020	8	248	34	496	2.3%	0.45 [0.21, 0.99]		
Deitelzweig, S. et al. 2022	398	13604	779	12918	8.6%	0.47 [0.42, 0.53]	-	
Lip, GYH. et al. 2019	2	517	4	528	0.6%	0.51 [0.09, 2.79]		
Deitelzweig, S. et al. 2020	1623	57559	1491	30902	9.0%	0.57 [0.53, 0.61]	- ·	
Huang, CW. et al. 2021	535	1659	744	1659	8.4%	0.59 [0.51, 0.67]	-	
Boivin-Proulx, LA. et al. 2022	15	942	33	1253	3.3%	0.60 [0.32, 1.11]		
Patil, T. et al. 2020	7	129	9	107	1.5%	0.62 [0.22, 1.74]		
Costa, OS. et al. 2020	877	35613	1382	35613	8.9%	0.63 [0.57, 0.68]	-	
Boriani, G. et al. 2019	307	5704	214	2753	7.9%	0.67 [0.56, 0.81]	-	
Nakao, YM. et al. 2022	70	2033	99	2033	6.3%	0.70 [0.51, 0.95]		
Berger, JS. et al. 2021	739	10555	484	5080	8.6%	0.71 [0.63, 0.81]	+	
Peterson, ED. et al. 2019	77	3563	96	3563	6.4%	0.80 [0.59, 1.08]		
Weir, MR. et al. 2021	262	9999	285	9999	8.1%	0.92 [0.77, 1.09]	-	
Alberts, MJ. et al. 2022	421	21442	422	21442	8.4%	1.00 [0.87, 1.14]	+	
Perales, IJ. et al. 2020	4	37	0	30	0.2%	8.19 [0.42, 158.55]		
Total (95% CI)		178539		142009	100.0%	0.63 [0.55, 0.73]	◆	
Total events	5612		6683					
Heterogeneity: Tau ² = 0.06; Chi ² = 144.58, df = 17 (P < 0.00001); l ² = 88%								
Test for overall effect: $Z = 6.46$ (P < 0.00001)								
							DOACs group Warfarin group	

FIGURE 5 Forest plot showing significantly lower occurrence of major bleeding events in the DOAC group compared with VKA group using random effect model.

due to the type of DOACs used, differences in the number of patients in different BMI classes, and differences in the statistical analysis used.

The post-hoc analysis of the ARISTOTLE trial based on the obesity performed by Deitelzweig et al. showed a lower risk of stroke and systemic embolism in apixaban and rivaroxaban groups compared with the warfarin group; however, the dabigatran group had similar rates of stroke and systemic embolism as the warfarin group, while all three DOACs were associated with lower major bleeding rates than warfarin.²⁶ These findings contrast with our subanalysis, which showed that compared with warfarin, apixaban, rivaroxaban, and dabigatran all have significantly lower stroke rates; however, major bleeding rates were only significantly lower in apixaban and rivaroxaban groups. One potential explanation for the discrepancy in outcomes could be the mechanism of action of DOACs, as dabigatran

is a factor IIa inhibitor while apixaban and rivaroxaban are factor Xa inhibitors.⁴¹ The pharmacokinetics of dabigatran also differ from apixaban and rivaroxaban since dabigatran undergoes hepatic glucuronidation, while apixaban and rivaroxaban are metabolized through the cytochrome P450 system.⁴¹

A retrospective study by Briasoulis et al. interestingly reported that in patients weighing over 120 kg, apixaban had a higher risk of stroke than warfarin, while rivaroxaban and dabigatran had a similar risk as warfarin, and all three DOACs had a lower bleeding risk.²⁴ This differs from the results of our study and may be partially explained by the diversity in comorbidity burden among the various DOACs and the differences in the patient population.⁴²

Our results do have some limitations. First, we did not make a comparison of obese to nonobese or underweight populations. Second, the data set did not include INR levels in patients on 14 of 15

WILEY_Health Science Reports

warfarin, and it's possible that subtherapeutic or supratherapeutic warfarin effects could influence the rates of stroke and bleeding. Despite these limitations, the meta-analysis has multiple strengths, including a large number of studies and a large patient population, increasing the power of the results. The analysis also compared different individual DOACs to warfarin and allowed subanalysis of various obesity classes.

5 | CONCLUSION

DOACs appear to show superior safety and efficacy (stroke, systemic embolism, MI, bleeding, or death) when compared with VKAs (warfarin) in obese populations with AF. As the totality of this evidence mostly came from observational studies, additional data from larger randomized controlled trials will be required to discern the appropriate DOACs, dosage regimens, and BMI extremes.

AUTHOR CONTRIBUTIONS

Alla Adelkhanova: Conceptualization; data curation; methodology; project administration; resources; software; writing-original draft; writing-review and editing. Prakash Raj Oli: Data curation; formal analysis; methodology; project administration; resources; software; validation; writing-original draft; writing-review and editing. Dhan Bahadur Shrestha: Conceptualization; data curation; formal analysis; methodology; project administration; resources; software; validation; writing-original draft; writing-review and editing. Jurgen Shtembari: Data curation; methodology; project administration; resources; software; writing-original draft; writing-review and editing. Vivek Jha: Data curation; methodology; resources; software; writingoriginal draft; writing-review and editing. Ghanshyam Shantha: Methodology; project administration; supervision; writing-review and editing. George Michael Bodziock: Investigation; project administration; supervision; validation; writing-review and editing. Monodeep Biswas: Methodology; project administration; supervision; validation; writing-review & editing. Muhammad Omer Zaman: Investigation; project administration; supervision; validation; writing-review and editing. Nimesh K. Patel: Conceptualization; investigation; methodology; project administration; supervision; validation; visualization; writing-review and editing.

DATA AVAILABILITY STATEMENT

The data that supports the findings of this study are available in the supplementary material of this article.

TRANSPARENCY STATEMENT

The lead author Prakash Raj Oli affirms that this manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant, registered) have been explained.

ORCID

Dhan Bahadur Shrestha D http://orcid.org/0000-0002-8121-083X

REFERENCES

- 1. Obesity and overweight. Accessed April 28, 2023. https://www. who.int/news-room/fact-sheets/detail/obesity-and-overweight
- Lavie CJ, De Schutter A, Parto P, et al. Obesity and prevalence of cardiovascular diseases and prognosis—the obesity paradox updated. Prog Cardiovasc Dis. 2016;58(5):537-547. doi:10.1016/J.PCAD.2016.01.008
- Patel NJ, Deshmukh A, Pant S, et al. Contemporary trends of hospitalization for atrial fibrillation in the United States, 2000 through 2010 implications for healthcare planning. *Circulation*. 2014;129(23):2371-2379. doi:10.1161/CIRCULATIONAHA.114. 008201
- Nalliah CJ, Sanders P, Kottkamp H, Kalman JM. The role of obesity in atrial fibrillation. *Eur Heart J.* 2016;37(20):1565-1572. doi:10.1093/ eurheartj/ehv486
- Wong CX, Sullivan T, Sun MT, et al. Obesity and the risk of incident, post-operative, and post-ablation atrial fibrillation: a metaanalysis of 626,603 individuals in 51 studies. JACC Clin Electrophysiol. 2015;1(3):139-152. doi:10.1016/J.JACEP.2015.04.004
- Alkhouli M, Friedman PA. Ischemic stroke risk in patients with nonvalvular atrial fibrillation: JACC review topic of the week. J Am Coll Cardiol. 2019;74(24):3050-3065. doi:10.1016/J.JACC.2019. 10.040
- January CT, Wann LS, Calkins H, et al. 2019 AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society in collaboration with the Society of Thoracic Surgeons. *Circulation*. 2019;140(2):e125-e151. doi:10.1161/CIR. 000000000000665
- Steffel J, Verhamme P, Potpara TS, et al. The 2018 European Heart Rhythm Association Practical Guide on the use of non-Vitaminnonvitamin K antagonist oral anticoagulants in patients with atrial fibrillation. *Eur Heart J.* 2018;39(16):1330-1393. doi:10.1093/ eurheartj/ehy136
- Hindricks G, Potpara T, Dagres N, et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2021;42(5):373-498. doi:10.1093/ eurheartj/ehaa612
- Joglar JA, Chung MK, Armbruster AL, et al. 2023 ACC/AHA/ACCP/ HRS guideline for the diagnosis and management of atrial fibrillation: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol. 149:e1-e156. doi:10.1016/J.JACC.2023.08.017
- Hanley MJ, Abernethy DR, Greenblatt DJ. Effect of obesity on the pharmacokinetics of drugs in humans. *Clin Pharmacokinet*. 2010; 49(2):71-87. doi:10.2165/11318100-00000000-00000
- Zhao Y, Guo M, Li D, et al. Pharmacokinetics and dosing regimens of direct oral anticoagulants in morbidly obese patients: an updated literature review. *Clin Appl Thromb Hemost*. 2023;29: 107602962311536. doi:10.1177/10760296231153638
- Martin K, Beyer-Westendorf J, Davidson BL, Huisman MV, Sandset PM, Moll S. Use of the direct oral anticoagulants in obese patients: guidance from the SSC of the ISTH. J Thromb Haemostasis. 2016;14(6):1308-1313. doi:10.1111/jth.13323
- Lima Filho AIN, do Rego Barros MC, de Barros Guimarães AA, Celestino Sobral Filho D. Obesity paradox in atrial fibrillation and its relation with the new oral anticoagulants. *Curr Cardiol Rev.* 2022;18(5):8-10. doi:10.2174/1573403x18666220324111343

- Shaikh F, Wynne R, Castelino RL, Inglis SC, Ferguson C. Effectiveness of direct oral anticoagulants in obese adults with atrial fibrillation: a systematic review of systematic reviews and metaanalysis. *Front Cardiovasc Med.* 2021;8:732828. doi:10.3389/fcvm. 2021.732828
- Mhanna M, Beran A, Al-Abdouh A, et al. Direct oral anticoagulants versus warfarin in morbidly obese patients with nonvalvular atrial fibrillation: a systematic review and meta-analysis. *Am J Ther.* 2021;28(5):e531-e539. doi:10.1097/MJT.00000000001403
- 17. critical-appraisal-tools Critical Appraisal Tools. JBI.
- Sterne JAC, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. *BMJ (Clinical research ed.)*. 2019;366:4898. doi:10.1136/bmj.l4898
- 19. RevMan. Cochrane Training. Accessed October 15, 2022. https:// training.cochrane.org/online-learning/core-software/revman
- Alberts MJ, He J, Kharat A, Ashton V. Effectiveness and safety of rivaroxaban versus warfarin among nonvalvular atrial fibrillation patients with obesity and polypharmacy. *Am J Cardiovasc Drugs*. 2022;22(4):425-436. doi:10.1007/s40256-021-00520-7
- 21. Berger JS, Laliberté F, Kharat A, et al. Real-world effectiveness and safety of rivaroxaban versus warfarin among non-valvular atrial fibrillation patients with obesity in a US population. *Curr Med Res Opin.* 2021;37(6):881-890. doi:10.1080/03007995.2021.1901223
- Boivin-Proulx LA, Potter BJ, Dorais M, Perreault S. Comparative effectiveness and safety of direct oral anticoagulants vs warfarin among obese patients with atrial fibrillation. *CJC Open*. 2022;4(4): 395-405. doi:10.1016/j.cjco.2022.01.002
- Boriani G, Ruff CT, Kuder JF, et al. Relationship between body mass index and outcomes in patients with atrial fibrillation treated with edoxaban or warfarin in the ENGAGE AF-TIMI 48 trial. *Eur Heart J*. 2019;40(19):1541-1550. doi:10.1093/eurheartj/ehy861
- Briasoulis A, Mentias A, Mazur A, Alvarez P, Leira EC, Sarrazin MSV. Comparative effectiveness and safety of direct oral anticoagulants in obese patients with atrial fibrillation. *Cardiovasc Drugs Ther.* 2021;35: 261-272. doi:10.1007/s10557-020-07126-2
- Costa OS, Beyer-Westendorf J, Ashton V, et al. Effectiveness and safety of rivaroxaban versus warfarin in obese nonvalvular atrial fibrillation patients: analysis of electronic health record data. *Curr Med Res Opin*. 2020;36(7):1081-1088. doi:10.1080/03007995. 2020.1762554
- Deitelzweig S, Keshishian A, Kang A, et al. Effectiveness and safety of oral anticoagulants among nvaf patients with obesity: insights from the aristophanes study. J Clin Med. 2020;9(6):1633. doi:10. 3390/jcm9061633
- Deitelzweig S, Sah J, Kang A, et al. Effectiveness and safety of Apixaban versus warfarin in obese patients with Nonvalvular atrial fibrillation enrolled in Medicare and veteran affairs. *Am J Cardiol.* 2022;163:43-49. doi:10.1016/j.amjcard.2021.09.047
- Huang CW, Duan L, An J, Sim JJ, Lee MS. Effectiveness and safety of dabigatran in atrial fibrillation patients with severe obesity: a realworld retrospective cohort study. J Gen Intern Med. 2022;37(12): 2982-2990. doi:10.1007/s11606-021-07114-8
- Kido K, Ngorsuraches S. Comparing the efficacy and safety of direct oral anticoagulants with warfarin in the morbidly obese population with atrial fibrillation. Ann Pharmacother. 2019;53(2):165-170. doi:10.1177/1060028018796604
- Kushnir M, Choi Y, Eisenberg R, et al. Efficacy and safety of direct oral factor Xa inhibitors compared with warfarin in patients with morbid obesity: a single-centre, retrospective analysis of chart data. *Lancet Haematol.* 2019;6(7):e359-e365. doi:10.1016/S2352-3026(19)30086-9
- 31. Lip GYH, Merino JL, Banach M, et al. Impact of body mass index on outcomes in the edoxaban versus warfarin therapy groups in

patients underwent cardioversion of atrial fibrillation (from ENSURE-AF). Am J Cardiol. 2019;123(4):592-597. doi:10.1016/j. amjcard.2018.11.019

-WILEY-

- Nakao YM, Nakao K, Wu J, Nadarajah R, Camm AJ, Gale CP. Risks and benefits of oral anticoagulants for stroke prophylaxis in atrial fibrillation according to body mass index: nationwide cohort study of primary care records in England. *EClinicalMedicine*. 2022;54:101709. doi:10.1016/j.eclinm.2022.101709
- Patil T, Lebrecht M. A single center retrospective cohort study evaluating use of direct oral anticoagulants (DOACs) in morbidly obese veteran population. *Thromb Res.* 2020;192:124-130. doi:10. 1016/j.thromres.2020.04.015
- Perales IJ, San Agustin K, DeAngelo J, Campbell AM. Rivaroxaban versus warfarin for stroke prevention and venous thromboembolism treatment in extreme obesity and high body weight. *Ann Pharmacother*. 2020;54(4):344-350. doi:10.1177/10600280 19886092
- Peterson ED, Ashton V, Chen YW, Wu B, Spyropoulos AC. Comparative effectiveness, safety, and costs of rivaroxaban and warfarin among morbidly obese patients with atrial fibrillation. Am Heart J. 2019;212:113-119. doi:10.1016/j.ahj.2019.02.001
- Russo V, Bottino R, Rago A, et al. Clinical performance of nonvitamin K antagonist oral anticoagulants in real-world obese patients with atrial fibrillation. Semin Thromb Hemost. 2020;46(8):970-976. doi:10. 1055/s-0040-1715792
- Weir MR, Chen YW, He J, Bookhart B, Campbell A, Ashton V. Effectiveness and safety of rivaroxaban versus warfarin among nonvalvular atrial fibrillation patients with obesity and diabetes. *J Diabetes Complications*. 2021;35(11):108029. doi:10.1016/j. jdiacomp.2021.108029
- Sanna T, Diener HC, Passman RS, et al. Cryptogenic stroke and underlying atrial fibrillation. N Engl J Med. 2014;370(26):2478-2486. doi:10.1056/nejmoa1313600
- Choi SE, Sagris D, Hill A, Lip GYH, Abdul-Rahim AH. Atrial fibrillation and stroke. Expert Rev Cardiovasc Ther. 2023;21(1):35-56. doi:10. 1080/14779072.2023.2160319
- Costa OS, Beyer-Westendorf J, Ashton V, et al. Effectiveness and safety of rivaroxaban versus warfarin in obese nonvalvular atrial fibrillation patients: analysis of electronic health record data. *Curr Med Res Opin*. 2020;36(7):1081-1088. doi:10.1080/03007995. 2020.1762554
- Stangier J, Clemens A. Pharmacology, pharmacokinetics, and pharmacodynamics of dabigatran etexilate, an oral direct thrombin inhibitor. *Clin Appl Thromb Hemost.* 2009;15(1_suppl):9S-16S. doi:10. 1177/1076029609343004
- 42. Patel JP, Roberts LN, Arya R. Anticoagulating obese patients in the modern era. *Br J Haematol*. 155:137-149. doi:10.1111/j.1365-2141. 2011.08826.x

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Adelkhanova A, Oli PR, Shrestha DB, et al. Safety and efficacy of direct oral anticoagulants in comparison to warfarin in obese patients with atrial fibrillation: a systematic review and meta-analysis. *Health Sci Rep.* 2024;7:e2044. doi:10.1002/hsr2.2044