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ABSTRACT

Immunotherapy represents a promising strategy for cancer treatment that utilizes immune cells or drugs to activate the patient’s own
immune system and eliminate cancer cells. One of the most exciting advances within this field is the targeting of neoantigens, which
are peptides derived from non-synonymous somatic mutations that are found exclusively within cancer cells and absent in normal
cells. Although neoantigen-based therapeutic vaccines have not received approval for standard cancer treatment, early clinical trials
have yielded encouraging outcomes as standalone monotherapy or when combined with checkpoint inhibitors. Progress made
in high-throughput sequencing and bioinformatics have greatly facilitated the precise and efficient identification of neoantigens.
Consequently, personalized neoantigen-based vaccines tailored to each patient have been developed that are capable of eliciting
a robust and long-lasting immune response which effectively eliminates tumors and prevents recurrences. This review provides a
concise overview consolidating the latest clinical advances in neoantigen-based therapeutic vaccines, and also discusses challenges
and future perspectives for this innovative approach, particularly emphasizing the potential of neoantigen-based therapeutic vaccines

to enhance clinical efficacy against advanced solid tumors.
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Introduction

Cancer immunotherapy has revolutionized the paradigm of
cancer care in the past decade by encompassing a diverse range
of therapeutic approaches aimed at activating and boosting the
patient’s own immune system to eradicate cancer cells. These
therapeutic approaches include immune checkpoint inhib-
itors (ICIs), adoptive cell transfer (ACT) therapy, immune
cell-secreted cytokine therapy (e.g., IFN-a), oncolytic viruses
[Talimogene laherparepvec (T-VEC)], and neoantigen-based
therapeutic vaccines, all of which have demonstrated remark-
able clinical benefits across various types of cancer!-1°.

ICIs are extensively utilized in the clinical management of

various cancer types by targeting inhibitory receptors expressed
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on tumor and immune cells, such as cytotoxic T lympho-
cyte-associated protein-4 (CTLA-4), programmed cell death
protein 1 (PD-1) or its ligand PD-L1, lymphocyte activation
gene-3 (LAG-3), T cell immunoglobulin and mucin-domain
containing-3 (TIM-3), and T cell immunoglobulin and ITIM
domain (TIGIT)!b'2, ICIs refer to therapeutic monoclonal
antibodies that enhance T cell activation, which enables the
immune system to effectively kill tumor cells. Currently, 9 ICIs
have been approved in the United States (US), while China
has approved 15 ICIs for various types of cancer in clini-
cal practice!™3. In 2011 the first ICI [ipilimumab (Yervoy)]
received approval from the US Food and Drug Administration
(FDA); ipilimumab is an anti-CTLA-4 monoclonal antibody.
Pembrolizumab (Keytruda), the first ICI targeting PD-1,
received US FDA approval for melanoma treatment in 2014.
Several PD-1/ PD-L1 inhibitors have been since been approved
for treating multiple solid tumors. Although this innovative
approach has shown promising outcomes in advanced-stage
cancer patients; the efficacy remains limited to a range of
10%—40% in solid malignancies, even when used as a part
of combination therapy!*'®. Ongoing efforts are focused on

advancing agents that target additional immune checkpoints


mailto:lixiaoling@tmu.edu.cn
mailto:xishanhao@sina.com
https://orcid.org/0000-0002-3408-7066
http://www.cancerbiomed.org

Cancer Biol Med Vol 21, No 4 April 2024

as well as co-stimulatory or co-inhibitory receptors involved
in regulating T cell function!”!8,

ACT therapy is a form of cancer immunotherapy that uti-
lizes modified living immune cells, commonly referred to as
“living drugs”®!*-23, Numerous clinical studies have demon-
strated remarkable clinical responses in cancer treatment using
novel ACT strategies, including tumor-infiltrating lymphocytes
(TILs), chimeric antigen receptor-modified T cells (CAR-Ts), T
cell receptor-engineered T cells (TCR-Ts), CAR-natural killer
cells (CAR-NKs), and CAR-macrophages (CAR-Ms)32124,
Among the ACT strategies, CAR-T therapy has made signifi-
cant breakthroughs in hematologic malignancies, such as CAR
T-cell therapy targeting CD19 and B-cell maturation antigen
(BCMA)!2, Two CAR-T therapies were approved by the
FDA for the first time in 2017 [tisagenlecleucel (Kymriah®)
for acute lymphoblastic leukemia and axicabatagene ciloleu-
cel (Yescarta®) for diffuse large B-cell lymphoma]. Currently,
six CAR-T cell therapies have been approved by the US FDA
and four by the National Medical Products Administration
(NMPA) in China. Although CAR-T cells have demonstrated
a remarkable success in treating hematologic cancers, appli-
cation in solid malignancies has remained a challenge, mainly
due to limited membrane antigen targets, high heterogenicity,
dense extracellular matrix, low infiltration of effector T cells
into tumors, and the complex tumor microenvironment!®2>27,

TCR-T cell therapies offer a promising therapeutic alter-
native by genetically modifying T cells to express a TCR that
specifically recognizes antigens presented by the major his-
tocompatibility complex (MHC) on tumor cells?°. Tumor-
associated antigens (TAAs) and tumor-specific antigens
(TSAs) have emerged as promising targets for TCR-T cell
therapies. TAA refers to antigens that are present on tumor
and normal cells, but are overexpressed or mutated in tum-
ors, such as NY-ESO-1, GP100, and MAGE. TAA-targeted
TCR-T cell therapies have shown certain effective results in
clinical trials?»?. For example, a phase I/II trial of TCR-T cell
therapy targeting NY-ESO-1, a TAA present in patients with
synovial sarcoma and melanoma, demonstrated objective
responses in 50% of patients***. Similarly, a phase I/I1 trial of
TCR-T cell therapy targeting MAGE-A4 in patients with HLA-
A*02:01-positive non-small cell lung cancer showed an objec-
tive response rate of 40%?3!. Additionally, Tebentafusp-tebn
is a bi-specific CD3 T cell engaging gp100 peptide and HLA
molecules for the treatment of HLA-A*02:01-positive adults
with unresectable or metastatic uveal melanoma?2. TSAs, also

known as neoantigens, are exclusively present in tumor cells
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and absent in healthy cells®®. Currently, there is a growing body
of research focused on TSAs. A more comprehensive discus-
sion on neoantigens targeted TCR-T cell therapy (neoTCR-T)
will be presented in the upcoming session (Neoantigen-
targeted adoptive T cell therapy).

Despite the implementation of various advanced immu-
notherapy strategies in cancer treatment, clinical outcomes
for solid tumor patients remain limited due to multiple fac-
tors. These advanced immunotherapy strategies include low
tumor cell antigenicity, insufficient effector T cell infiltration,
and diverse mechanisms of immunosuppression in the tumor
microenvironment®335, Therefore, novel strategies, such as
neoantigen targeting immunotherapy, have emerged as prom-
ising approaches for targeting personalized or shared neoanti-
gens through the use of neoantigen vaccines and ACT®21:3436,37,
Neoantigens are peptides derived from mutated proteins
expressed exclusively by cancer cells, which are recognized as
foreign by the immune system and potentially trigger a robust
immune response against tumors. The development of diverse
neoantigen-targeted therapies has been extensively investigated
to enhance and potentiate immune responses against specific
neoantigens expressed on the surface of cancer cells, thereby
facilitating recognition and subsequent elimination. Recently,
there has been significant interest in exploring the potential of
neoantigen-based vaccines to induce long-lasting tumor con-
trol with curative potential by augmenting immunologic mem-
ory. Neoantigen-based vaccines involve immunizing patients
with a vaccine that primes and activates T cells or boosts exist-
ing weak responses in vivo within lymph nodes. These innova-
tive neoantigen vaccines have demonstrated feasibility, safety,
and the ability to elicit vaccine-specific immune responses at
unprecedented levels compared to previous cancer vaccines.
Numerous excellent reviews have highlighted the promising
clinical potential of neoantigens'*’-43. We sincerely apologize
for any oversights in this review regarding relevant findings and
references. Herein we have focused on the most recent advances
in personalized neoantigen-based cancer vaccines and the clin-
ical applications, with a particular emphasis on strategies to

overcome obstacles that hinder optimal patient outcomes.
Neoantigens

Neoantigens, which are known as TSAs, are a unique class
of antigens that arise exclusively from non-synonymous
somatic mutations in cancer cells. These alterations occur

at the genomic, transcriptomic, and proteomic levels*®?7.
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The resulting mutated peptides can be presented on MHC
molecules to generate neoantigens that have been shown to
elicit strong and specific immune responses against cancer
cells. This characteristic makes TSAs highly appealing targets
for cancer immunotherapy aimed at selectively attacking can-
cer cells while sparing healthy cells.

Tumor neoantigens arise from a variety of somatic muta-
tions and can be categorized into several types based on their
origin, including the following: 1) Non-synonymous muta-
tions result in an amino acid change in the protein sequence,
which are the most common source of tumor neoantigens
and are often found in oncogenes or tumor suppressor genes,
such as single nucleotide variants (SNVs) and insertions/
deletions (INDELSs). 2) Gene fusions are a potent neoanti-
gen source and have been reported to drive the development
of approximately 16% of all cancers. 3) Splicing site muta-
tions can create neoantigens by generating novel peptides
or altering the expression of existing peptides. 4) Aberrant
translation of non-coding RNA, alternative transcription
start/stop sites, non-canonical open reading frames (ORFs),
mRNA intron retention, and endogenous retro-transposi-
tion can generate neoantigens by producing novel peptides
that are not present in healthy cells*+*3. 5) Viral proteins can
be regarded as a novel type of neoantigen in virus-induced
tumors due to significant dissimilarity from normal cellular
proteins and an ability to elicit high T cell responses. Viral
proteins are optimal targets for some virus-induced solid
tumors, such as Merkel cell carcinoma induced by Merkel
cell polyomavirus (MCPyV) infection and nasopharyngeal
carcinoma triggered by Epstein-Barr virus (EBV) infection.
Additionally, neoantigens arising from structural variants
(SVs) may also serve as valuable targets for anti-tumor
immunotherapy?’.

Given that 99% of tumor-specific mutations occur in
non-coding regions of genes and exonic regions represent only
2% of the entire human genome, screening neoantigens solely
from exonic region mutations is limited™. Recent studies have
revealed coding functions in many regions previously defined
as non-coding regions*. The non-canonical variants that are
present as valuable targets due to superior immunogenic-
ity compared to SNVs and INDEL-derived neoantigens have
been extensively investigated in ongoing clinical trials®>!.
Accumulating evidence suggests that other sources of cancer
neoantigens, including coding and non-coding sequences,
such as gene fusions and alternative splice variants at the tran-

scriptome level, and post-translational modifications (PTMs),
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proteasome processing, and transporter associated with anti-
gen processing (TAP) at the proteome level, represent promis-
ing novel targets for immunotherapy*>%->2,

Neoantigens can be categorized into two groups [shared
neoantigens (public neoantigens) and personalized neo-

antigens] 214>

. Shared neoantigens exist across multiple
cancer patients, often originating from commonly mutated
genes, such as TP53 and KRAS. These mutation peptides have
commonality among different cancer patients, making them
suitable for the preparation of shared neoantigen vaccines,
known as off-the-shelf vaccines>*. Highly immunogenic shared
neoantigens can be screened as broad-spectrum therapeutic
cancer vaccines for patients with the same mutation gene. It
is worth noting that neoantigens resulting from gene fusions,
recurrent mutations in cancer driver genes, non-coding
regions, and abnormal PTMs are more likely to be shared
among cancer patients. This possibility provides readily avail-
able common neoantigens for immunotherapy. Personalized
neoantigens are unique mutation peptides predicted based on
a patient’s tumor genome mutation profile. The personalized
neoantigens exhibit complete variations between patients and
tumors, making them a significant source for developing per-
sonalized neoantigen-based cancer vaccines. Therefore, there
is an urgent need to develop efficient computational algo-
rithms that can rapidly screen these potential neoantigens and

verify their suitability for cancer immunotherapy.

Novel immunotherapeutic strategies
targeting neoantigens in cancer
treatment

With the rapid advancement in precision medicine, bio-
logical science, and computer science, novel immunothera-
peutic strategies targeting neoantigens have emerged as one
of the most promising solutions in recent years for cancer
treatment. Novel immunotherapeutic strategies targeting
neoantigens include neoantigen-based cancer vaccines,
neoTCR-T therapy, neoantigen-targeted chimeric antigen
receptor (neoCAR) T-cell therapy, and neoantigen-targeted
antibodies. These therapies are currently undergoing exten-
sive clinical investigation due to their potential in inducing
an anti-tumor immune response and providing long-term
control of recurrences, as well as protection against metas-
tases®>>°. Moreover, the development of neoantigen-specific

antibodies has demonstrated promising results in selectively
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recognizing and binding to specific neoantigens expressed
on cancer cells, thereby facilitating their elimination.
This approach holds great potential as a therapeutic strat-
egy for cancer treatment. Advanced technologies, such as
high-throughput sequencing and artificial intelligence (AI)
algorithms, have greatly facilitated the realization of person-
alized immunotherapies by enabling rapid and cost-effective
detection of tumor-specific mutations in individual patients.
Moreover, the development of algorithms predicting MHC
molecule binding affinity to neoantigens and the ability of
TCRs to recognize neoantigens have a crucial role in design-
ing personalized cancer vaccines. However, there is still a
need for further improvement in identifying an ideal pipe-
line for neoantigen identification and the cost and time lim-
itations associated with personalized immunotherapy prod-
ucts. With the continuous development and interdisciplinary
integration of fields, such as biotechnology, immunology,
bioinformatics, materials science, chemistry, and Al, more
ideal neoantigens will be discovered and utilized in diverse

strategies for effective cancer treatment.
Neoantigen-targeted adoptive T cell therapy

Neoantigen-targeted adoptive cell therapy (neoACT) is an
innovative and personalized approach to cancer treatment
that harnesses the power of the immune system to specifi-
cally target and eliminate cancer cells. Various strategies have
been used, such as the selection of neoantigen-reactive T cells
and engineering of TCRs to target neoantigen-specific T cells
(neoTCR-T cells). The original T cells can be obtained by
harvesting TILs from the tumor or enriching lymphocytes
from peripheral blood mononuclear cells (PBMCs). The
neoantigen-targeting T cells are then expanded ex vivo and
infused back into the patient, where the neoantigen-targeting
T cells selectively recognize and attack cancer cells expressing
targeted neoantigens.

NeoTCR-T cells, also known as TSA-targeting TCR-T
cell therapy, involves modifying a patient’s T cells to express
T cell receptors (TCRs) that recognize specific neoantigens
on cancer cells, which is typically a hotspot mutation con-
taining a shared neoantigen®. Compared to TAAs, which
may result in off-target effects and immune-related toxicities,
TSA targeting offers higher specificity and reduces the risk
of off-target effects, while increasing safety. This method has
demonstrated success in treating some types of cancer, such
as patients with the KRAS hotspot mutations, G12D/G12V,
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that are restricted by HLA-C*08:02 and HLA-A*11:0151-63,
that H3.3K27M epitope restricted by HLA-A*02:01°, and
patients with PIK3CA (H1047L) mutations restricted by
HLA-A*03:01%%. Refining the search term to “neoantigen
TCR-T” on ClinicalTrials.gov yielded a total of six rele-
vant results (NCT05292859, NCT05292859, NCT05194735,
NCT04520711, NCT05349890, and NCT03970382). A recent
report on Neo-T cell therapy utilizing neoantigen-specific
CD8+ T cells derived from PBMCs demonstrated positive
clinical benefits in the treatment of advanced solid tumors®>.
Furthermore, multiple neoTCRs that recognize neoantigen
traffic to the tumors of patients have reported long-lasting
clinical responses®®®’. A recent study demonstrated the feasi-
bility of isolating and cloning multiple TCRs that recognize
mutational shared neoantigens by a novel method involving
simultaneous knockout of the endogenous TCR and knock-in
of neoTCRs. Furthermore, these three gene-edited neoTCR
Tecells exhibit tumor trafficking capabilities®®. However, it
should be noted that a limitation of TCR-Ts lies in a depend-
ence on specific HLA alleles for neoantigen presentation and
identification of a shared neoantigen target to bind specific
HLA alleles. Therefore, a given TCR can only be utilized to
treat patients with corresponding HLA alleles®.

Neoantigen-targeted CAR-T cell therapy involves modify-
ing T cells to express chimeric antigen receptors (CARs) that
recognize antigens directly through CARs approaches inde-
pendent of HLA restriction, but only specific surface antigens
on cancer cells are targeted, such as unmodified proteins,
glycoproteins, glycolipids, and carbohydrates. An example of
neoantigen-targeted CAR-T therapy in solid tumors is a neo-
antigen derived from EGFRVIII mutations, which is caused by
the in-frame deletion of exons 2—7 deletions in 30% of newly
diagnosed glioblastoma patients, making the neoantigen
derived from EGFRvIII mutations an ideal target for CAR-T
therapy®®. In contrast, TCRs have evolved to recognize epitopes
derived from the entirety of the proteome, including cell sur-
face, cytosolic, and intra-nuclear proteins®®. Consequently,
TCRs may recognize a larger universe of protein-based targets
relative to CARs.

Opverall, neoantigen-targeted ACT represents a cutting-edge
approach to cancer immunotherapy and has shown promis-
ing results in early clinical trials for various types of cancers,
including melanomas, lung cancer, and colorectal cancer.
Neoantigen-targeted ACT offers the potential for improved
treatment outcomes and long-term survival for patients with

advanced or refractory cancers. By leveraging the unique
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neoantigens present on cancer cells, this therapy has the poten-
tial to provide personalized and effective treatment options
for patients with various cancers. Identifying neoantigens
can be complex and time-consuming, requiring sophisticated
genomic analysis. Additionally, the large-scale production of
neoantigen-specific T cells can be technically demanding and
expensive. Further research is needed to optimize the efficacy
and safety of these therapies, and to determine the optimal use

in different cancer types and patient populations.
Neoantigen-based cancer vaccines

Recently, with the advances in high-throughput sequencing
and computation technologies, neoantigen-based cancer vac-
cines have emerged as a primary focus over the past decade,
the clinical utility of which will continue to be maximized in
the future*>*%%72, The aim of neoantigen-based cancer vac-
cines is to stimulate the patient’s own immune system to elim-
inate cancer cells, which can be personalized to each patient’s
specific neoantigen profile and may be administered either
pre- or post-operatively or in combination with other stand-
ard treatments, which will be discussed in detail below. This
approach has shown promising results in clinical trials, with
some patients exhibiting long-term tumor regression or even
complete remission.

The use of vaccines to treat malignant tumors can be traced
back to the injection of a mixture of heat-killed bacteria into
tumors in the late 19th century by William Coley (known as
the Coley toxin)”3, as well as a similar approach by Lloyd Old
with Bacillus Calmette-Guérin (BCG) in the 1950s, but with
varying degrees of success?>’!. In the late 1990s and early
2000s, numerous clinical trials were conducted to develop
cancer vaccines targeting TAAs’*. These trials often yielded
disappointing results, however, due to low efficacy and signif-
icant toxicity. The first therapeutic cancer vaccine [Provenge
(Sipuleucel-T)] was approved by the US FDA for the treatment
of prostate cancer in 20107°. Recent technological advance-
ments have enabled the development of more effective can-
cer vaccines targeting neoantigens, which stimulate immune
responses to attack cancer cells*®’4, Neoantigen-based cancer
vaccines can be classified into two main types (off-the-shelf
and personalized)’®””. The off-the-shelf vaccines are designed
to target shared neoantigens, which are predicted to exhibit
a high frequency of expression and elicit robust anti-tumor
immune responses, making off-the-shelf vaccines suitable for

a broader range of cancer patients®2. Conversely, personalized
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vaccines are designed based on the unique neoantigens pres-
ent in an individual patient’s tumor. Due to the high anti-tu-
mor specificity and low central immune tolerance, personal-
ized vaccines induce strong and specific anti-tumor immune
responses and immune memory, precisely eliminating cancer
cells without harming healthy tissues.

The successful development of a neoantigen cancer vac-
cine requires several critical steps. The initial step is the
identification and characterization of tumor-specific neo-
antigens, which necessitates the use of advanced genomic
sequencing technologies and bioinformatics tools to analyze
tumor samples and identify unique gene mutations that give
rise to neoantigens for each patient. Subsequently, the design
of a vaccine that contains the identified neoantigen targets is
undertaken. This process involves selecting the most potent
neoantigens and formulating the neoantigens in a way that
enhances the immunogenicity and stability. Numerous neo-
antigen targets that can effectively stimulate autologous spe-
cific immune responses and kill tumor cells are selected, fol-
lowed by preparation of corresponding neoantigen vaccines
using advanced biosynthetic technology under strict good
manufacturing practice (GMP) conditions for clinical appli-
cation of cancer immunotherapy (Figure 1). The third step
involves evaluation of safety, efficacy, and immunogenicity
using in vitro models. This process entails utilizing immuno-
logic assays to quantify the immune response of the vaccine
and assessing the ability of the vaccine to suppress tumor
growth and metastasis. Finally, conducting clinical trials on
human subjects is crucial to test vaccine safety and efficacy
(Figure 1). Various delivery platforms, such as synthetic pep-
tides, DNA, RNA, and neoantigen-pulsed dendritic cell (DC)
vaccines, have been utilized to efficiently deliver neoanti-
gens. This comprehensive process involves several phases of
clinical trials to establish the safety, tolerability, and efficacy
of the vaccine. Phase 1 and 2 trials evaluate the safety and
immunogenicity of the vaccine in a small group of patients,
while phase 3 trials evaluate vaccine efficacy in a large patient
cohort.

In conclusion, the development of a successful neoantigen
cancer vaccine requires a multidisciplinary approach encom-
passing genomic sequencing, bioinformatics, vaccine design
and production, preclinical, and clinical testing of vaccine
function, as well as regulatory approval for clinical application.
Despite the challenges involved in this process, the creation of
a safe and effective neoantigen cancer vaccine holds immense

potential for enhancing cancer treatment outcomes.
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Figure 1 Schematic for the clinical implementation of neoantigen-based cancer vaccines. The clinical implementation of cancer neoantigen

vaccine involves a series of sequential processes, including neoantigen prediction, screening, manufacturing, administration, and evalua-

tion of the safety and clinical efficacy. The workflow begins with the collection of patient samples, followed by the utilization of advanced

high-throughput sequencing technologies and bioinformatics tools, as well as computation algorithms to identify potential neoantigens tar-

gets (~20-30). Subsequently, in vitro assays further screened and identified candidate neoantigens targets for the development of neoantigen

cancer vaccines. These vaccines were then manufactured on demand under Good Manufacturing Practice (GMP) conditions. Longitudinal

dynamic clinical assessment was conducted to evaluate immune response and clinical outcomes subsequent to the administration of neoan-

tigen vaccines.

Clinical application of neoantigen
vaccine

Neoantigen vaccines represent a promising immunotherapy
approach for cancer patients. These vaccines elicit an immune
response to recognize and attack the cancer cells specifically,
while leaving normal cells unharmed®-5%>°. The concept of
neoantigen vaccines was initially proposed in the 1990s, but
it was not until the emergence of high-throughput sequencing
technologies and bioinformatics tools that this field began to
gain momentum’®. Given the highly variable mutation rates
frequently exhibited by cancer cells, neoantigen vaccines hold
promise as personalized treatments. Although still in early
stages of development, these vaccines are already yielding pos-
itive results in clinical trials for a range of cancer types.
Neoantigen vaccines have been developed in various forms,

including peptide vaccines, RNA vaccines, DNA vaccines, and

neoantigen-pulsed DC vaccines*»7*80. These vaccines elicit
an immune response in cancer patients, specifically targeting
and eliminating cancer cells. Three initial clinical trials of per-
sonalized cancer vaccines have demonstrated the feasibility,
safety, and immunotherapeutic efficacy of targeting individual
tumor neoantigens in malignant melanoma patients®®’”8!, As
a result, numerous clinical trials have subsequently evaluated
the safety and efficacy of neoantigen-based vaccines across
various types of cancer.

The latest updates on clinical trials for neoantigen vaccines
targeting various types of cancer follow, all of which are reg-
istered on ClinicalTrials.gov specifying “Tumor” as the con-
sistent condition or disease. The four research sessions are
dedicated to exploring different types of neoantigen vaccines,
including peptide, RNA, DNA, and DC vaccines. We then
manually reviewed and selected 102 clinical trials for per-
sonalized neoantigen vaccines across various cancer types for

further analysis. These trials evaluated the safety and efficacy
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of a variety of vaccine modalities, including 56 peptide, 13
mRNA, 14 DNA (four of which combine with RNA), and 19
personalized neoantigen-pulsed DC vaccines (Tables 1-4).
The US and China are at the forefront of clinical research
on cancer neoantigens; however, limitations in search key-
words and update frequency may impact data accuracy as of
September 2023.

Peptide vaccine

Neoantigen peptide vaccines are comprised of small chains of
amino acids that correspond to specific neoantigens identified
in a tumor. These peptides are designed to trigger an immune
response against the tumor by presenting neoantigens to
T cells, which then recognize and attack cancer cells®.

Several clinical trials have investigated personalized peptide-
based neoantigen vaccines for the treatment of melanomas
and other types of cancer, with the majority of referenced clin-
ical trials on neoantigen vaccines based on peptide vaccines
(Tables 1 and 4). The initial clinical study was conducted in
2017 on patients with stage IIIB/C or IVMIla/b melanoma.
Following surgery, 6 patients received the NeoVax person-
alized vaccine after 18 weeks. Of the 6 patients, 4 remained
recurrence-free within 25 months after vaccination and 2
achieved a complete response (CR) when anti-PD-1 therapy
was initiated following disease recurrence [Tables 1 and 4
(NCT01970358)]%. The long-term effects of the vaccine and
epitope spreading were detected at a median of nearly 4 years
after treatment with NeoVax, during which all 8 patients were
alive and 6 had no signs of tumor progression®®. In a phase
1b clinical trial, the NEO-PV-01 vaccine was tested in com-
bination with the ICI, pembrolizumab (anti-PD-1 therapy),
in 82 patients with advanced melanomas, non-small cell lung
cancer, and bladder cancer®*. The trial demonstrated the pres-
ence of de novo neoantigen-specific CD4(+) and CD8(+)
T cell responses following vaccination, as well as the occur-
rence of the epitope spreading phenomenon. A separate study
subsequently presented promising clinical and immunologic
findings derived from a phase Ib clinical trial evaluating the
combination of NEO-PV-01 with pemetrexed, carboplatin,
and pembrolizumab as first-line therapy in 38 patients diag-
nosed with advanced NSCLC (Tables 1 and 4)%°.

To enhance specific immune responses, neoantigen pep-
tides are often combined with appropriate adjuvants. The
TLR3 agonist, poly-ICLC (Hiltonol®), is the most commonly

utilized adjuvant for neoantigen peptide vaccines because
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poly-ICLC robustly promotes T cell expansion through
MDAS5 stimulation and IFN-I production. In addition to
traditional adjuvants, innovative liposome-based cationic
adjuvant formulation 09b (CAF®09b), QS-21 (Stimulon®),
and GM-CSF have also been utilized in clinical trials®.
Furthermore, the administration routes of neoantigen pep-
tide vaccines impact efficacy and safety, and subcutaneous
and intradermal injections are frequently used routes of
administration.

Neoantigen peptide vaccines present numerous advantages
compared to other forms of cancer vaccines due to a capac-
ity to elicit a highly targeted immune response and simplified
manufacturing process. Nevertheless, these vaccines face chal-
lenges related to neoantigen identification and selection com-
plexity, limited immunogenicity, a short half-life, and potential
development of immune tolerance. Although peptide vaccines
have achieved substantial advances in clinical development
to date, additional research is warranted to address existing

limitations.
Messenger RNA (mRNA) vaccines

Neoantigen RNA vaccines are a relatively new type of cancer
vaccine that use mRNA to instruct cells to produce tumor-spe-
cific neoantigens, which trigger an immune response against
the patient’s cancer cells. The rapid development of mRNA
vaccines during the COVID-19 pandemic brought mRNA
vaccine technology into the mainstream3®°1:94%, RNA vac-
cines can be delivered through various methods, includ-
ing viral vectors, micro-vectors (nanocarriers), gene guns,
microneedles, or in situ electro-transformation. Technological
advances have optimized the stability, backbone structure,
delivery methods, and cost-effectiveness of mRNA-based vac-
cines. As a result, multiple clinical trials investigating mRNA
vaccine therapy for various cancers are currently enrolling
patients.

In 2017 the first clinical study evaluating neoantigen mRNA
vaccines in patients with advanced melanoma demonstrated
that all patients developed T cell responses against multiple
vaccine targets®!. Post-vaccination resected metastases from
two patients showed vaccine-induced T cell infiltration and
neoepitope-specific killing of autologous tumor cells. Two
of five individuals with metastatic disease exhibited objective
responses related to the vaccine, while a third patient achieved
a CR to vaccination in combination with PD-1 blockade ther-
apy (NCT02035956)3L.
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Table 1 Continued

Administration

Vaccine name

Cancer types

Locations

First posted

Recruitment

status

Phase

Clinical trial
number

route of the vaccine

S.C.

NeoVax

Melanoma

2013.10.28 United States

Completed

I

NCT01970358

Dana-Farber Cancer Institute

RCC, renal cell carcinoma; NSCLC, non-small cell lung cancer; HNSCC, head and neck squamous cell carcinoma; CRC, colorectal cancer; ALL, acute lymphoblastic leukemia; CLL,

chronic lymphocytic leukemia; i.m., intramuscularly; s.c., subcutaneous.

Li et al. Neoantigen cancer vaccines

Currently, mRNA vaccines are the forefront of personali-
zed neoantigen vaccine development. The lipid nanoparti-
cle (LNP) mRNA cancer vaccine, mRNA-4157/V940, which
encodes 34 neoantigens in a single synthetic mRNA molecule,
is being assessed as an adjuvant therapy for high-risk cutane-
ous melanoma patients who have undergone complete resec-
tion when combined with pembrolizumab (NCT03313778
and NCT03897881)%. A study presented at the 2019 ASCO
Annual Meeting assessed the efficacy of this treatment as a
monotherapy and in combination with pembrolizumab in
33 patients with unresectable solid tumors. In the adjuvant
monotherapy group, which comprised 13 patients receiving
mRNA-4157, all but 1 patient remained disease-free dur-
ing the study period, with a median follow-up of 8 months.
Among the 20 patients who received combination therapy, 1
achieved a CR prior to vaccination, 2 had partial stable dis-
ease, 5 had confirmed disease progression, 2 had unconfirmed
disease progression, and 1 had non-evaluable response”.
These data supported the advancement of mRNA-4157 to
phase 2. As reported at the 2023 American Association for
Cancer Research (AACR) Annual Meeting, the combination
of mRNA-4157/V940 vaccine and pembrolizumab exhibited
a significant 44% reduction in the risk of disease recurrence
based on data derived from the phase IIb KEYNOTE-942
trial involving 157 patients with operable high-risk mela-
noma. Furthermore, most adverse effects were reported to be
mild”’. A larger phase III trial for mRNA-4157/V940 is cur-
rently underway. Based on these findings, the combined use of
mRNA-4157/V940 with Merck’s anti-PD-1 therapy Keytruda
has been granted breakthrough therapy designation by the US
FDA for adjuvant treatment of high-risk melanoma patients
following complete resection.

Notably, an ongoing phase I/II clinical trial is currently
investigating mRNA-4650, a neoantigen vaccine designed with
the same mRNA skeleton to target both shared and personali-
zed neoantigens in patients diagnosed with metastatic gastro-
intestinal cancer (NCT03480152)%%. Another phase 1 clinical
trial is currently assessing the efficacy of mRNA-5671, a lipid
nanoparticle-based mRNA cancer vaccine that specifically tar-
gets four frequent KRAS mutations (G12D, G13D, G12C, and
G12V)®L. This innovative mRNA vaccine is being adminis-
tered as monotherapy or in combination with pembrolizumab
to patients diagnosed with KRAS-mutated NSCLC, colorectal
cancer, or pancreatic cancer®'. Moreover, a recent report high-
lighted the significant T cell activity induced by the person-

alized RNA neoantigen vaccine, autogene cevumeran, when
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Table 3 Continued

Administration

Vaccine name

Cancer types

Recruitment status First posted Locations

Phase

Clinical trial
number

Vaccine type

route of vaccine

Neo-MoDC s.C.

Gastrointestinal
solid tumor

Unknown 2017.06.14 China

NCT03185429

Peptide-pulsed DC

BG,

Fujian Cancer Hospital

I Active, not 2017.03.28 United States Melanoma

NCT03092453

Peptide-pulsed DC

University of
Pennsylvania

recruiting

S.C.

Neo-DCVac

NSCLC

2016.11.06 China

Unknown

I

NCT02956551

Peptide-pulsed DC

Sichuan University

CRC, colorectal cancer; NSCLC, non-small cell lung cancer; SCLC, small cell lung cancer; mRNA, messenger ribonucleic acid; DC, dendritic cell; i.d., intradermal; i.v.gtt, intravenous

infusions; s.c., subcutaneous.

Li et al. Neoantigen cancer vaccines

combined with atezolizumab and mFOLFIRINOX, potentially
leading to a delayed recurrence of pancreatic ductal adenocar-
cinoma (PDAC)%,.

Taken together, neoantigen RNA vaccines hold great poten-
tial for cancer immunotherapy due to the ease and rapid-
ity of mRNA production, lower risk of inducing insertional
mutagenesis or autoimmunity, absence of HLA restriction,
and capability to simultaneously target multiple neoanti-
gens. Efficient in vivo delivery can be achieved through var-
ious carriers, such as LNPs. Furthermore, neoantigen RNA
vaccines have the capacity to elicit a more robust and endur-
ing immune response by activating both CD8+ and CD4+ T
cells®. Although further research is necessary to optimize sta-
bility, design, delivery route, dosage, and clinical efficacy, RNA
vaccines may provide a valuable alternative to current cancer

treatments.
DNA vaccines

Neoantigen DNA vaccines involve the introduction of synthe-
sized DNA fragments encoding specific neoantigens, which
are subsequently translated into proteins within cells and pre-
sented to the immune system, thereby eliciting an immune
response that results in the eradication of cancer cells express-
ing targeted neoantigens.

One advantage of DNA vaccines is the capacity to deliver
multiple neoepitopes simultaneously using the vectors
designed to carry genes encoding tumor neoantigens and
built-in adjuvants. There are two main types of neoantigen
DNA vaccines (plasmid- and viral vector-based). Plasmid-
based vaccines involve the direct injection of DNA encoding
for the neoantigens into target tissues. Viral vector-based vac-
cines, in contrast, use a genetically modified virus to deliver
the DNA encoding the neoantigens into cells. The virus acts as
a delivery vehicle, allowing the DNA to enter cells more effi-
ciently and produce the respective neoantigen.

Delivery techniques have a pivotal role in the efficacy of
plasmid vector DNA vaccines. Electroporation (EP), a tech-
nique that uses electrical pulses to create transient pores in
cell membranes, has been used to enhance the uptake and
expression of DNA vaccines in DC. This approach has been
used in a phase I trial of a DNA-based neoantigen vaccine
for glioblastoma. Viral vector-based DNA vaccines have
made significant strides in clinical trials and surpassed plas-
mids, which are constrained by delivery systems. For exam-

ple, VAC85135, which was developed utilizing Nouscom’s
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exclusive viral vector platform, represents a pioneering
vaccine candidate entering clinical trials. This innova-
tive platform integrates multiple neoantigen-based viral
vector vaccines with other immunomodulatory agents
(NCT05444530). Another vaccine, GRT-C901/GRT-R902,
is a personalized neoantigen vaccine that uses adenoviral
(GRT-C901) and self-amplifying mRNA (GRT-R902) vectors
(NCT03639714)%2. Currently, a phase 2/3 study is underway
to combine GRT-C901/GRT-R902 with immune check-
point blockade for patients with metastatic colorectal cancer
(NCTO05141721; Table 2). The primary administration route
for these vaccines is intramuscular injection.

While neoantigen DNA vaccines have demonstrated poten-
tial in preclinical studies, the clinical efficacy has been limited
due to the weak and short-lived immune response generated
by these vaccines. Furthermore, there are concerns regarding
the safety of viral vector-based vaccines because viral vector-
based vaccines may elicit unwanted immune reactions or
may be integrated into the host genome. Therefore, further
research is necessary to optimize efficacy and safety for use in

clinical settings.
Neoantigen-pulsed DC vaccines

Neoantigen-based DC vaccines have emerged as a promising
approach for cancer immunotherapy due to the high immu-
nogenicity, specificity, safety, and potential for long-lasting
immunity. Neoantigen-based DC vaccines have demon-
strated exciting efficacy in the treatment of some malignant
tumors. DCs are specialized antigen-presenting cells that
have the ability to initiate and modulate immune response,
which facilitates the transfer of antigens from tumors-to-
lymph nodes, while ensuring the activation and expansion of
tumor-specific T cells within the tumor microenvironment
(TME)®>1%, Neoantigen-based DC vaccines involve taking a
patient’s DCs and subsequently loading the DCs with neoan-
tigen, which can be in the form of peptides, mRNA, or DNA.
The neoantigen-loaded DC vaccines are then administered
back into the patient’s body, where the neoantigen-loaded
DC vaccines stimulate a specific T cell response against the
tumor.

The primary routes of administration for DC vaccines are
intravenous infusion and subcutaneous injection, while alter-
native methods, such as intra-tumoral, -nodal, and lymphatic
injections, are currently being explored. The use of DC vac-

cines loaded with various types of antigens, including TAA,

Li et al. Neoantigen cancer vaccines

TSA, and whole tumor cell lysates, has been extensively inves-
tigated. In terms of TSA, peptide-loaded DC vaccines are cur-
rently more commonly utilized in clinical trials compared to
mRNA-loaded DC vaccines. Peptide-pulsed DC vaccines have
demonstrated an augmented spectrum and diversity of neo-
antigen-specific T cells in melanomas and advanced lung can-
cer8% 101102 (Table 3).

Several clinical trials have investigated the use of neo-
antigen-based DC vaccines in various types of cancer.
The first single-arm study demonstrated that neoantigen
short peptide-loaded DC vaccines induce a T cell-specific
immune response resulting in antigen spreading in mel-
anoma patients”’. In a phase I trial with Neo-DCVac, a
peptide-pulsed DC vaccine, has demonstrated remarkable
therapeutic efficacy in 12 lung cancer patients with an objec-
tive effectiveness rate was 25%, the disease control rate was
75%, the median progression-free survival was 5.5 months,
and the median overall survival was 7.9 months®®. Another
phase I trial described complete regression in a metastatic
gastric cancer patient mediated by Neo-MoDC vaccine when
used in conjunction with ICI therapy, suggesting promising
results for the treatment of patients with metastatic gastric
cancer?.

DC-based neoantigen vaccines represent a promising
approach to cancer immunotherapy that can leverage the
power of DC to prime a specific T cell response against the
tumor. However, the use of neoantigen-pulsed DC vaccines
is currently limited by the complexity and cost of prepar-
ing the DC cells, as well as the difficulty in optimizing the
vaccine regimen for individual patients. Further research is
needed to optimize the efficacy of these vaccines in the clinic
setting.

Opverall, numerous clinical trials of neoantigen vaccines are
currently underway for a variety of different cancer types, such
as NEO-PV-0184% NeoVax??, EVX-018©103 Neo-MoDC?,
Neo-DCVac®, iNeo-Vac-P018*104° mRNA-4157/V940%7, and
VAC85135*! (Table 4). These clinical trials have demonstrated
the potential of neoantigen vaccines as a novel approach to
cancer immunotherapy, including melanoma, lung cancer,
glioblastoma, gastrointestinal tumors, pancreatic adenocar-
cinoma, and ovarian cancer. In the majority of clinical trials,
personalized neoantigen cancer vaccines have been com-
bined with ICIs, such as ipilimumab, pembrolizumab, and
nivolumab. Ongoing clinical trials will provide further insight
into the safety and efficacy of these vaccines and combination

therapy to enhance clinical outcome.
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Challenges and opportunities of
neoantigen-based cancer vaccine
therapy

Despite the promising advances in neoantigen-based can-
cer vaccines, there remain several challenges that need to
be addressed. One major obstacle lies in the identification
and characterization of neoantigens because distinguishing
between immunogenic and non-immunogenic mutations can
be a complex task. The expression of neoantigens varies among
tumors, and even within different regions of the same tumor,
posing another challenge when optimizing vaccine design
and delivery to target patient-specific neoantigens. This com-
plexity is further compounded by the unique nature of each
patient’s neoantigens, which necessitates personalized vac-
cine design. Additionally, it is crucial to ensure the safety and
efficacy of these vaccines while avoiding unwanted immune
responses. Determining optimal dosing and timing for admin-
istration also poses a challenge that can only be addressed
through clinical trials. Furthermore, logistical issues, such as
cost, manufacturing, and distribution, need to be resolved for
personalized neoantigen-based vaccines.

Recent advances in this field have addressed some of the
previous challenges and have provided promising opportu-
nities for personalized cancer vaccine therapy in the clinic
setting. Further research and development are needed to opti-
mize the design and delivery of these vaccines and to improve
the efficacy. Collaboration between researchers, clinicians, and
industry partners can help overcome these challenges. Another
important development is the use of neoantigen-based vac-
cines in combination with other therapies, such as ICIs, to
further boost the immune response and improve treatment
outcomes. Advances in technology will also continue to
enhance our ability to identify and characterize neoantigens,
unlocking the full potential of these vaccines for patients with

solid tumor cancers.
Identification of immunogenic neoantigen

Identification of immunogenic neoantigens is the crucial ini-
tial step in the development of effective cancer immunother-
apies. Advances in next-generation sequencing technology
and computational bioinformatics have facilitated the rapid
and cost-effective identification of genomic alterations and

putative neoantigens'®. To date, most studies have primarily
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utilized whole-exome sequencing (WES) and RNA-seq anal-
ysis of tumor samples as the main source for identifying
somatic mutations and neoantigens, but with limited success.
Currently, a plethora of novel multi-omics approaches, such
as single-cell sequencing and spatial transcriptomics, have
emerged. The novel multi-omics approaches are accompa-
nied by advanced bioinformatic algorithms and pipelines
that are utilized to investigate tumor heterogeneity, immune
repertoire, and somatic mutations across diverse cancer types.
This promising approach integrates diverse types of data to
enhance precision in identifying potential targets that may
have been overlooked by other methodologies, entailing the
integration of genomic, transcriptomic, and proteomic infor-
mation for identifying neoantigen candidates linked with spe-
cific tumor mutations.

The single-cell transcriptome sequencing (scRNA-seq)
method, which was first developed by Tang et al. in 2009,
has been widely utilized in the fields of cancer biology and
immunology'%®1%, The scRNA-seq method enables us to
precisely unravel intricate tumor heterogeneity and the com-
plex microenvironment at a single-cell resolution®®10%110,
Currently, a novel solution for single-cell immune profiling
enables high-throughput sequencing of both immune cell
gene expression and immune repertoire (IR) at the single-cell
level, making single-cell immune profiling an invaluable tool
for identifying cancer neoantigens and anti-tumor TCRs®.
TCR sequencing allows for the identification of TCRs that
recognize specific neoantigens, and thus play an important
role in generating an immune response against cancer cells.
Advanced high-throughput sequencing techniques, including
high-throughput single-cell DNA sequencing (scDNA-seq),
single cell whole genome sequencing [scWGS (SMOOTH-
seq)]'!!
fying somatic mutations in single cell DNA-seq, have been

, and a spatial model of allelic imbalance for identi-

developed!!2. The utilization of these innovative technolo-
gies enhances the efficiency of neoantigen identification and
improves clinical outcomes in cancer immunotherapy.

Spatial transcriptomics was awarded the title of “Method
of the Year 2020” by Nature Method!!'>!'4. To date, over 100
studies have employed this technique in cancer biology and
immunology!!>120. Various commercial platforms, such as
Visium (10X Genomics), Stereo-seq (BGI), and MERFISH
(SeqFISH), have been developed for high-throughput spatial

118,121

transcriptomics . These methods enable researchers to

gain novel insight into tumor tissue architecture, heterogene-

ity, microenvironment, and infiltrating cell populations!22-124,
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However, the limited use of spatial transcriptomics in uncov-
ering cancer neoantigens may be attributed to constraints,
such as sequencing depth, high cost, and availability of bioin-
formatics tools!!®125126,

With the aid of more advanced high-throughput sequenc-
ing techniques, we can obtain a more comprehensive molec-
ular profile of tumors and immune systems, which enables
identification of TCR sequences that are associated with an
immune response against a specific neoantigen. A growing
number of studies have highlighted the relationship between
neoantigens and T cell recognition of cancer cells'?’. The
distribution and localization of T cells with distinct TCR
sequences offer valuable insights into the mechanisms and
functional role of T cells in effective cancer immunotherapy,
particularly their ability to recognize neoantigens presented
by the MHC complex!!®125) and have a critical role in the
recognition of neoantigens presented by the MHC. Spatial
transcriptomics sequencing can reveal the subtypes and TCR
profiles of T cells at a spatial resolution, enabling quick iden-
tification of neoantigen-reactive TCRs through computa-
tional predictions for putative neoantigen-MHC complexes.

Despite the potential benefits of multi-omics approaches,
significant challenges remain to be addressed, including the
development of robust and accurate algorithms for integrat-
ing different data types, as well as establishing standardized
protocols for sample collection and processing. Overall, these
methodologies hold great promise in improving the accuracy
of identifying immunogenic neoantigens and will be critical

for advancing the field.

Computational prediction of immunogenic
neoantigens

Neoantigen prediction is a crucial initial step in neoantigen-based
immunotherapy. Advances in sequencing technologies, compu-
tational algorithms, and machine learning techniques have led
to improved accuracy and efficiency in predicting neoantigens
with high immunogenicity, which are used for personalized vac-
cines for individual patients. However, due to the diversity and
stochastic of T cell immune responses and tumor heterogeneity,
the majority of reported neoantigen prediction pipelines have
exhibited a limited accuracy rate!»4370:105.128,129,

The process of neoantigen prediction typically involves
the identification of somatic mutations, HLA typing, peptide
processing, peptide-MHC binding affinity and presentation,

as well as TCR recognition of the neoantigen-MHC complex.
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Subsequently, candidate neoantigens are scored and ranked
based on the higher likelihood of immunogenicity. Recently,
the Tumor Neoantigen Selection Alliance (TESLA) has iden-
tified a set of key parameters for tumor epitope immuno-
genicity to enhance the accuracy of neoantigen prediction.
These parameters include binding affinity and stability, gene
expression level, peptide hydrophobicity, and foreignness!°.
Opver time, all tools and software packages required for neoan-
tigen prediction and selection have evolved with technologic
advancements. In this discussion, we will explore the latest
developments in this field along with the most commonly
used tools.

First, tumor-specific mutations are identified by analyz-
ing genomic and transcriptomic data from tumor and nor-
mal samples (typically peripheral blood mononuclear cells)
obtained from patients through WES and RNA sequencing.
A variety of software programs has been utilized to analyze
the sequencing data, such as Alfred and Qualimap2 for WES-
seq data analysis, minimap2 for RNA-seq analysis, STAR and
HISAT for SVs analysis, and MuTect2, CaVEMan, Strelka,
VarDict, and MuSE for SNVs and indels analysis!2”131-133,
Additionally, fusion genes were analyzed using STAR-Fusion,
EricScript, and Breakfast”®!34,

Next, MHC binding prediction tools evaluate the binding
affinity of the predicted mutant peptides to specific MHC
molecules. HLA molecules present neoantigens to T cells,
including MCH class I or II molecules, hence accurate HLA
typing is vital to predict neoantigens binding to the HLA
alleles. A wide range of tools have been developed and utilized
for various purposes’®!?8, Specific HLA typing methods are
utilized to determine an individual’s precise HLA alleles, such
as HLA-VBSeq, seq2HLA, HLAminer, HLAscan, HLA-HD,
HLAforest, and HISAT-genotype. To be presented to T cells
effectively, neoantigens must bind efficiently with MHC mole-
cules. However, predicting MHC binding specificity with pre-
cision is challenging due to the diverse array of MHC alleles
and the distinct binding preferences. The development of algo-
rithms that successfully anticipate MHC binding is pivotal in
enhancing neoantigen prediction accuracy. Additionally, vari-
ous tools, such as NetMHCpan4.1, MHCflurry, MHCnuggets,
EDGE, MHCRoBERTa, MixMHCpred2.0.1, NetMHCcons]1.1,
DeepSeqPanll, TransPHLA, pVACseq, EpiScan Predictor,
TLimmuno2, NetChop20S, NetChopCterm, ProteaSMM, and
NetChop-3.0 Cterm, are utilized to determine neoantigen
binding affinity with specific patient MCH class I or II mole-
cules (8-15 AA for MHC-I and 13-25 AA for MHC-IT) L135-144,
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Accurately predicting the immunogenicity of neoantigens
remains a challenge because not all neoantigens induce an
immune response. The intricate nature of the cancer genome
and the diverse TCR repertoire pose significant challenges in
identifying neoantigens through TCR sequencing. Because
each T cell possesses unique TCR sequences, not all TCRs
recognize a specific neoantigen. However, this obstacle can
be overcome by utilizing prediction algorithms that identify
TCR sequences for a given neoantigen. Immune repertoire
profiling is performed by deep sequencing T-cell receptor
genes of TILs and peripheral blood lymphocytes (PBLs) to
identify TCR sequences that bind to the predicted neoanti-
gens!*>1%% The binding between TCR and tumor neoantigen
has been investigated using several public datasets, including
TBAdb'¥’, VDJdb48-159 McPAS-TCR!®!, IEDB'>?, and the
Cancer Epitope Database and Analysis Resource (CEDAR)!,
Furthermore, various deep learning models have been
explored for predicting TCR-peptide binding, such as pMT-
net'>*, NetTCR'>, DeepTCR'*®, ImRex"*7, AttnTAP'4>, ATM-
TCR™8, DLpTCR!, TITAN!®, dbPepNeo02.0'¢!, epiTCR!*,
and TCR-Pred!®2. Additionally, assessing TCR clonality and
spatial localization allows for molecular tracking of anti-
tumor T cell trajectories, clonal dynamics, and phenotypic
changes during treatment. Ongoing research and clinical trials
are exploring the potential application of this approach in can-
cer treatment>>126,

Several software pipelines have been developed to stream-
line the process for neoantigen prediction and to rank the
most promising neoantigens based on the predicted binding
affinities, functional effects, and other contextual informa-
tion. These pipelines integrate various tools and algorithms to
automate prediction and analysis with limited accuracy, such
as pVAC-Seq and NetMHCpan. However, challenges related to
identifying immunogenic neoantigens and accurately predict-
ing the interactions with the immune system remain areas of

active research.

In vitro validation of immunogenic
neoantigens

Despite being a promising and innovative approach for
attacking and eliminating tumor cells, the efficacy of neoanti-
gen-based cancer immunotherapy relies heavily on the quality
of selected neoantigens. Computational prediction pipelines
are currently used to identify and prioritize potential neoanti-

gens that frequently generate false-positive neoantigens which
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only elicit limited anti-tumor immune responses in the clinic
setting. Assessing the precision of prediction algorithms in
identifying genuine neoantigens recognized by the patient’s
own T cells remains a challenge given that only a small pro-
portion of predicted neoepitopes are typically recognized by
T cells and elicit specific T cell responses in vivo'. Therefore,
it is crucial to accurately identify true-positive neoantigens for
effective clinical cancer treatment.

Multiple in vitro verification methods are utilized to iden-
tify immunogenic neoantigens that truly stimulate autologous
specific immune responses and eliminate tumor cells. The
immune response of neoantigen-reactive T cells is traditionally
detected using various techniques, including enzyme-linked
immunosorbent spot (ELISpot), flow cytometry, multi-color
labeled MHC tetramers, and T cell sequencing!®*18, Flow
cytometric measurement detects T cell activation markers
(CD4, CD8, CD137, CD107a, and INFy), while ELISpot assay
detects the secretion of INFy after stimulation with candidate
neoantigen vaccines derived from patient PBMCs or TILs!¢%17°,
Multicolor-labeled MHC tetramers can also be screened for
epitope short peptide and TCR affinity studies to evaluate
the reactivity of various potential epitopes of T cells follow-
ing candidate neoantigen stimulation'”>!72, Additionally, sin-
gle-cell RNA and TCR sequencing can be utilized to analyze
neoantigen-stimulated T cells, facilitating the identification
of activated T cells responding to neoantigens!®®1%7. Other
methods include chimeric receptors, known as signaling and
antigen-presenting bifunctional receptors (SABRs), for vali-
dating MHC-TCR complex interactions, as well as T-Scan for
detecting the physiologic activity of T cell killing has also been
explored in this application!42.

The further validation of neoantigens often relies on in vitro
tumor models. Nevertheless, conventional approaches using
primary cells, cell lines, or animal models possess inher-
ent limitations when studying cancer-immune interactions
that are directly applicable to human biology and clinical
translation. For example, 2D cell line cultures lack the spa-
tial architecture found in real tumors, while patient-derived
xenograft (PDX) models often better emulation of biologi-
cal characteristics but struggle with incorporating a patient’s
unique TME and immune system into mice. Consequently,
these methods fail to accurately replicate the intricate tumor-
immune microenvironment and the significant heterogene-
ity of solid tumors among patients'’>. Henceforth, there is a
need for a novel approach capable of identifying immuno-

genic neoantigens that can effectively induce an anti-tumor
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immune response and selectively eliminate tumor cells in
cancer treatment.

Patient-derived organoids (PDOs) have recently emerged
as a powerful tool for cancer research and personalized med-
icine!7#175, PDOs are three-dimensional cell culture models
that faithfully recapitulate the architecture, characteristics, and
functionality of original tumors!’%. In contrast to cell line cul-
tures and PDX models, PDO models provide a wider range of
cell types and maintain spatial structures that closely resemble
the corresponding tumor tissues in vivo. Moreover, the origin
of PDOs can be more diverse because PDOs can be derived
from surgically resected tissues, needle biopsy samples, circu-
lating tumor cells, and malignant effusions!”’. The pioneering
establishment of colon cancer PDOs was reported in 2011, fol-
lowed by subsequent studies of PDO models for liver!’8, pan-
creatic!”?, breast!’, and lung cancers!81-182,

The ability of PDO to recapitulate patient-specific tumor
characteristics and mimic the TME has made PDOs a valu-
able and reliable tool for validating and screening neoanti-
gen cancer vaccines!3»!84, There are two distinct methods
for constructing organoids within the immune microen-

vironment!8>186,

The first approach involves establishing
a co-culture system at the air-liquid interface in a Transwell
chamber to promote the proliferation of both organoids and
endogenous immune cells'®’-1%%, This culture system main-
tains the heterogeneity of the original TCR due to the presence
of endogenous immune cells; however, the culture system is
limited to maintaining the immune microenvironment for
only 2 months'®. The second approach involves a submerged
culture, in which exogenous immune cells are introduced
into tumor organoids for co-culture. It should be noted that
typically, submerged Matrigel PDO can only support the
growth of cancer cells; therefore, exogenous immune cells iso-
lated from the PBMCs or TILs must be introduced to create a
co-culture system that mimics the internal microenvironment
of the tumor patient'”*!°!. This submerged culture method
facilitates efficient interaction between cancer and immune
cells, allowing for long-term cultivation of tumor organoids
that can induce an immune microenvironment at any given
time. A PDO model with immunocompetent microenviron-
ments was established to conduct T cell cytotoxicity assays
for neoantigen vaccines with the aim of improving the preci-
sion in identifying neoantigen vaccines that elicit an immune
response (Figure 2). This framework provides a robust plat-
form for screening and validating neoantigen candidates, ulti-

mately leading to the development of personalized vaccines
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with high immunogenicity and potent tumor-killing capabili-

ties for clinical applications (Figure 2)!84192,

Optimization of neoantigen vaccine platform

To enhance the accessibility and scalability of clinical appli-
cations, ongoing efforts are being made to optimize the
manufacturing and delivery procedures of neoantigen-based
vaccines. The production process of neoantigen vaccines
involves synthesizing neoantigen vaccines in various formats,
such as peptides, DNA/RNA, or neoantigen-loaded DC vac-
cines. However, this production process is intricate and expen-
sive. Producing autologous DC cell-based neoantigen-loaded
vaccines incurs exorbitantly high costs and poses greater
challenges in terms of quality control and cold chain logistics
compared to conventional preparations. Furthermore, cur-
rently it is not feasible to make these treatments universally
applicable due to the cost, which remains difficult to reduce,
which poses a significant financial burden for cancer patients
without medical insurance. One strategy that shows promise
is utilizing synthetic biology methods to increase the efficiency
of vaccine production. It should be noted that with advancing
technology and streamlining of the manufacturing process,
there is an expectation for a decrease in the cost of these vac-
cines over time.

To elicit an effective immune response, a major challenge
lies in ensuring the precise delivery of the cancer vaccine to
its intended target site. Various administration methods have
been explored, including intravenous (IV), intramuscular
(IM), subcutaneous (SC), or intracutaneous (IC) injections,
and directly into lymph nodes. These approaches aim to effec-
tively introduce the neoantigen into the antigen-presenting
cells and generate a robust T cell response against cancer. Each
approach possesses distinct advantages and disadvantages
depending on factors, such as vaccine type, disease stage, and
patient immune status’193-1%,

Furthermore, the optimal timing and frequency of vacci-
nation have not been extensively investigated to date. Some
studies suggested that repeated or combination dosing might
be necessary to maintain an effective immune response,
but this strategy could increase the risk of adverse effects.
Additionally, patient-related factors, including immune status,
co-morbidities, and previous treatments, can all influence the
efficacy of neoantigen vaccines. For example, patients with
immunosuppression or a high tumor burden may have a

weaker response to the vaccine. The selection of an appropriate
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Figure 2

Illustration for the in vitro validation platform of the efficacy of neoantigen cancer vaccines. The framework provides an in vitro

platform for the screening and validating neoantigen candidates, including TCR-guided strategies, T cell activation validation, and organoid
killing assays, with the aim of improving the precision in identifying neoantigen vaccines that elicit a robust immune response and effectively
eliminate cancer cells. Consequently, positive outcomes facilitate the development of personalized vaccines with enhanced immunogenicity
and potent tumor-killing capabilities for clinical applications, thereby enabling the evaluation of neoantigen cancer vaccines suitable for

implementation in a clinical setting.

delivery method for neoantigen vaccines will depend on mul-
tiple factors and may vary among patients. Ongoing clinical
trials are currently exploring diverse vaccine platforms and
delivery methods to determine which vaccine platforms and
delivery methods offer the optimal balance between safety,

efficacy, and patient convenience.
Combination therapy

Considering the intricate mechanisms of the immune system

and the high heterogenicity and adaptability of solid tumors

during the treatment, combination therapies that target dif-
ferent phases of the cancer-immune cycle simultaneously may
prove more effective. Cancer cells have evolved innate defense
systems to evade immune recognition at each stage of the can-
cer immune cycle>'’. Most single-agent monotherapies only
target one or two stages of the anti-cancer immune pathway,
resulting in limited effectiveness for patients with advanced
malignancies. In contrast, combination therapies concurrently
target multiple phases of the cancer immune cycle, including
antigen release and presentation, immune cell priming and

activation, immune cell migration and invasion to tumors,
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as well as cancer cell recognition and killing. Dead cancer
cells generate additional de novo neoantigens that augment
and strengthen the immune response in subsequent cycles.
Therefore, combining neoantigen vaccines with other ther-
apies has been shown to enhance the anti-tumor immune
response and improve clinical outcomes in preclinical studies
and clinical trials, thereby initiating or amplifying the self-
sustaining cancer-immune cycle’!76198-200,

Recently, a variety of immunotherapeutic strategies have
been developed and integrated with neoantigen-based vac-
cines to create a platform for simultaneous administration
of multiple drugs or therapeutic agents. These agents syn-
ergistically activate different stages of the cancer-immune
cycle, reverse immunosuppression, and foster an immune-
supporting TME. By combining therapeutic agents with dif-
ferent mechanisms of action, these strategies induce robust,
effective, durable, and tumor-specific immunity. Numerous
clinical studies have shown that combining neoantigen-based
cancer immunotherapy with traditional cancer treatments,
such as ICIs, radiotherapy, and chemotherapy, can result in
more substantial and long-lasting therapeutic outcomes?°1-202,
Combination strategies involve diverse approaches to induce
cell death, including chemotherapy, radiotherapy, targeted
therapy, and oncolytic viruses, which all enhance the release
of de novo neoantigens’!:820%204 Fyrthermore, modifying
the TME and intra-tumoral cytokine milieu, such as IL-2,
IFN, and transforming growth factor (TGF)-p, which may
promote differentiation of immature T cells into effector T
cells and infiltration into tumors. Overcoming immunosup-
pression by using ICIs (anti-CTLA4/PD-1/PD-L1 antibodies)
and indoleamine-pyrrole 2,3-dioxygenase (IDO) inhibi-
tors is also crucial in activating different T cell populations.
Lastly, augmenting both the quantity and quality of tumor-
specific T cells through cancer vaccines and ACT is crucial for
enhancing the clinical efficacy of immunotherapy via imple-
mentation of effective recombination strategies?>9420%206,
To achieve improved clinical outcomes in solid tumors,
further exploration into recombination strategies involving
neoTCR-T, neoCAR-T, and CAR-M cell therapy for solid
tumors is necessary®.

Combination therapies have shown promising results in
preclinical and clinical studies, with improved response rates
and prolonged progression-free survival. Nevertheless, the
efficacy of these treatments may vary depending on factors,
such as cancer type and stage, patient immune status, and

treatment regimen. Further research is needed to determine
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the optimal combination strategies of neoantigen vaccines

with other therapies.

Regulatory framework of neoantigen cancer
vaccines

Recent advances in cancer vaccines have expedited the devel-
opment and regulatory approval of neoantigen-based cancer
vaccines. Due to the individualized nature of neoantigens
among patients, neoantigen cancer vaccines are tailored spe-
cifically for each person, which ensures a personalized treat-
ment approach. To ensure the safety, quality, and efficacy of
vaccines, neoantigen cancer vaccines encounter various regu-
latory and policy challenges domestically and internationally.
Government regulatory departments have a crucial role in
overseeing, monitoring, and enforcing stringent standards for
vaccine manufacturing, while also providing essential support
through funding basic and translational research, as well as
offering guidance.

Stringent regulations governing neoantigen cancer vaccines
are implemented to minimize risks and protect patients’2. The
regulatory process for clinical trials and vaccine approval is
overseen by the FDA in US. Prior to authorization for human
use, neoantigen cancer vaccines must undergo rigorous pre-
clinical and clinical trials to demonstrate both safety and
efficacy. The Center for Biologics Evaluation and Research
(CBER), a division of the US FDA, actively develops specific
guidelines and regulations pertaining to these vaccines. The
European Medicines Agency (EMA) is responsible for regu-
lating neoantigen cancer vaccines in Europe. The Committee
for Medicinal Products for Human Use (CHMP) evaluates
data submitted by companies, including manufacturing qual-
ity, non-clinical data, and clinical trial results. Based on this
assessment, CHMP provides a recommendation for approval,
which is then finalized by the European Commission. The
Pharmaceuticals and Medical Devices Agency (PMDA) is the
regulatory authority for pharmaceuticals in Japan. The PMDA
ensures compliance with Japanese standards through compre-
hensive scientific evaluations that include facility inspections,
as well as assessments of quality management systems>%’.

Based on the current legal and regulatory framework in
China, combined with actual cases, the clinical trial of neo-
antigen cancer vaccine adopts a dual-track regulatory mode,
also known as “conditional approval.” This approach involves
pharmaceutical companies initiating clinical trials, while

researchers initiate a separate clinical trial regulatory mode?®s.
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The dual track regulation approach grants conditional
approval based on initially promising safety and efficacy data,
while further clinical data is collected after the therapy is
marketed. Conditional approval has been utilized by the US
FDA and EMA for new therapies addressing severe or life-
threatening conditions, such as cancer and Ebola virus infec-
tion. To address this issue more effectively, the NMPA recently
released guidelines for developing and evaluating therapeutic
cancer vaccines. These guidelines include “Guiding Principles
for Clinical Trials of Tumor Therapeutic Vaccines (Draft)”
(9 October 2022) and “Guidelines for Quality Management of
Cell Therapy Products (Trial Implementation)” (31 October
2022), which are based on existing regulatory documents for
clinical trial supervision. These guidelines not only regulate
and guide pharmaceutical research and development, pro-
duction, and registration of immune cell therapy products,
but also pay special attention to personalized or autologous
vaccines. The guidelines provide explicit and comprehen-
sive instructions regarding production processes and quality
control measures for cancer vaccines. Moreover, the guide-
lines ensure compliance with Good Clinical Practice (GCP)
standards that mandate safety and efficacy assessments, while
facilitating effective connection between investigator-initiated
clinical trial data for new drug research applications.

While specific regulatory frameworks have been established
for neoantigen cancer vaccines in all of these countries and
regions, it should be noted that these frameworks are subject
to continuous updates and refinements as scientific knowledge
progresses. The development of personalized vaccines based
on an individual’s unique cancer neoantigens poses various
challenges, such as the absence of standardized guidelines,
variations in evaluation criteria across different regulatory
authorities, difficulties in regulating the dynamic nature of
neoantigen cancer vaccines effectively, and ensuring robust
post-market surveillance along with long-term safety mon-
itoring. Overcoming these obstacles requires collaborative
efforts between regulatory authorities, industry stakehold-
ers, and scientific communities to establish comprehensive
globally harmonized regulations that guarantee adherence to
necessary standards regarding safety, quality, and efficacy of

cancer vaccines.

Collaboration

The development of neoantigen-based cancer vaccines is tech-

nology-intensive and talent-oriented. From the perspective
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of the entire workflow and industrial chain, manufacturing
neoantigen vaccines, such as peptides, mRNA/DNA vaccines,
and neoantigen-loaded DC therapies, are highly complex. The
emergence of this vaccine therapy has led to extensive collab-
oration among research institutions, hospitals, and biotech
and pharmaceutical companies involving professionals from
diverse fields, including researchers and physicians in front-
line clinical hospitals, gene sequencing firms, Al big data com-
panies, and CRO companies. Such collaborations facilitate
crucial exchange of knowledge, technology, and resources that
are vital for advancing the discovery and production of effec-
tive vaccines.

Although many clinical trials of neoantigen vaccines are
still in the early phase, this field is rapidly advancing globally.
Research institutions within universities and other academic
organizations possess the valuable scientific expertise and
resources to conduct fundamental research, identify neoanti-
gens, develop techniques and technology to deliver vaccines,
and study the correlates of vaccine-mediated protection.
Hospitals play a vital role in conducting clinical trials of neo-
antigen vaccines as well as providing patient samples for vac-
cine development and evaluation. Biotech and pharmaceutical
companies have a crucial role in propelling the clinical appli-
cation of neoantigen vaccines, often having specific expertise
in areas, such as high-throughput sequencing, recombinant
DNA technology, protein engineering, biosynthetic technol-
ogy, and vaccine delivery platforms. Many companies cooper-
ate with each other to explore the clinical effect of neoantigen
cancer vaccine in cancer treatment, and some potential prod-
ucts have received a US FDA fast track designation and clinical
trial approval, such as mRNA-4157/940 (Moderna and Merck,
2022), BNT111(BioNTech), NEO-PV-01(Neon Therapeutics),
GRANITE (Gritstone Oncology), AutoSynVax™ [ASV™
(Agenus Inc.)], and GEN-009 (Genocea Biosciences) (Table 4).
Several emerging biotech companies are actively developing
neoantigen-based cell immunotherapy, including peptide,
DC, and mRNA vaccines in China. To date, many products
have received implied approval for the clinical trial by the
NMPA, such as Neo-T (Beijing Genomics Institute Jinuoyin),
LK101 injection (Likang Life Sciences), XH101 injection
(NeoCura BioTech), iNeo-Vaccine (Shanghai GeneChem), and
ZSNEO-DCI.1 (Zhongsheng Kangyuan Biotechnology). The
aforementioned advances have been achieved through a strong
collaborative partnership with hospitals and researchers.

By leveraging collaboration and resource-sharing among

diverse organizations, it is possible to accelerate the
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development and clinical implementation of neoantigen
vaccines. This collaborative approach also aids in identifying
ideal vaccine targets, thus generating a range of candidate vac-
cines customized for each cancer patient. Moreover, a collab-
orative approach ensures adherence to regulatory standards,
while paving the way for both personalized neoantigen vac-
cines targeting specific tumors and shared neoantigen vaccines
that benefit public health.

Future perspectives

As additional scientific and clinical evidence continues to
emerge demonstrating the feasibility, safety, and promising
clinical efficacy of neoantigen-based cancer immunotherapy
in patients with advanced solid tumors. By leveraging the
immune system recognition of tumor-specific neoantigens,
these vaccines hold promise in improving patient clinical out-
comes by addressing tumor heterogeneity and immune eva-
sion challenges. However, it is evident that several obstacles
still need to be addressed before widespread adoption in clin-
ical practice.

Cancer cells have developed intrinsic mechanisms to evade
immune responses at every stage of the cancer immune cycle,
posing a formidable challenge for vaccine treatment that must
be addressed comprehensively™?’. These challenges encom-
pass identifying the essential properties of immunogenic neo-
antigens that elicit potent tumor-specific immunity, including
coding and non-coding regions, efficiently and accurately
detecting tumor-specific neoantigens, optimizing production
and delivery of personalized cancer vaccines, devising strate-
gies to overcome immune resistance and tumor heterogene-
ity, ensuring durability of immune memory and adaptability
through epitope spreading, and minimizing potential toxicity
and off-target effects.

Given the intricate mechanisms of immune evasion in
cancer, combination therapies that simultaneously target dis-
tinct stages of the cancer immune cycle may exhibit enhanced
efficacy. The induction of cancer cell death through chemo-
therapy, radiotherapy, targeted therapy, oncolytic virus ther-
apy, and other cellular immunotherapies will stimulate the
generation and release of additional de novo neoantigens,
thereby further augmenting the anti-tumor immune response
and promoting durable immune memory. It is important to
note that the development of personalized neoantigen-based
cancer vaccines entails individualized costs and timelines.

Moreover, liquid biopsy-based high-throughput sequencing

Li et al. Neoantigen cancer vaccines

holds promise as a viable alternative for assessing a patient’s
complete somatic tumor mutations because obtaining multi-
ple tissue samples from different regions is often impractical
in clinical settings. Overall, while neoantigen vaccines hold
potential in solid tumor treatment, further research is imper-
ative to address challenges and optimize the clinical effective-
ness. Insight derived from clinical trials has paved the way for
personalized neoantigen cancer immunotherapy, particularly
benefiting patients who are unresponsive to standard-of-care
immunotherapies and striving towards achieving a cure for

cancer.
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