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Abstract

Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of coro-

navirus disease 2019 (COVID-19), has infected millions of individuals worldwide, which

poses a severe threat to human health. COVID-19 is a systemic ailment affecting various tis-

sues and organs, including the lungs and liver. Intrahepatic cholangiocarcinoma (ICC) is

one of the most common liver cancer, and cancer patients are particularly at high risk of

SARS-CoV-2 infection. Nonetheless, few studies have investigated the impact of COVID-19

on ICC patients.

Methods

With the methods of systems biology and bioinformatics, this study explored the link

between COVID-19 and ICC, and searched for potential therapeutic drugs.

Results

This study identified a total of 70 common differentially expressed genes (DEGs) shared by

both diseases, shedding light on their shared functionalities. Enrichment analysis pinpointed

metabolism and immunity as the primary areas influenced by these common genes. Subse-

quently, through protein-protein interaction (PPI) network analysis, we identified SCD,

ACSL5, ACAT2, HSD17B4, ALDOA, ACSS1, ACADSB, CYP51A1, PSAT1, and HKDC1 as

hub genes. Additionally, 44 transcription factors (TFs) and 112 microRNAs (miRNAs) were

forecasted to regulate the hub genes. Most importantly, several drug candidates (Periodate-

oxidized adenosine, Desipramine, Quercetin, Perfluoroheptanoic acid, Tetrandrine,
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Pentadecafluorooctanoic acid, Benzo[a]pyrene, SARIN, Dorzolamide, 8-Bromo-cAMP)

may prove effective in treating ICC and COVID-19.

Conclusion

This study is expected to provide valuable references and potential drugs for future research

and treatment of COVID-19 and ICC.

1. Introduction

Coronavirus disease 2019 (COVID-19), first identified in December 2019 [1], is a recently dis-

covered respiratory ailment caused by the severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2). While most COVID-19 patients experience mild to moderate symptoms, 5%

suffer from acute respiratory distress syndrome (ARDS), multiple organ failure, or septic

shock, and approximately 15% develop severe pneumonia [2]. New SARS-CoV-2 variants,

such as Alpha, Beta, Delta, and Omicron, continue to emerge, leading to high case rates and

significant global mortality. As of November 2023, the World Health Organization (WHO)

has reported 772,052,752 COVID-19 cases, resulting in 6,985,278 deaths [3]. Previous research

indicates that SARS-CoV-2 primarily infects human cells when its surface spike protein binds

to the angiotensin-converting enzyme 2 (ACE2) receptor [4]. The spike protein is the protein

for SARS-CoV-2 to recognize host cells and is also the main target of the human immune sys-

tem [5].

Although the virus directly infects the lungs, its effect on the liver cannot be ignored.

Patients with severe COVID-19 seem to have higher rates of liver dysfunction [6]. Patients

with liver dysfunction are identified to have high risk of developing severe COVID-19 [7, 8].

Clinical data also demonstrate that patients with comorbidities fare worse than those without

them [9, 10]. Besides, cancer patients undergoing chemotherapy or immunotherapy are more

susceptible to COVID-19 infection [11]. Bioinformatics approaches have been employed to

investigate the link between colorectal cancer and COVID-19 [12]. Liver cancer, ranking as

the sixth most common and third deadliest malignancy globally [13], is closely associated with

cirrhosis, Hepatitis B Virus (HBV) and Hepatitis C Virus (HCV) infections, and metabolic

syndrome [14]. First-line (gemcitabine and cisplatin), second-line (FOLFOX), and adjuvant

(capecitabine) systemic chemotherapy are currently the accepted standard of treatment of ICC

[15]. In addition, ICC patients often experience severe liver dysfunction. Therefore, to better

overcome COVID-19 and ICC in the future, it is imperative to explore and clarify the internal

molecular mechanism between these two diseases.

This study utilized two datasets, GSE152418 and GSE119336, obtained from the Gene

Expression Omnibus (GEO) database, to investigate the correlations between ICC and

COVID-19. Differentially expressed genes (DEGs) were identified, and then 70 shared DEGs

genes were found for both diseases. Pathway analysis was conducted using these mutual DEGs

to gain insights into the underlying gene expression mechanisms. To gather hub genes, a pro-

tein-protein interaction (PPI) network was constructed using the 70 recognized DEGs. Next,

the hub genes were used to elucidate the gene-regulatory network, predict potential drugs, and

complete the gene-disease association network. A flowchart of the overall work is presented in

Fig 1. The findings of this study will enhance our understanding of the interplay between

COVID-19 and ICC, aid in drug selection, and facilitate the development of novel therapeutic

strategies for combatting both diseases.
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2. Materials and methods

2.1 Collection of gene expression datasets

RNA-seq datasets from the NCBI [16], GEO (http://www.ncbi.nlm.nih.gov/geo) database were

obtained to investigate common biological interrelationships between COVID-19 and ICC.

The COVID-19 dataset, with GEO accession ID GSE152418, comprises transcriptional profiles

from 17 healthy individuals and 17 COVID-19-infected individuals, sequenced using the Illu-

mina NovaSeq 6000 platform (Homo sapiens) for RNA extraction [17]. The ICC dataset (GEO

accession ID: GSE119336) contains 15 pairs of human ICC tumors and non-tumor liver tissues

that were sequenced using an Illumina HiSeq 2000 (Homo sapiens) high-throughput sequenc-

ing donated by Zhang et al. [18].

2.2 Identification of differentially expressed genes and shared differentially

expressed genes between ICC and COVID-19

DEGs are genes that exhibit significant differences in transcriptional levels among various test

conditions [19]. The DEGs of GSE119336 and GSE152418 were identified from the expression

values by R (version 4.2.1) software with the LIMMA package [20] and corrected by Benja-

mini-Hochberg to reduce the error detection rate (FDR). A cutoff criterion of FDR < 0.05 and

|log2 Fold Change| > 1 was employed to identify significant DEGs in both datasets. The shared

DEGs of GSE119336 and GSE152418 were acquired using the jvenn [21] (http://jvenn.

toulouse.inra.fr/app/example.html), an online VENN graph mapping platform, to plot VENN

analysis.

Fig 1. Schematic illustration of the overall general workflow of this study.

https://doi.org/10.1371/journal.pone.0300441.g001
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2.3 Gene ontology and pathway enrichment analysis

Gene enrichment analysis is a crucial analytical approach for categorizing genes into biological

functions [22]. In order to understand the function of common DEGs, we performed gene ontol-

ogy (GO) and pathway enrichment analyses connected with the mutual DEGs using Enrichr [23]

(https://maayanlab.cloud/Enrichr/), a wide range of online gene set enrichment tool. The three

types of GO database in the GO database are biological processes (BP), molecular functions (MF),

and cellular components (CC). In pathway enrichment analysis, four databases were regarded,

including the Kyoto Encyclopedia of Genes and Genomes (KEGG), Wikipathways, Reactome,

and the Bioplanet. The P-value< 0.05 was used as a criterion to screen for reliable results.

2.4 Protein-protein interaction network analysis and hub gene extraction

The PPI was established using the STRING [24] (version 11.5) database (https://cn.string-db.

org/), an online protein-protein association networks platform, and was then visualized and

drawn as a network using Cytoscape [25] (version 3.9.1), an open source software platform for

visualizing complex networks. A PPI network was constructed based on proteins encoded by

common DEGs shared between COVID-19 and ICC, using a composite score threshold of

0.15. Hub genes, which demonstrate strong connections within potential modules [26], were

predicted using the Cytoscape plug-in cytoHubba.

2.5 Gene-regulatory network analysis

To discover the transcriptional factors (TFs) and microRNAs (miRNAs) that regulate the hub

genes post-transcriptionally, hub gene-TF interplay networks and hub gene-miRNA interac-

tion networks have been dug by means of NetworkAnalyst [27] (version 3.0), a comprehensive

visual analysis platform for gene expression profiling. The hub gene-TF interaction networks

were built according to the JASPAR [28] database. Hub gene-miRNA interaction networks

were constructed via the TarBase [29] (version 8.0) databases.

2.6 Gene-disease association analysis

In order to study the human genetic illnesses of shared genes between COVID-19 and ICC,

DisGeNET [30] (https://www.disgenet.org/), a publicly accessible database containing infor-

mation on approximately 24,000 diseases, 17,000 genes, and 117,000 genetic variations related

to human illnesses, was used in our analysis. Similarly, NetworkAnalyst and Cytoscape were

used to dig gene-disease relationships in order to find diseases associated with common DEGs.

2.7 Evaluation of candidate drugs

To anticipate protein-drug interactions and discover prospective pharmacological substances related

to hub genes, we employed the Drug Signatures Database [31] (DSigDB, http://tanlab.ucdenver.

edu/DSigDB), which contains 17,389 unique chemicals that span 19,531 genes and has 22,527 gene

sets. Using the Enrichr web server and the DSigDB database, medicines targeting hub genes were

identified between the COVID-19 and ICC datasets using a statistical threshold of P-value< 0.05.

3. Results

3.1 Recognition of differentially expressed genes and biological

relationships between ICC and COVID-19

In order to evaluate the interactions and implications of ICC with COVID-19, the RNA-seq

dataset was examined from the National Center for Biotechnology Information (NCBI). In the
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ICC dataset, 2,537 DEGs was found, including 1,095 were up-regulated and 1,442 were down-

regulated (Fig 2A and S1 Table). Meanwhile, there are 1,267 up-regulated and 891 down-regu-

lated genes showed in the COVID-19 dataset (Fig 2B and S2 Table). Table 1 is a list of the con-

densed data of DEGs. With the use of the cross-comparative analysis, we were able to find 70

DEGs that were shared by the ICC and COVID-19 datasets (Fig 2C and S3 Table). These out-

comes revealed that COVID-19 and ICC had certain molecular similarities.

3.2 Gene enrichment analyses of shared DEGs

Our study used gene ontology and pathway enrichment analysis to learn more about these typ-

ical DEGs’ roles and signaling pathways. Gene functional similarity is frequently assessed

using the GO enrichment analysis [32]. A modeling technique called pathway analysis is used

Fig 2. Volcano plots and Venn diagram depicts the shared DEGs among COVID-19 and ICC. Volcano plots of (A) COVID-19 and (B) ICC, with genes

with |log2Fold Change|> 1 and FDR< 0.05. (C) The Venn diagram depicts the shared DEGs among COVID-19 and ICC.

https://doi.org/10.1371/journal.pone.0300441.g002

Table 1. Overview of datasets with their geo-features and their quantitative measurements in this analysis.

Disease name GEO accession GEO platform Total DEGs count Up regulated DEGs count Down regulated DEGs count

ICC GSE119336 GPL11154 2,537 1,095 1,442

COVID-19 GSE152418 GPL24676 2,113 1,267 846

https://doi.org/10.1371/journal.pone.0300441.t001
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to show how crucial molecular or biological processes interact and illustrate the reciprocal

impacts of various diseases [33]. In order to uncover highly enriched functional GO keywords

and pathways, we ran a functional-enrichment test on common DEGs using the Enrichr

program.

70 common DEGs were enriched in 334 terms, including 253 biological processes, 65

molecular functions, and 16 cellular components (S4 Table). Then we summarized the top 10

terms according to P-value in each category in Table 2 and visualized in Fig 3A–3C. It can be

found that many of these terms are related to metabolism and immunity, such as lipid biosyn-

thetic process (GO:0008610) and negative regulation of dendritic cell apoptotic process

(GO:2000669), which have a strong association with COVID-19 and ICC.

We found 22 reliable pathways in Kyoto Encyclopedia of Genes and Genomes (KEGG), 32

reliable pathways in Wikipathways, 62 reliable pathways in Reatcome, and 77 reliable pathways

in Bioplanet (S5 Table). The top 10 reliable pathways found in each database are listed in

Table 3, and the bar graphs of pathway enrichment analysis are shown in Fig 3D–3G. In these

pathways, more about the metabolic pathways were discovered, such as glyoxylate and dicar-

boxylate metabolism in KEGG, fatty acid biosynthesis in Wikipathways, metabolism of

Table 2. Ontological analysis of common DEGs between COVID-19 and ICC.

Category GO ID Term P-value Genes

Biological Process GO:0008610 lipid biosynthetic process 1.78E-04 XBP1/SCD/CYP51A1/ACSL5
GO:2000669 negative regulation of dendritic cell apoptotic process 2.51E-04 CCL21/LILRB1
GO:0048247 lymphocyte chemotaxis 4.91E-04 CCL21/CCL20/CYP7B1
GO:2000668 regulation of dendritic cell apoptotic process 6.51E-04 CCL21/LILRB1
GO:1901617 organic hydroxy compound biosynthetic process 7.15E-04 PSAT1/HSD17B4/CYP7B1
GO:2000107 negative regulation of leukocyte apoptotic process 7.79E-04 CCL21/LILRB1
GO:0043547 positive regulation of GTPase activity 9.21E-04 ITGB1/ARHGAP11A/CCL21/GRTP1/CCL20
GO:0010560 positive regulation of glycoprotein biosynthetic process 1.07E-03 CCL21/SLC2A10
GO:2000403 positive regulation of lymphocyte migration 1.07E-03 CCL21/CCL20
GO:0072330 monocarboxylic acid biosynthetic process 1.40E-03 XBP1/HSD17B4/CYP7B1

Cellular Component GO:1903561 extracellular vesicle 1.16E-03 FGB/GPM6A/PROM1
GO:0098858 actin-based cell projection 3.09E-03 ITGB1/GPM6A/PROM1
GO:0065010 extracellular membrane-bounded organelle 1.65E-02 FGB/GPM6A
GO:0030868 smooth endoplasmic reticulum membrane 1.74E-02 FTCD
GO:0030175 filopodium 1.76E-02 ITGB1/GPM6A
GO:0031093 platelet alpha granule lumen 2.31E-02 FGB/ALDOA
GO:0005759 mitochondrial matrix 3.37E-02 AMT/NAGS/ACSS1/ACADSB
GO:0042627 chylomicron 3.45E-02 APOC1
GO:0005789 endoplasmic reticulum membrane 3.82E-02 SCD/CYP51A1/ACSL5/CHPT1/CYP7B1/FTCD
GO:0031091 platelet alpha granule 3.97E-02 FGB/ALDOA

Molecular Function GO:0008168 methyltransferase activity 7.15E-04 AS3MT/AMT/LCMT1
GO:0008376 acetylgalactosaminyltransferase activity 4.01E-03 B3GNT3/B4GALNT4
GO:0004175 endopeptidase activity 4.93E-03 F9/KDM8/MMP28/CASP2/HABP2
GO:0008395 steroid hydroxylase activity 7.04E-03 CYP2A7/CYP7B1
GO:0048020 CCR chemokine receptor binding 9.50E-03 CCL21/CCL20
GO:0008757 S-adenosylmethionine-dependent methyltransferase activity 9.94E-03 AS3MT/LCMT1
GO:0008009 chemokine activity 1.13E-02 CCL21/CCL20
GO:0042379 chemokine receptor binding 1.33E-02 CCL21/CCL20
GO:0015485 cholesterol binding 1.33E-02 APOF/PROM1
GO:0098639 collagen binding involved in cell-matrix adhesion 1.74E-02 ITGB1

https://doi.org/10.1371/journal.pone.0300441.t002
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steroids in Reactome, and bile acid and bile salt metabolism in BioPlanet, which indicated that

COVID-19 and ICC have common effects on these pathways.

3.3 Protein-protein interaction networks analysis and identification of hub

genes

To better understand biological signals, response mechanisms of energy substance metabo-

lism, and functional links between proteins in disease states, this study obtained the PPI net-

work via STRING. Subsequently, PPI was visualized in Cytoscape to forecast interaction

between common protein-coding DEGs. The PPI network of common DEGs consists of 65

nodes and 177 edges (Fig 4 and S6 Table). According to PPI network analysis integrating Cyto-

hubba plugin in Cytoscape, we ranked the most interconnected nodes top 10 DEGs (14.28%)

as hub genes. The hub genes are as follows: SCD, ACSL5, ACAT2,HSD17B4, ALDOA, ACSS1,

Fig 3. Analysis of common DEGs between COVID-19 and ICC using ontology and pathway enrichment. Ontological analysis: (A) Biological processes, (B)

Molecular function, and (C) Cellular components. Pathway enrichment analysis: (D) KEGG, (E) Wikipathways, (F) Reactome, and the (G) Bioplanet.

https://doi.org/10.1371/journal.pone.0300441.g003
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Table 3. Pathway enrichment analysis of common DEGs between COVID-19 and ICC.

Category Pathway P-value Genes

KEGG Glyoxylate and dicarboxylate metabolism 1.56E-04 AMT/ACSS1/ACAT2
Fatty acid degradation 4.58E-04 ACSL5/ACADSB/ACAT2
Primary bile acid biosynthesis 1.59E-03 HSD17B4/CYP7B1
Glycolysis / Gluconeogenesis 1.68E-03 HKDC1/ALDOA/ACSS1
One carbon pool by folate 2.20E-03 AMT/FTCD
Complement and coagulation cascades 3.30E-03 FGB/C8G/F9
Biosynthesis of unsaturated fatty acids 4.01E-03 SCD/HSD17B4
Fructose and mannose metabolism 5.94E-03 HKDC1/ALDOA
Propanoate metabolism 6.30E-03 ACSS1/ACAT2
Various types of N-glycan biosynthesis 8.23E-03 MAN1A1/B4GALNT4

Wikipathway Complement and Coagulation Cascades 1.10E-03 FGB/C8G/F9
Oxidation by Cytochrome P450 1.28E-03 CYP2A7/CYP51A1/CYP7B1
Sterol regulatory element-binding proteins

(SREBP) signaling

1.82E-03 SCD/CYP51A1/ACSS1

Fatty Acid Biosynthesis 2.67E-03 SCD/ACSL5
Blood Clotting Cascade 2.91E-03 FGB/F9
Unfolded protein response 3.17E-03 XBP1/CASP2
Statin inhibition of cholesterol production 4.61E-03 APOC1/ACSS1
Gastric Cancer Network 1 4.61E-03 ESM1/RUVBL1
One-carbon metabolism 4.93E-03 AMT/FTCD
Nuclear Receptors Meta-Pathway 5.20E-03 SLCO1B1/SLC2A10/CCL20/SCD/CES3

Reactome Phase I—Functionalization Of Compounds 1.71E-06 CYP2A7/CYP51A1/CYP7B1/ACSS1/CES3/BPHL
Biological Oxidations 1.11E-05 CYP2A7/AS3MT/CYP51A1/CYP7B1/ACSS1/CES3/BPHL
Metabolism 5.46E-05 CYP51A1/AMT/ACSL5/HSD17B4/CYP7B1/BPHL/ACADSB/FTCD/CYP2A7/SLCO1B1/

AS3MT/PSAT1/SCD/B3GNT3/UPP2/CHPT1/NAGS/ACSS1/CES3
Metabolism Of Steroids 1.99E-04 SLCO1B1/SCD/CYP51A1/HSD17B4/CYP7B1
Bile Acid And Bile Salt Metabolism 5.24E-04 SLCO1B1/HSD17B4/CYP7B1
Cytochrome P450—Arranged By Substrate

Type

1.54E-03 CYP2A7/CYP51A1/CYP7B1

Plasma Lipoprotein Assembly, Remodeling,

And Clearance

1.98E-03 APOC1/APOF/CES3

Synthesis Of Bile Acids And Bile Salts Via

7Alpha-Hydroxycholesterol

3.17E-03 HSD17B4/CYP7B1

Endogenous Sterols 4.01E-03 CYP51A1/CYP7B1
Synthesis Of Bile Acids And Bile Salts 6.30E-03 HSD17B4/CYP7B1

BioPlanet Metabolism 3.08E-05 CYP51A1/AMT/ACSL5/HSD17B4/CYP7B1/ACADSB/FTCD/ACAT2/CYP2A7/PSAT1/
B3GNT3/MAN1A1/UPP2/CHPT1/NAGS/ALDOA/ACSS1

Bile acid and bile salt metabolism 1.13E-04 SLCO1B1/HSD17B4/CYP7B1
Fatty acid metabolism 4.27E-04 ACSL5/ACADSB/ACAT2
Cytochrome P450 metabolism of endogenous

sterols

1.23E-03 CYP51A1/CYP7B1

Extrinsic prothrombin activation pathway 1.23E-03 FGB/F9
Cytochrome P450 pathway 1.28E-03 CYP2A7/CYP51A1/CYP7B1
Primary bile acid biosynthesis 1.40E-03 HSD17B4/CYP7B1
Phase I of biological oxidations:

functionalization of compounds

1.82E-03 CYP51A1/CYP7B1/ACSS1

Complement and coagulation cascades 1.90E-03 FGB/C8G/F9
Blood clotting cascade 2.91E-03 FGB/F9

https://doi.org/10.1371/journal.pone.0300441.t003
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ACADSB, CYP51A1, PSAT1, andHKDC1. With the aid of the Cytohubba plugin, we also built

a network of submodules to better comprehend their closeness and close connection, includ-

ing 35 nodes and 114 edges (Fig 5). In the following analysis, we will focus on these 10 hub

genes. These hub genes show potential biomarkers that can provide new therapeutic strategies

for COVID-19 and ICC.

3.4 Construction of regulatory networks at transcriptional level

To better understand the regulatory hub genes and detect the key alterations at the transcrip-

tional level, we used network analysis to search for TFs and miRNAs of regulatory hub genes.

The TFs-hub genes interactions are shown in Fig 6, and the information of interaction is pre-

sented in S7 Table. In the network, 44 TFs have been found. And ALDOA, CYP51A1, ACSL5,

SCD, and CREB1 were more highly expressed among hub genes as genes have a higher degree

in the network of TF-hub gene interactions. S1 Fig and S8 Table depict the relationships of

miRNA-hub genes. By the similar method, multiple discovered hub genes were projected to be

regulated by 112 miRNAs, such as SCD, ALDOA, PSAT1, and CYP51A1. In-depth study of

these genes has common implications for treating COVID-19 and ICC.

3.5 Gene-disease association analysis

If different diseases have one or more similar genes, then we consider these diseases to be

related to each other [34]. A total of 263 diseases were found to be associated with common

Fig 4. PPI network of common DEGs between COVID-19 and ICC. The circular nodes in the figure stand in for DEGs, while the edges indicate node

interactions. The PPI network consists of 177 edges and 65 nodes. String was used to create the PPI network, and Cytoscape was used to display it.

https://doi.org/10.1371/journal.pone.0300441.g004
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genes and screened for significant diseases associated with at least two common genes (Fig 7).

In our network, many diseases related to liver and cancer have been found, such as cholestasis,

elevated hepatic transaminases, fatty liver, liver cirrhosis, liver dysfunction, mammary neo-

plasms, neoplasm invasiveness, neoplasm metastasis, non-small cell lung carcinoma, and pros-

tatic neoplasms. Besides, the gene-disease association analysis also found some psychiatric

Fig 5. Determination of hub genes from the PPI network by using the Cytohubba plugin in Cytoscape. Hub genes were obtained using the Cytohubba

plugin. Here, the red nodes indicate the highlighted top 10 hub genes and their interactions with other molecules. The network consists of 35 nodes and 144

edges.

https://doi.org/10.1371/journal.pone.0300441.g005

PLOS ONE The connection of SARS-CoV-2 infection and intrahepatic cholangiocarcinoma

PLOS ONE | https://doi.org/10.1371/journal.pone.0300441 April 22, 2024 10 / 19

https://doi.org/10.1371/journal.pone.0300441.g005
https://doi.org/10.1371/journal.pone.0300441


disorders, including epilepsy, hyperreflexia, schizophrenia, and cognitive delay. These results

portend the common association of COVID-19 and ICC with these diseases.

3.6 Identification of candidate drugs

To discover potential drugs for COVID-19 and ICC, we analyzed the protein-drug interactions

of hub genes [35]. Potential therapeutic drugs were identified from the DSigDB database based

on transcription characteristics using enrichment, and the top 10 candidate compounds (Peri-

odate-oxidized adenosine, Desipramine, Quercetin, Perfluoroheptanoic acid, Tetrandrine,

Pentadecafluorooctanoic acid, Benzo[a]pyrene, SARIN, Dorzolamide, 8-Bromo-cAMP) were

identified based on P-value. The top ten enriched drugs in the DSigDB database are shown in

Table 4, which indicated potential therapeutic effects on both COVID-19 and ICC.

Fig 6. Interaction network of hub-gene-TFs. The cohesive regulatory interaction network of hub-gene-TFs obtained from the Network Analyst and described

by Cytoscape. Herein, the green nodes are TFs, and the yellow nodes are hub genes.

https://doi.org/10.1371/journal.pone.0300441.g006

PLOS ONE The connection of SARS-CoV-2 infection and intrahepatic cholangiocarcinoma

PLOS ONE | https://doi.org/10.1371/journal.pone.0300441 April 22, 2024 11 / 19

https://doi.org/10.1371/journal.pone.0300441.g006
https://doi.org/10.1371/journal.pone.0300441


Fig 7. The gene-disease association network represents diseases associated with common genes. The diseases are depicted by the square node and gene

symbols are defined by the circle node.

https://doi.org/10.1371/journal.pone.0300441.g007

Table 4. The recommended drugs for COVID-19 and ICC.

Name P-value Chemical Formula

Periodate-oxidized adenosine CTD 00001296 2.69E-06 C10H11N5O4

desipramine PC3 UP 4.63E-06 C18H22N2

quercetin CTD 00006679 1.28E-05 C15H10O7

Perfluoroheptanoic acid CTD 00003374 6.71E-05 C7HF13O2

tetrandrine MCF7 UP 7.27E-05 C38H42N2O6

Pentadecafluorooctanoic acid CTD 00001078 1.19E-04 C8HF15O2

benzo[a]pyrene CTD 00005488 1.66E-04 C20H12

SARIN CTD 00006722 1.70E-04 C4H10FO2P

dorzolamide HL60 DOWN 1.88E-04 C10H16N2O4S3

8-Bromo-cAMP, Na CTD 00007044 2.02E-04 C10H10BrN5NaO6P

https://doi.org/10.1371/journal.pone.0300441.t004
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4. Discussion

The 2019 SARS-CoV-2 global pandemic has riveted the world’s attention. With more and

more variants of the virus, the transmission rate and morbidity rate of COVID-19 gradually

increased. Although COVID-19 primarily affects the respiratory system, liver dysfunction is

also common in COVID-19 patients, such as elevated liver transaminases and elevations of

cholestatic liver enzymes [36]. ICC, which is the second most common liver cancer, may be

linked to COVID-19. To verify this idea, we use bioinformatics methods to find the relation-

ship between these two diseases, and dig out some potential drugs This study could establish a

link between COVID-19 and ICC and suggest possible treatment options for ICC patients

infected with COVID-19.

Lipid biosynthetic process (GO:0008610), glyoxylate and dicarboxylate metabolism path-

way (KO:00630), and fatty acid degradation pathway (KO:00071) are found in GO terms and

KEGG pathways. Research detected that COVID-19 patients was dysregulated metabolites

involved in lipid metabolism [37]. Another study also found that SARS-CoV-2 infection ele-

vated the expression of the RE1-silencing transcription factor (REST), which regulated the

transcriptional expression of secreted metabolic factors such as myeloperoxidase, apelin, and

myostatin, causing disruptions in glucose and lipid metabolism [38]. Moreover, recent studies

have found that altered lipid metabolism is a new hallmark of cancer [39]. A study found that

KDM5C, a histone H3K4-specific demethylase, can repress FASN-mediated lipid metabolism

to exert tumor suppressor activity in ICC [40]. Consistent with the results of GO and pathway

analysis, there are also many genes related to metabolism in hub genes. Stearoyl-CoA desatur-

ase (SCD) was reported to plays a key role in lipid biosynthesis pathways involved in tumori-

genesis, and so pharmacological inhibitors have been developed such as MF-438, CAY10566

and A939572 [41], but has few research in ICC. In addition, both ACSL5 andHSD17B4 were

found to be associated with fatty acid synthesis, which may indicate the impact of COVID-19

and ICC on lipid metabolism. These results suggested that COVID-19 and ICC may jointly

affect lipid metabolic function of human body. However, whether lipid metabolism can be a

therapeutic target for these two diseases needs further study.

Regulation of dendritic cell apoptotic process (GO:2000668), negative regulation of leuko-

cyte apoptotic process (GO:2000107), positive regulation of GTPase activity (GO:0043547),

and positive regulation of lymphocyte migration (GO:2000403) are related to immunity,

which suggested that both ICC and COVID-19 have a huge impact on the immune system.

SARS-CoV-2 has been demonstrated to alter normal immune responses, resulting in a weak-

ened immune system and uncontrolled inflammatory reactions in COVID-19 severe and criti-

cal patients [42], which is the major cause of ARDS. Plasma levels of IL-2, IL-7, IL-10,

granulocyte colony-stimulating factor (G-CSF), IP-10, MCP1, macrophage inflammatory pro-

tein 1α (MIP1α), and tumor necrosis factor (TNF) have been observed in patients with severe

COVID-19 were higher than in healthy adults [43]. On the other hand, cancer is usually associ-

ated with immune escape by suppressing the immune system. A study found that tumor-

derived exosomal miR-183-5p up-regulates PD-L1-expressing macrophages to foster immune

suppression and disease progression in ICC through the miR-183-5p/PTEN/AKT/PD-L1

pathway [44]. Additionally, in this study, complement and coagulation cascades related path-

ways are found in top 10 pathway in each database. It has been shown that SARS-CoV-2 may

activate the complement system’s classical and lectin pathways [45], and lectin pathways com-

ponents were found deposited in lung tissue of COVID-19 patients [46], which is consistent

with the results of our pathway analysis. Meanwhile, the complement system may be involved

in liver dysfunction in viral-induced acute liver failure cases [47]. The aforementioned hub

protein SCD also plays a role in immune function. A recent study found that suppression of
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SCD reduces humoral immune response to immunization and weakens immune defense

against respiratory influenza infection [48]. But SCD1 expressed in cancer cells and immune

cells causes immune resistance conditions, and its inhibition augments antitumor T cells and

therapeutic effects of anti-PD-1 antibody [49]. Not only that, hub gene PSAT1 can also

enhance immunosuppressive through PERK-ATF4-PSAT1 axis in tumor [50, 51]. CREB1, a

TF with the highest correlation score in our TF-hub gene interaction analysis, was reported to

promote T cell cytotoxicity [52]. In conclusion, both COVID-19 and ICC can elicit immune

system responses. COVID-19 usually causes elevated inflammatory immune response, while

ICC causes immune suppression. But the combined effect of these two immune responses on

human body is unknown.

There was a report that a patient diagnosed with advanced Hodgkin’s lymphoma, who was

not being treated for lymphoma, contracted COVID-19 and four months after ending treat-

ment for COVID-19, was re-examined by PET-CT and found that most of his tumors had dis-

appeared, with levels of biomarkers associated with the tumor dropping by more than 90%

[53]. Interestingly, the associations between COVID-19 and cancer were also identified in our

study. The hub gene in our analysis ACSL5, ALDOA, andHKDC1 are directly associated with

liver cancer [54–56]. Besides, gene-disease network analysis found some cancer related dis-

eases, including mammary neoplasms, non-small cell lung carcinoma, and prostatic neo-

plasms. At the same time, neoplasm invasiveness and neoplasm metastasis are also showing in

the result, which suggested that the ICC patient with COVID-19 may have a risk of developing

other types of tumors and metastases. Similarly, in TF-gene network, SREBF1 was found to

enhance the viability and motility in cancer [57]. The above evidences suggest that COVID-19

may have an effect on tumor migration and metastasis in ICC patients, but the detailed effect

and mechanism require further investigation.

Regarding drug prediction, several chemical substances have shown promise as potential

treatments for COVID-19, including quercetin and tetrandrine [58, 59]. Notably, these drugs

also possess anti-cancer properties. Quercetin can influence pathways such as PI3K/Akt/

mTOR, Wnt/β-catenin, and MAPK/ERK1/2 to induce apoptosis in cancer cells [60]. Tetran-

drine, another candidate, has anti-angiogenic properties [61]. Therefore, it is plausible that

ICC patients infected with COVID-19 could benefit from these drugs. Besides, the top 2 candi-

dates, Periodate-oxidized adenosine and desipramine, have been reported to have some anti-

cancer effects [62, 63], despite not being originally intended for that purpose.

However, bioinformatics, which is based on the advancement of modern computer tech-

nology and the simplicity of biological experimental techniques, cannot replace clinical testing

[64]. Additionally, the selected datasets in this study include different groups of people with

two different diseases, rather than the same population with both ICC and COVID-19, which

may lead to some differences between the results of our analysis and the actual results. To

ensure the credibility of these findings, it is essential to conduct in vivo, in vitro, and clinical

studies to validate the results of the bioinformatics analysis. Furthermore, this study suggests

that therapeutic approaches for ICC and COVID-19 comorbidity can be further explored

from the perspective of lipid metabolism and immunology. And whether potential candidate

drugs can treat ICC and covid-19 at the same time is also a topic worthy of further research.

5. Conclusions

To help gain insight into the connection between ICC and COVID-19, we utilized transcrip-

tomic data analysis to identify differentially expressed genes shared in both diseases. A total of

70 common DEGs and 10 hub genes revealed certain similarities between ICC and COVID-19

in terms of pathogenic processes. Further, we identified 44 TFs and 112 miRNAs by building a
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transcriptional regulatory network targeting hub genes. Notably, drug prediction results indi-

cate quercetin and tetrandrine as potential agents for the treatment of ICC and COVID-19.

Although our study has certain limitations, these results can provide ideas and directions for

subsequent research on the two diseases, such as target screening, targeted therapy, and drug

development. Overall, this study could shed new light on the treatment and drug development

of ICC and COVID-19.
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