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Abstract

Tumor-associated macrophages (TAM) subtypes have been shown to impact cancer prog-

nosis and resistance to immunotherapy. However, there is still a lack of systematic investi-

gation into their molecular characteristics and clinical relevance in different cancer types.

Single-cell RNA sequencing data from three different tumor types were used to cluster and

type macrophages. Functional analysis and communication of TAM subpopulations were

performed by Gene Ontology-Biological Process and CellChat respectively. Differential

expression of characteristic genes in subpopulations was calculated using zscore as well as

edgeR and Wilcoxon rank sum tests, and subsequently gene enrichment analysis of charac-

teristic genes and anti-PD-1 resistance was performed by the REACTOME database. We

revealed the heterogeneity of TAM, and identified eleven subtypes and their impact on prog-

nosis. These subtypes expressed different molecular functions respectively, such as being

involved in T cell activation, apoptosis and differentiation, or regulating viral bioprocesses or

responses to viruses. The SPP1 pathway was identified as a critical mediator of communi-

cation between TAM subpopulations, as well as between TAM and epithelial cells. Macro-

phages with high expression of SPP1 resulted in poorer survival. By in vitro study, we

showed SPP1 mediated the interactions between TAM clusters and between TAM and

tumor cells. SPP1 promoted the tumor-promoting ability of TAM, and increased PDL1

expression and stemness of tumor cells. Inhibition of SPP1 attenuated N-cadherin and β-
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catenin expression and the activation of AKT and STAT3 pathway in tumor cells. Addition-

ally, we found that several subpopulations could decrease the sensitivity of anti-PD-1 ther-

apy in melanoma. SPP1 signal was a critical pathway of communication between

macrophage subtypes. Some specific macrophage subtypes were associated with immuno-

therapy resistance and prognosis in some cancer types.

Author summary

Macrophages are natural immune cell-specialized, phagocytic cells, and many studies

have been conducted to analyze the functional role of macrophages, but integrating mac-

rophages from multiple cancers to analyze the molecular functions and interactions of

macrophages is poorly known.We clustered and typed macrophages using single-cell

RNA sequencing data from three different tumor types. Gene Ontology-Biological Pro-

cesses and Cell Chat were used for functional analysis and communication of TAM sub-

populations, respectively. We found heterogeneity of TAM and identified 11 subtypes and

their impact on prognosis.The SPP1 pathway is recognized as a key mediator of commu-

nication between TAM subpopulations as well as between TAM and epithelial cells, and

macrophages with high expression of SPP1 have a lower survival rate. Through in vitro

studies, we also found that SPP1 mediated interactions between TAM clusters and

between TAM and tumor cells. SPP1 promoted the tumor-promoting ability of TAM and

increased PDL1 expression and stemness of tumor cells. In addition, we performed gene

enrichment analysis using the REACTOME database and identified subpopulations that

decrease the sensitivity of melanoma patients to anti-PD-1 therapy. Some specific macro-

phage subtypes are associated with immunotherapy resistance and prognosis in certain

cancer types.

Introduction

The tumor microenvironment (TME) consists of a diverse range of immune and non-immune

stromal cells. TME can mediate immune escape of tumor cells, promote tumor stem cell for-

mation and enhance tumor metastasis, thus promoting tumorigenesis and progression [1].

Tumor therapy strategies for targeting and regulating myeloid cells include manipulating the

recruitment of myeloid subpopulations, stimulating the function of myeloid cells, and modu-

lating the population response of myeloid cells [2]. Macrophages are widely exist in TME,

whose metabolites affect various biological functions of TME, altering the immune microenvi-

ronment of tumors [3]. Interactions between tumor cells and macrophages can influence the

behavior of tumor cells, with macrophages playing a dominant role in some tumor immune

microenvironment beyond lymphocytes [4]. Therefore, an in-depth investigation of macro-

phages is important. Recent studies have shown that macrophages exhibit functional heteroge-

neity in different tissue environment, and this affects their ability to respond to metabolism

[5–7], implying that the functions performed by macrophages in different TMEs may be dif-

ferent. Current studies have outlined the phenotypes and functions of macrophages and their

impacts on cancer macrophages according to their different polarization states [8, 9]. Macro-

phages can be polarised into a pro-inflammatory M1 phenotype to combat pathogens. Besides,

macrophages can also be polarised into an anti-inflammatory M2 phenotype to repair dam-

aged tissue, thus acting as a tumor-supporting role [10, 11]. Macrophage polarization is
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regulated through complex interactions among various cytokines, chemokines and signaling

molecules [12]. Macrophages are activated by IFN-γ, lipopolysaccharide and TNFα to promote

the M1 phenotype, and with the activation of IL4 and IL13, macrophages at the site of injury

show the M2 phenotype [13, 14]. Tumor-associated macrophages (TAMs) are macrophages

recruited from circulating monocytes in tumors that are able to promote malignancy and

tumor progression under the influence of cancer. In addition, TAMs are an important part of

the immune cells in the TME of solid tumors, targeting TAMs can eliminate immunosuppres-

sive factors in TME and stimulate anti-tumor effect of immune cells, enhancing the efficacy of

immune checkpoint inhibitors [15]. The combination of TAM-targeted drugs with conven-

tional therapeutics and other immunomodulators has proven to be a promising strategy [16].

Therefore, it is necessary to strengthen research on the pro-tumor mechanism of TAM, and

make TAM targeted therapy an important supplement to traditional anticancer drugs [17].

Studies suggest that TAM is heterogeneous and functionally diverse. Therefore, to identify spe-

cific biomarkers for different subtypes of TAM is necessary for further research on macro-

phages in the future.

In recent years, the use of single-cell RNA sequencing (scRNA-seq) technology has allowed

for the detection and analysis of various genetic components in organisms and the treatment

of diseases. ScRNA-seq has become one of the most popular genomic tools for dissecting tran-

scriptomic heterogeneity, with utility in dissecting intra-tumor heterogeneity and the tumor

immune microenvironment at single-cell resolution in a wide range of tumors and the ability

to identify rare cell types and cell states in tumors[18]. Furthermore, scRNA-seq data can elim-

inate technical noise to quantify intercellular heterogeneity of each gene [18–20]. Multiple

studies have used scRNA-seq to analyze the functional heterogeneity of macrophages, glioma

[21], liver cells [22], non-small cell lung cancer (NSCLC)[23], and HBV-associated human

hepatocellular carcinoma [24]. Although TAM has been analyzed separately for each tumor,

the similarities and differences in expression profiles and molecular functions of macrophage

subsets in different cancer types remain to be determined. In addition, clinical outcomes of

immunotherapy based on TAM subtypes still require further investigation.

In this study, we utilized a combination of single-cell tumor data from three different can-

cers to characterize the molecular and biological features of different macrophage subtypes in

the TME. The molecular and biological features of different TAM subtypes were identified by

distinguishing them into different subpopulations based on gene expression differences. Based

on cellular communication analysis, we identified a possible role of the SPP1 pathway between

macrophages and tumors. Using the TCGA database, we further characterized the prognostic

value of signature genes in different subpopulations of TAM, providing new insights into how

TAM can be targeted in specific cancer types. We found that TAM subtypes in specific cancer

types can activate their specific functional pathways to regulate the TME and sensitivity to

immunotherapy.

Results

General overview of the integration of macrophages from different cancers

To better understand the relationships and differences between macrophages in different can-

cers, we integrated multiple cancer datasets and screened for macrophage data while eliminat-

ing batch effects (S1 Fig). A total of 7801 macrophages from three cancer types (breast cancer,

liver cancer, and lung adenocarcinoma) were integrated using Seurat, and 11 macrophage sub-

types were identified as cluster 0–10 (Fig 1A and 1B). These macrophage subtypes were all

present in the three cancer types with different abundance (Fig 1F and S1 Table), indicating

the feasibility of our integration method. The largest proportion was Cluster0 (35%), which
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Fig 1. Tumor macrophage typing, marker genes and molecular functions. (A) UMAP shows the subpopulations of multiple tumor macrophages (breast

cancer, liver cancer, and lung adenocarcinoma) after integration. (B) Heat map depicting the marker genes of different subpopulations. Different colors

represent different Clusters, from Cluster0-Cluster10. (C) Dotplot depicting the functions of different subpopulations enriched for analysis. (D) Dotplot

showing the top 5 marker genes of different subpopulations. (E) UMAP depicts the cell cycle of all macrophages. (F) Representation of different cancers in
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had a high expression of resident tissue macrophages markers (C1QA, C1QB) associated with

T cell activation, inflammatory regulation, antigen processing and presentation (Fig 1C and

1D)[25]. Cluster1 (16.7%) had higher expression of TAMs markers (CSTB, RGCC) involved in

lipopolysaccharide response as well as ADP metabolic processes (Fig 1C and 1D)[25]. Cluster2

(16.7%) expressed several markers of resident tissue macrophages (NR4A2, NR4A3, CXCL2,

CXCL3, TNFAIP3, GPR183, CHMP1B) (Fig 1C and 1D), but it expressed fewer those marker

genes compared to Cluster0, so they were analysed in subsequent functional analysis. Cluster0

expressed genes which were mainly enriched in cellular responses to stress and stimuli, while

Cluster2 expressed genes related to the expression and modification of rRNA (Fig 1C)[25].

Cluster3 (6.0%) expressed TAMs marker gene OLR1 and was involved in viral responses as

well as alcohol responses (Fig 1C and 1D) [25]. Cluster4 (5.7%) expressed most metallothio-

neins genes (MT1M, MT1H, etc.) and was involved in the action on metal ions (Fig 1C and

1D). Cluster5 (5.5%) expressed higher M1-type macrophages markers (CXCL9, CXCL10) for

regulation of viral biological processes and responding to viruses (Fig 1C and 1D) [25]. Clus-

ter6 (5.2%) was a group of monocyte-like macrophage expressing high levels of monocyte sig-

nature genes (VCAN, FCN1, S100A9) involved in response to oxygen levels and regulation of

apoptotic signaling pathways and cytokines (Fig 1C and 1D)[25]. Cluster7 (3.2%) expressed

high levels of cytotoxic genes (IL32) involved in T-cell activation and differentiation process

(Fig 1C and 1D) [25]. Cluster8 (2.7%) expressed a high level of monocyte marker genes

(HSPAIA) involved in oxygen and temperature regulation (Fig 1C and 1D)[25]. Cluster9

(2.3%) expressed a high level of proliferative genes (H2AFZ, PCNA, MCM4, MCM5, MCM56)

associated with cell proliferation processes (Fig 1C) [25], and cell cycle analysis used scRNA-

seq data also revealed that this subpopulation was enriched in S phase of cell cycle (Fig 1C and

1E). Cluster10 (1.0%) expressed a high level of selective immunoglobulin genes (IGHG3,

IGHG1, IGHM, IGHG4, IGHD) involved in immune response and complement activation

(Fig 1C and 1D)[25].

Our analysis focused on examining the gene expression profiles of two distinct subpopula-

tions (Cluster0, Cluster2) across various cancer types. Surprisingly, even within the same cate-

gory of tissue resident macrophages, we observed differential gene expression patterns among

macrophages originating from distinct sources (S2A and S2B Fig). This discovery suggested

notable variations in the gene expression profiles of analogous macrophages derived from dif-

ferent tumors. In our investigation, we examined the distribution of distinct tissue-resident

macrophages across various tumor types. Specifically, we characterized tissue-specific macro-

phages present in breast cancer, denoted as FOLR2+ macrophages [26], hepatocellular carci-

noma tissue-resident macrophages (Kupffer cells)[27], and tissue-resident macrophages

within lung cancer recognized as alveolar tissue-resident macrophages [28]. Our analysis

revealed a higher expression of tissue-resident macrophages in both Cluster0 and Cluster2

subpopulations. Notably, these different tumor-specific macrophages exhibited similar expres-

sion patterns across both subpopulations (S2C Fig). We performed differential analysis and

KEGG enrichment analysis on several clusters exhibiting similar expression patterns. Specifi-

cally, differential analysis was conducted on the following pairs of clusters: Cluster0 versus

Cluster2, Cluster1 versus Cluster3, and Cluster6 versus Cluster8. This allowed the identifica-

tion of distinct sets of differential genes within these clusters. Subsequently, we subjected these

differential genes to enrichment analysis, unveiling divergent pathway enrichments between

Cluster0 and Cluster2. Cluster0 showed enrichment in pathways associated with bacterial and

subgroups. (G) Heatmap of gene expression under specific functions. (H) Heatmap of genes encoding cell surface proteins. (I) Heatmap depicting the top 20

transcription factors that differ more significantly between different subpopulations.

https://doi.org/10.1371/journal.pgen.1011235.g001
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viral infections, including systemic lupus erythematosus, staphylococcal infections, and anti-

gen processing and presentation. On the other hand, Cluster2 was demonstrated to be

involved in pathways related to the NF-κB pathway, the IL17 pathway, and infections linked to

Kaposi sarcoma-associated herpesvirus. Both clusters appeared to be associated with distinct

bacterial infections, showing divergent enrichment patterns. Relative to Cluster1, Cluster3 dis-

played pathways involved in bacterial and viral infections, as well as antigen processing and

presentation. Conversely, Cluster6 was notably enriched in metabolic pathways alongside bac-

terial and viral infection-related pathways (S3 Fig).

We conducted a comprehensive analysis of macrophage subpopulations by annotating and

functionally characterizing each subpopulation using a gene set associated with key macro-

phage-related biological processes reported in previous studies [29]. Our results revealed dis-

tinctive patterns of gene expression among the different clusters. The analysis revealed that

Cluster0 macrophages exhibited higher expression levels of resident macrophages marker

genes compared to other subpopulations, and expressed both high anti-inflammatory and par-

tially pro-inflammatory genes. Furthermore, Cluster0 expressed the immunomodulators

(CD209, CH25H, LILRB5), which were associated with innate and adaptive immunity, indi-

cating their functional role in immune modulation (Fig 1G). Cluster1 expressed high levels of

anti-inflammatory and pro-inflammatory genes, along with a unique subpopulation of MMP

(Fig 1G). Cluster3 expressed high levels of TGF β coactivator INHBA, while Cluster4 expressed

high levels of anti-inflammatory genes (Fig 1G). Cluster5 exhibited high levels of both anti-

inflammatory and pro-inflammatory genes and immunomodulators (CD209, CH25H,

LILRB5) (Fig 1G). Cluster6 expressed partial anti-inflammatory genes, and high expression of

PPARG, which is an intrinsic alveolar macrophage marker (Fig 1G). Upon analyzing the data,

we noticed that Cluster6 harboured a substantial count of LUAD macrophages, accompanied

by a considerable presence in liver hepatocellular carcinoma (LIHC) and a lower proportion

in breast cancer (BRCA) samples (Fig 1F). Additionally, our observations revealed elevated

expression levels of the monocyte signature genes S100A9 and FCN1 within Cluster6 com-

pared to other subpopulations (Fig 1D). Consequently, we suggested that Cluster6 was not just

alveolar resident macrophages but might be generalized monocyte-like macrophages. Cluster7

exhibited high expression of anti-inflammatory genes, while Cluster8 expressed primarily pro-

inflammatory genes (Fig 1G). Cluster9 showed high expression of anti-inflammatory genes

and MMP genes, along with high expression of the immunomodulator (CD209, CH25H,

LILRB5), involved in innate and acquired immunity (Fig 1G). Finally, Cluster10 exhibited

high expression of the intrinsic alveolar macrophage marker PPARG, anti-inflammatory genes

(FABP4, ALDH2, TGF β) coactivator INHBA, and immunomodulator CH25H (Fig 1G). Fur-

thermore, the predominant subset of Cluster10 macrophages originated from LUAD samples,

as depicted in Fig 1F and S1 Table. Our supposition was centered on the potential association

between the macrophages derived from LUAD within Cluster10 and alveolar macrophages.

These results indicated similarities and differences between different clusters, and each macro-

phage isoform expressed different levels of pro- or oncogenes (Fig 1G).

In addition to the aforementioned analyses, we utilized the Cell Surface Protein Atlas data-

base to identify proteins produced by surface-tagged genes, providing a useful framework for

future experiments such as identifying and isolating specific macrophage subtypes (Fig 1H).

Moreover, we employed a gene set containing transcription factors (TFs) interacting with

their targets and then infer TFs activity from gene expression data. Our findings revealed that

among the 20 TFs with the greatest intercellular population variation, NR5A1 and THAP11

were highly expressed only in Cluster3, TFDP1 and E2F2 were highly expressed in Cluster9.

We found the low expression of these transcription factors in Cluster3. Other transcription

factors in Cluster3 also exhibited similar low expression (Fig 1I).
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The above results demonstrated the transcriptomic and molecular characterization of mul-

tiple macrophage subtypes in different cancer types. Further, it was useful to separate different

subpopulations of macrophages based on the difference of highly expressed genes between

subpopulations.

Cellular interactions of different clusters

To investigate the cell-cell communications between macrophages in the TME, we utilized the

CellChat analysis. The communication between different subpopulations of macrophages was

assessed by examining the roles of receptors and ligands in cell-to-cell communication

(S4A and S4B Fig). We observed the number and strength of communication between differ-

ent subpopulations, which we classified into three outgoing patterns and two incoming pat-

terns (S4C and S4D Fig). We analyzed the subpopulations of macrophages as ligands or

receptors separately to determine their action types. We identified up to three outgoing pat-

terns, with Cluster0, Cluster3, and Cluster7 classified as pattern 1 type, Cluster4, Cluster6,

Cluster8, and Cluster10 as pattern 2 type, and Cluster1, Cluster2, and Cluster9 as pattern 3

type. Most of the pathways were more active in the subgroup of pattern 1, indicating that cells

of Cluster0, Cluster3, and Cluster7 are more active as ligands for communication with other

cells. We observed two incoming patterns: Cluster0, Cluster1, Cluster2, Cluster3, Cluster7,

and Cluster9 were classified as pattern 1, while Cluster4, Cluster6, Cluster8, and Cluster10

were classified as pattern 2. The OX40, IL2, ACTICIN, GRN, ANNEXIN, and UGRP1 path-

ways were active for cell communication in cell populations with pattern 2 as incoming pat-

terns (S4C and S4D Fig). To obtain more critical cell-cell interactions in TAM, we analyzed

some signaling pathways and their receptor-ligand pairs to explore potential interactions

between macrophages. We calculated the weight of each signaling pathway to the overall cellu-

lar interactions. Results showed that SPP1 signal pathway showed the maximum proportion of

weight in all signaling pathways involved in TAM cluster interactions (Fig 2A and S2 Table).

The connection between TAMs was complex, our findings provided valuable insights into the

cellular interactions between different subpopulations of macrophages, which could contribute

to a better understanding of the immune response.

SPP1-mediated interaction between macrophage clusters

Since SPP1+ macrophages were shown to be important for the TME in previous studies [30],

we further analyzed the SPP1 pathway in macrophages and analyzed SPP1+ macrophages in

pan-cancer. We found that SPP1-CD44 made a major contribution to the SPP1 signaling path-

way (Fig 2B–2D). Next, we analyzed the interactions between these ligand-receptor pairs

among the 11 macrophage subtypes and found that SPP1 interacts with most of the receptors,

except in Cluster3. In addition, we used a violin plot to visualize the signal gene expression dis-

tribution in the SPP1 signal pathway, which was inferred by CellChat. The results showed that

SPP1 was expressed in most macrophages (Fig 2E). Moreover, we detected SPP1 expression in

M0 macrophages, tumor cells (breast, lung and liver cancer) and TAM by ELISA in vitro.

TAMs exhibited high levels of SPP1 relative to M0 macrophages and tumor cells (Fig 2F). To

validate SPP1 mediated interaction between TAMs, TAMs induced by MDA-MB 231 cells

were treated with recombinant human SPP1 (rh SPP1) protein. Tumor-promoting and anti-

inflammatory factors TGF β, IL10 and VEGF were significantly stimulated by rh SPP1 protein

but inhibited by anti-SPP1 antibody (Fig 2G). These results suggested that SPP1 mediated

interaction between macrophage clusters.
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Fig 2. The strongest communication between different subgroups is through the SPP1 pathway. (A) Pie chart showing the percentage distribution of

different signaling pathways. (B) Line graph showing the intercellular action of the SPP1 pathway. (C) Contribution of different receptors of SPP1 action. (D)

SPP1 action with receptor CD44, ITGA8 and ITGB1, ITGA4 and ITGB1, ITGA5 and ITGB1, ITGAV and ITGB5. (E) Expression of different receptors in

different subpopulations. (F) Human SPP1 levels in M0, tumor cells and TAM were detected by ELISA. (G) Human TGF β, IL10 and VEGF levels in MDA-MB

231 (231)-induced TAM treated by rh SPP1 protein and anti-SPP1 antibody were detected by ELISA. Data were shown as mean ± SD and are representative of

three independent experiments. P values were calculated using the 2-tailed 2-sample t test. *P< 0.05, **P< 0.01, ***P< 0.001.

https://doi.org/10.1371/journal.pgen.1011235.g002
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SPP1-mediated communication between TAM and tumor cells

To explore the expression of SPP1 in tumor tissues, we performed differential analysis of SPP1

in tumors and normal tissues and found significant differences in 18 cancer types in all TCGA

data (Fig 3A). We then performed immune infiltration analysis on these 18 cancers and calcu-

lated the correlation between SPP1 expression and immune cell infiltration, and we found that

SPP1 was positively correlated with immune cell infiltration including macrophage in most of

these cancers (Fig 3B). Our above results indicated that TAM exerted higher levels of SPP1

expression than tumor cells. Macrophages accounted for a large proportion in solid tumor

Fig 3. High SPP1 expression in some tumors may be associated with immune infiltration. A) Differential

expression of SPP1 in tumors and normal in different cancers. (B) Correlation between SPP1 expression and immune

infiltration. P< 0.05, P<0.01, P< 0.001, and P< 0.0001 were considered statistically significant (*, **, ***, ****).

https://doi.org/10.1371/journal.pgen.1011235.g003
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tissue, indicating a possible positive correlation between the expression of SPP1 and the infil-

tration of macrophages in solid tumors.

We chose to analyze single-cell sequencing data from three tumors where SPP1 expression

was positively correlated with immune infiltration including Thyroid carcinoma (THCA),

Colon adenocarcinoma (COAD), and prostate cancer (PRAD), respectively. Results revealed

that SPP1 was mostly expressed in macrophages and monocytes, and less in epithelial cells

(S5 Fig). This provided a possibility that macrophages-derived SPP1 made a greater contribu-

tion to SPP1 expression in the TME. In order to investigate the possible alteration of tumor

status caused by TAM in the TME, we used the "CellChat" package to score the regulatory rela-

tionships between different cell types by known receptor-ligand pairs. Among the ligand-

receptor pairs related to epithelial cells, TAM was the primary cell type for epithelial cell com-

munication, and SPP1 was the most important ligand for their communication (Fig 4A and 4B

and S3 Table). SPP1 binded strongly to CD44 and the integrin family (encoded by ITGAV/

ITGB1, ITGAV/ITGB5, ITGAV/ITGB6, and ITGA5/ITGB1) and the predominance of

SPP1-CD44 (Fig 4C–4E). We also analyzed the effect of SPP1 on prognosis in 33 cancers and

found that high expression of SPP1 was positively associated with poor prognosis in most can-

cers (S6 Fig), suggesting that cell communication of TAM with tumor epithelial cells via SPP1

may lead to tumor progression. Finally, we performed KEGG enrichment analysis of SPP1 sig-

naling pathway receptors (CD44, ITGB1, ITGB6) that were expressed in epithelial cells in 33

cancers, and extracted the intersections of the enriched pathways (S7 and S8 Figs). In all

enriched pathways, 17 cancer-related pathways were identified (Fig 4F). Therefore, this raised

a possibility that TAM-secreted SPP1 activated these pathways such as the JAK-STAT and

PI3K-Akt signaling pathways, reduced focal adhesion protein and induced PDL1 expression

in epithelial cells to contribute to tumor prognosis.

To further demonstrate that TAM communicated with tumor cells via SPP1, SPP1 was

overexpressed in TAM cells (Fig 4G). Breast cancer MDA-MB 231 cells were treated with con-

ditioned medium from SPP1-overexpressed TAM, and tumor stem cell markers (SOX2,

CMYC, NANOG, OCT4 gene) and PDL1 genes were detected by RT-qPCR. Results showed

that SPP1-overexpressed TAM obviously induced the five genes expression, whereas blocking

SPP1 using antibody significantly decreased the gene expression induced by TAM (Fig 4H). In

addition, we also showed that SPP1 antibody inhibited TAM-activated AKT and STAT3 path-

ways and TAM-induced N-cadherin and β-catenin expression in MDA-MB 231 cells (Fig 4I).

These results suggested that SPP1 mediated communication between TAM and tumor cells.

Prognostic association of different macrophage types in pan-cancer

We investigated the cellular interactions and prognostic association of macrophage subtypes

in 33 cancer types by grouping them based on their signature genes expression. As macro-

phages have both pro- and anti-cancer effects, we analyzed their expression levels to determine

their association with tumor progression and clinical outcomes. Our analysis revealed that the

signature genes expression varied among macrophage subtypes and cancer types. For instance,

we found that the signature genes of Cluster0 had the highest expression in kidney clear cell

carcinoma (KIRC) and the lowest expression in ocular melanomas (UVM)(S9A Fig), and high

expression in lower grade glioma (LGG) was associated with poor prognosis (Fig 5A). Simi-

larly, the signature genes of Cluster1 had the highest expression in KIRC and the lowest

expression in UVM (S9B Fig), and high expression in LGG was also associated with poor prog-

nosis (Fig 5B). The signature genes of Cluster2 had highest expression in KIRC, the lowest in

UVM (S9C Fig), and high expression in LGG was associated with poor prognosis (Fig 5C).

The signature genes of Cluster3 had the most highly expressed in LUAD, the least expressed in
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Fig 4. Intercellular communication between macrophages and epithelial cells via the SPP1 signaling pathway. (A-B) Chord diagrams and bar graphs

showing the interaction scores of various cell types in cancer predicted by the SPP1 signaling pathway. (C) Contribution of different receptor-ligand pairs of the

SPP1 signaling pathway. (D) Expression of receptor-ligands in the SPP1 signaling pathway in different cell types. (E) Chordal graph showing interaction scores

in different cell types via SPP1-CD44 receptor-ligand pairs. (F) Normalized enrichment score (NES) of different pathways in various cancers. (G) SPP1 levels in
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PRAD (S10A Fig), and highly expressed in thymoma (THYM) and LGG was associated with

poor prognosis (Fig 5D–5E). In addition, we found that the signature genes of Cluster4 were

the most highly expressed in KIRC, the least expressed in UVM (S10B Fig), and high expres-

sion in THYM, LGG was associated with poor prognosis (Fig 5F–5G). The Cluster5 signature

genes was the most highly expressed in large B-cell lymphoma (DLBC) and least expressed in

LGG and UVM (S10C Fig), and high expression in THYM, pancreatic cancer (PAAD), and

LGG was associated with poor prognosis (Fig 5H–5J). Cluster6 had the highest expression in

KIRC and the lowest expression in UVM and PRAD (S11A Fig), and high expression in glio-

blastoma (GBM), LGG led to poor prognosis (Fig 5K–5L). Cluster7 had the highest expression

in DLBC and the lowest expression in UVM (S11B Fig), and high expression in LGG was asso-

ciated with poor prognosis (Fig 5M). Cluster8 had the highest expression in DLBC and the

lowest expression in PRAD and pheochromocytoma & paraganglioma (PCPG) (S11C Fig),

and high expression in LGG was associated with poor prognosis (Fig 5N), Cluster9 had the

highest expression in acute myeloid leukemia (LAML) and the lowest expression in PCPG and

head and neck cancer (KICH)(S12B Fig), and high expression in adrenocortical cancer (ACC)

and kidney papillary cell carcinoma (KIRP), LUAD, LIHC, mesothelioma (MESO), endome-

trioid cancer (UCEC) and LGG correlates with poor survival(Fig 5O–5V). The signature genes

of Cluster10 were highest in BLDC and KIRC and lowest in UVM and LGG (S12C Fig), and

high expression in LGG was associated with poor prognosis (Fig 5W). We observed that a few

cancers, such as BRCA and UCEC, with high expression of Cluster7 signature genes were asso-

ciated with better prognosis (S13A–S13B Fig), while high expression of Cluster9 signature

genes in THYM was associated with better prognosis (S13C Fig). In contrast, high expression

of the signature genes of all melanoma (SKCM) subpopulations, except for the signature genes

of Cluster9, led to better prognostic outcomes (S13D–S13M Fig). High expression genes for

different macrophage subgroups were found to be correlated with better prognosis in various

cancer types, including BRCA, THYM, UCEC, and SKCM (S13 Fig). To further investigate

these prognostic associations, we performed multivariate Cox proportional hazard modeling,

adjusting for age and gender. Our results indicated that high expression of these signature

genes was significantly associated with worse clinical outcomes in the aforementioned cancer

types (S4 Table). Overall, our study provided valuable insights into the prognostic associations

of different macrophage subtypes in pan-cancer. Further research is needed to understand the

cellular interactions between these subtypes in different clusters and their potential implica-

tions for cancer treatment.

To improve the assessment of the prognostic association of the signature genes, we con-

ducted univariate risk analysis on the gene signature of macrophage subpopulations. Our anal-

ysis revealed a high risk for all subpopulations in LGG while most macrophage subpopulations

in SKCM showed a low risk (Fig 5X). These findings delineated the TAM landscape in various

cancer types, revealing the dichotomous impacts of macrophage subtypes, which could either

promoted or suppressed specific cancer types. This complexity underscored the multifaceted

role of macrophages within the context of cancer. Consequently, there was a pressing need for

targeted investigations tailored to individual cancer types to elucidate the precise role of mac-

rophages. Such focused studies holded the potential to guide subsequent prognostic inquiries

aimed at understanding the prognostic implications of macrophages in cancer.

MDA-MB 231 (231)-induced TAM with SPP1 overexpression were detected by Western blot. (H) 231 cells were treated for 48 h with condition media from

231-induced TAM with SPP1 overexpression, or condition media (with SPP1 antibody or without) from 231-induced TAM. SOX2, CMYC, NANOG, OCT4

and PDL1 were detected by RT-qPCR. (I) 231 cells were treated for 48 h with condition media (with SPP1 antibody or without) from 231-induced TAM. The

indicated proteins were detected by Western blot. Data were shown as mean ± SD and are representative of three independent experiments. P values were

calculated using the 2-tailed 2-sample t test. *P< 0.05, **P< 0.01, ***P< 0.001.

https://doi.org/10.1371/journal.pgen.1011235.g004
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Fig 5. Specific Macrophage subtypes linked to clinical outcome in distinct cancer types. (A-W) Kaplan-Meier (KM) curves depicting differences in survival

of highly and poorly expressed signature genes in multiple subpopulations in different tumors. The light-colored background area is the confidence interval of

the probability of survival at each time point calculated by the KM method, which is the 95% confidence interval. (X) Clustering of tumor types by risk ratios of

11 macrophage subpopulations, Time(D) = Time (Days), colors indicate risk ratios (red = risk ratio>1 [poor prognosis], blue = risk ratio< 0.05, *
FDR< 0.05, ** FDR< 0.01.

https://doi.org/10.1371/journal.pgen.1011235.g005
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Molecular functions of different macrophage clusters in various tumors

In our study, we aimed to investigate the impacts of macrophage subtypes on tumor prognosis

and uncover underlying molecular mechanisms. To achieve this, we conducted enrichment

analysis on cancer types that exhibited significantly poor or favorable prognoses. Our investi-

gations unveiled distinct functional enrichments within each cluster, shedding light on their

pivotal roles in various cellular activities and biological mechanisms. Cluster0 exhibited func-

tional enrichment indicative of its involvement in intricate intracellular signaling networks,

pivotal regulatory mechanisms governing cellular function, metabolic regulation, and

responses to external stimuli (Fig 6A). Cluster1 emerged as a central player in diverse cellular

processes encompassing protein synthesis, cell cycle regulation, DNA repair, and the develop-

ment and function of the nervous system (Fig 6B). The functional enrichments observed in

Cluster2 suggested its significance in a wide array of biological processes, including gene tran-

scription and regulation, organelle function, and cytoskeletal reorganization (Fig 6C). In Clus-

ter3, enriched functions pointed to its importance in pivotal biological processes such as DNA

repair, cell cycle regulation, and RNA processing (Fig 6D). Cluster4 appeared to be signifi-

cantly involved in RNA metabolism, processing and potentially viral infection, along with cell

cycle regulation (S14A Fig). The functional enrichment of Cluster5 highlighted its critical role

in sustaining mitochondrial biosynthesis, protein synthesis, and overall cellular activity (S14B

Fig). Notably, enrichment in Cluster6 suggested its importance in nervous system develop-

ment and signaling (S14C Fig). Likewise, the enriched characterization of Cluster7 implied its

involvement in vital cellular processes like RNA processing, transcription, translation, and cel-

lular metabolism (S14D Fig). The functional characterization of Cluster8 indicated its involve-

ment in diverse biological processes encompassing cell signaling, stress responses, and

regulation of nuclear receptors (S15A Fig). Cluster9’s functional characterization suggested its

involvement in key biological processes such as cell metabolism, regulation of translation, and

remodeling of the extracellular matrix (S15B Fig). Finally, the functional characterization of

Cluster10 suggested its potential role in biological processes including nervous system devel-

opment and regulation of the cell cycle (S15C Fig). The results of our analyses suggested that

these macrophage subtypes exhibited significant differences in their impact on tumor progres-

sion, reflecting the differences between macrophage subtypes as well as the heterogeneity of

macrophages among different tumors. Overall, our study provided valuable insights into the

cellular interactions of different macrophage subtypes and their impacts on tumor develop-

ment. These findings might have significant implications for cancer treatment and

management.

Associations of macrophage subgroups with immunotherapy sensitivity in

different types of cancer

Some studies have shown that anti-PD-l immunotherapy may elicit a significant response in

patients [31–34]. Furthermore, TAM depletion has been demonstrated to block the PD-l path-

way, thereby reactivating infiltrating T cells [35], while different subtypes of TAM exhibit vary-

ing sensitivity to anti-PD-1 based immune checkpoint blockade [36]. To investigate the

relationship between macrophage subtypes in tumors and the efficacy of immune-targeted

therapy, we conducted GSEA analysis using specific signature genes of different macrophage

subtypes between patients with progressive disease (PD) and patients with complete response

(CR) or partial response (PR) upon anti-PD-1 treatment for melanoma, NSCLC, and thymic

carcinoma. We utilized differential expression analysis of different macrophage subtypes to

predict treatment sensitivity. Our analyses showed that certain macrophage subtypes in mela-

noma have gene sets that are positive and significantly enriched in PD when treated with anti-
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Fig 6. Networks of REACTOME terms enriched or depleted in tumors with high expression of different macrophage subtypes (Cluster0-Cluster3)

signature genes. (A) Cluster0 results from SKCM and LGG. (B) Cluster1 results from SKCM and LGG. (C) Cluster2 results from SKCM. (D) THYM, SKCM

and LGG results for Cluster3.

https://doi.org/10.1371/journal.pgen.1011235.g006
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PD-1 (Fig 7A). Conversely, we found positive and significant enrichment of gene sets associ-

ated with most macrophage subtypes in NSCLC and liver cancer patients who experienced

complete response (CR) or partial response (PR) while receiving anti-PD-1 (Figs 8, 9 and S16).

Fig 7. Macrophage subtypes of anti-PD-1 resistance in melanoma. Gene set enrichment analysis of anti-PD 1 treatment for melanoma

showed that patients in complete remission (CR) and partial remission (PR) compared with those in patients with progressive disease

(PD).

https://doi.org/10.1371/journal.pgen.1011235.g007
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Fig 8. Macrophage subtypes of anti-PD-1 resistance in NSCLC. Gene set enrichment analysis of anti-PD 1 treatment for NSCLC showed that patients in

complete remission (CR) and partial remission (PR) compared with those in patients with progressive disease (PD).

https://doi.org/10.1371/journal.pgen.1011235.g008
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Fig 9. Macrophage subtypes of anti-PD-1 resistance in thymic carcinoma. Gene set enrichment analysis of anti-PD 1 treatment for

thymic carcinoma showed that patients in complete remission (CR) and partial remission (PR) compared with those in patients with

progressive disease (PD).

https://doi.org/10.1371/journal.pgen.1011235.g009
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Meanwhile, Cluster9 was not associated with anti-PD-1 drug therapy. These findings sug-

gested that the use of anti-PD-1 drugs affects specific macrophage subpopulations in NSCLC

and thymic adenocarcinoma and can ameliorate or treat cancer.

Discussion

Previous studies have demonstrated that macrophages can polarize into two distinct types, M1

or M2. M1 macrophages are typically induced by Th1 cytokines and are pro-inflammatory

cells capable of causing tissue damage as well as having potent anti-tumor activity. M2 macro-

phages express potent anti-inflammatory cytokine profile and can promote tissue repair but

can induce tumor growth and metastasis [37]. In addition, there existed a class of tissue-resi-

dent macrophages classified as M2-like, which can act on cell clearance, development, and

metabolic regulation, as well as having an M2 anti-inflammatory response [38]. Despite this

understanding, the heterogeneity of macrophages in different tumors and its impact on the

TME remain largely unknown. Therefore, to gain insight into the diversity of macrophages in

pan-cancer, we used scRNA-seq from multiple tumors to characterize macrophages in the

TME in the combined set of multiple cancers. Based on differences in gene expression, inte-

grated macrophages can be classified into multiple subtypes that perform different cellular

functions and present different prognoses in the TME. These findings may provide valuable

insight into intervention strategies targeting macrophages in the treatment of cancer.

Cluster0 and Cluster2 were identified as resident macrophages expressing both anti-inflam-

matory and pro-inflammatory genes, while Cluster0 showing additional expression of immu-

nomodulators. Moreover, we observed distinct gene expression patterns between these two

clusters across different tumors, and there were differences in function between the two clus-

ters. We characterized the expression of tissue-specific resident macrophage signature genes

across distinct macrophage subgroups in various cancer types, revealing that Cluster0 and

Cluster2 indeed exhibited higher expression levels of tissue-resident macrophage genes. Our

study identified the SPP1 pathway as the strongest pathway for TAMs to communicate with

each other. This finding echoed previous studies which found that SPP1-positive macrophages

play an important role in the TME [30, 39]. Based on these findings, we chose the SPP1 path-

way as a focal point for interactions within macrophages. This choice aimed to explore in

depth the role and impact of this key pathway among macrophages, providing a unique per-

spective to better understand macrophage interactions in the TME. The SPP1 signaling path-

way was found to be significantly correlated with communication between macrophage

subpopulations, with Cluster2 sending signals for intercellular contact with Cluster0. SPP1

encodes the secreted factor osteopontin (OPN), which has extensive immune-related regula-

tory functions especially in myeloid cells, while OPN proteins undergo extensive post-transla-

tional modifications, including phosphorylation, glycosylation and protein hydrolytic

cleavage, leading to complex effects [40–42]. Interestingly, both subpopulations showed simi-

lar outgoing and incoming patterns, suggesting that they communicate in a similar way and

that resident macrophages communicated with each other through the ligand SPP1. Our

results showed that except for Cluster8 and Cluster10, all macrophage subpopulations

expressed SPP1 genes. SPP1-positive macrophages expressed some genes related to lipid

metabolism and myeloid cell activation [43]. Lipid metabolism can regulate the formation and

maintenance of tumor stem cells, so targeting lipid metabolism may have some value in the

fight against cancer [44]. Previous studies showed that SPP1-CD44 and SPP1-PTGER4 inter-

acted actively with immune cells and mediated crosstalk between tumor cells and macrophages

[45, 46] and our study also found that macrophage-to-epithelial cell crosstalk via SPP1-CD44

was also a validation. Also, our study found that SPP1 was differentially expressed in tumors
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and normal tissues, and in these tumors was positively correlated with the infiltration of

immune cells, whereas high expression of SPP1 in some cancers was associated with poor

prognosis. Meanwhile, our analysis in tumors with positive correlation between SPP1 and

immune infiltration found that most of the SPP1 expression was present with macrophages or

monocytes, so in our subsequent analyses, we roughly considered that SPP1 expression in

tumors was mainly contributed by macrophages. Macrophages promote immune cell infiltra-

tion and release inflammatory cytokines but abnormal production or reactive deleterious acti-

vation of macrophages to pro-inflammatory or anti-inflammatory stimuli disrupts tissue

homeostasis and promotes disease [47]. Therefore, high expression of SPP1 in macrophages

may induce immune responses in tumors and thus affect prognosis. Notably, the characteristic

genes of these two subpopulations were highly expressed in KIRC and least expressed in

UVM, thus targeting lipid metabolism may be effective in KIRC.

Cluster1 and Cluster3 were identified as TAMs expressing both anti-inflammatory and

pro-inflammatory genes. It was found that Cluster1 high expression of metalloproteinase

(MMPs), indicating its potential role in disrupting the histological barrier to promote tumor

cell invasion, and thus playing a critical role in mid-stage tumor invasion and metastasis.

Moreover, the MMP-dependent characteristic of TAMs suggests that a decrease in MMP leads

to a decrease in infiltrative TAM, ultimately inhibiting tumor growth [48]. Cluster3 expressed

the TGF β coactivator INHBA, which was significantly associated with prognosis in several

types of cancer, highlighting the potential prognostic value of Cluster3 in cancer [49–52].

Interestingly, both subpopulations had similar expression levels of transcription factors, which

were significantly different from the other subpopulations. When we performed functional

analysis of the differentially generated genes in these two clusters, we found that most of the

bacterial and viral infection pathways, as well as antigen processing and presentation, were

enriched in Cluster3. In the same way, both subpopulations were in the same incoming pattern

but not to the same outgoing pattern, indicating that although both belong to TAMs, there

were differences in communication with other cells. Notably, high expression of both subpop-

ulations in LGG correlated with poor prognosis, suggesting a strong clinical relevance of

TAMs in LGG. Therefore, targeting these two subgroups might provide a potential therapeutic

strategy for LGG.

In our study, we observed that Cluster4 was highly expressed in metallothionein gene fam-

ily. Metallothionein genes played an important role in tumor growth, differentiation, immune

escape and drug resistance [53]. Also, we found that Cluster4 exhibited high expression of

anti-inflammatory genes relative to other macrophages. Cluster4 was in outgoing pattern II

and incoming pattern I, while Cluster5, which showed high expression of pro-inflammatory

genes, was classified under outgoing pattern I and incoming pattern II. These findings indi-

cated that different communication patterns may be related to the expression of pro-inflam-

matory and anti-inflammatory genes.

Both Cluster6 and Cluster8 were characterized by high expression monocyte-like cells

markers, indicating that they may be in the process of differentiating from monocytes to mac-

rophages or are just differentiating into macrophages. Cluster6 demonstrated partial anti-

inflammatory genes and had intrinsic alveolar macrophage marker PPARG, which may inter-

fere with tumor therapy progression through lipid accumulation and fatty acid synthesis [54,

55]. In contrast, Cluster8 expressed some pro-inflammatory genes, indicating the transforma-

tion of monocytes into macrophages with different functions. Despite their different gene

expression profiles, both subpopulations share the same pattern of intercellular

communication.

In contrast, Cluster7 was found to have high expression levels of anti-inflammatory genes,

as well as the cytotoxic gene IL32. Previous studies have shown that IL32β upregulates the
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production of the anti-inflammatory cytokine IL10, which in turn inhibits the induction of

pro-inflammatory cytokines, thereby reducing the inflammatory response [56]. Meanwhile,

IL32β has been demonstrated to inhibit tumor growth by activating cytotoxic lymphocyte and

inactivating NF-κB and STAT3 pathways through alterations in cytokine levels within the

tumor tissue [57]. This also verified the accuracy of the macrophage subpopulation characteri-

zation identified in this study.

Our analysis identified a novel macrophage subtype, Cluster9, which showed high expres-

sion of genes associated with the cell cycle and S phase compared to other subpopulations.

Additionally, Cluster9 expressed higher levels of anti-inflammatory and MMP genes and

immunomodulators such as CD209 and CH25H. Among them, blocking CD209 inhibits viral

entry [58] and CH25H can suppress viral infection by modulating innate immunity and virus-

specific adaptive immunity [59]. Moreover, Cluster9 exhibited high expression of transcription

factors E2F2, E2F4, MYCN, and TFDP1, all of which are involved in the regulation of the cell

cycle through the p53-p21-RB signaling pathway [60]. These findings suggested that the high

expression of proliferating genes by Cluster9 and its tendency to stay in the S phase of the cell

cycle could be partially attributed to the regulatory role of these transcription factors.

Cluster10 was highly expressed in selective immunoglobulin genes, indicating a strong

association with B cells. Interestingly, these cells were also found to be present in spinal neu-

rons and supraspinal loci, suggesting potential roles during development [61]. These cells also

expressed immunomodulators as well as intrinsic alveolar macrophage markers that were

capable of performing immune responses against pathogens. Overall, these findings suggested

that Cluster10 might play a unique role in the immune system, possibly involving cross-talk

with B cells and neuro-immune interactions.

Our analysis showed that some subtypes of macrophages gene sets were significantly

enriched in partial response (PR) or complete response (CR) patient groups in both thymic

and NSCLCs after anti-PD-1 treatment, suggesting that anti-PD-1 therapy may be an effective

approach for tumor immunotherapy. In previous studies, the treatment targeting SPP1+ mac-

rophages in NSCLC with anti-PDL1 has been noted to enhance the progression-free survival

of patients [62]. This finding aligned with our results, indicating an association between SPP1

macrophages and improved response of NSCLC to immunotherapy. However, it is important

to note that our GSEA results showed that not all macrophages were enriched in sensitive phe-

notypes when anti-PD-1 therapy was administered to melanoma. This finding was consistent

with previous studies, which have shown that PD-1 expression in tumor-draining lymph

nodes, but not in tumors, can be associated with the prognosis of melanoma [63]. Therefore,

further research is needed to understand the potential differences in the immune microenvi-

ronment of different types of tumors and their responses to anti-PD-1 therapy. Similarly, pre-

vious findings have demonstrated that human TAMs express elevated levels of PD-1. The

expression of PD-1 in TAMs exhibits a negative correlation with their ability to phagocytose

tumor cells. Targeting PDL1 has been observed to restore the function of PD-1 TAMs [64, 65].

This suggested that immunotherapy directed at PDL1 could potentially enhance anti-tumor

mechanisms.

Our study revealed varying distributions of macrophage subsets across diverse tumors,

highlighting the distinct functional properties exhibited by these macrophages in different

tumor types (Fig 1F). Notably, our analysis revealed that both Cluster0 and Cluster2 exhibit

genes associated with tissue-resident macrophages. These subpopulations were notably preva-

lent in LIHC, suggesting a potential inclination of LIHC towards the requirement of tissue-res-

ident macrophages. Conversely, Cluster6 and Cluster8, expressing monocyte-like

macrophages, exhibited distinct characteristics. Cluster8, prominently represented in lung

adenocarcinoma (LUAD), signifies potential functional differences between Cluster6 and
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Cluster8, potentially influencing their varying proportions in LUAD. Similarly, Cluster1 and

Cluster3, expressing genes related to TAMs, displayed contrasting patterns. Cluster3 nearly

lacked macrophages in BRCA whereas Cluster1 showed higher macrophage presence in LIHC.

These differences in functional traits across subpopulations possibly accounted for their dispa-

rate proportions in various cancers.

The present study has several limitations that need to be addressed in future research.

Firstly, although we analyzed data from three types of cancer data to construct a pan-cancer

macrophage model, it is necessary to analyze more data from different cancers in future stud-

ies to validate our findings. Secondly, while transcriptomics is a powerful tool to isolate and

analyze different macrophage subpopulations, this method should be complemented with

other techniques such as fluorescence-activated cell sorting and immunohistochemistry to bet-

ter characterize macrophages and identify marker genes between different subpopulations. In

addition, for the association between drug resistance and macrophage subpopulation, we only

analysed the resistance to anti-PD-1 therapies. In future study, the analysis of other immuno-

therapy treatments needed to be performed to comprehensively confirm the correlation

between macrophage subpopulations and immunotherapy resistance. Furthermore, our study

focused on transcriptomic data of macrophages, however, previous research has shown that

genome wide analysis, differentially methylated regions are associated with anti-PD-1 efficacy

[66]. Therefore, it is also important to explore the association between the genomic data of

macrophages and anti-PD-1 efficacy.

In summary, this study provides a comprehensive and systematic overview of 11 subtypes

of macrophages classified in multiple cancers. By analysing the interrelationship between dif-

ferent macrophages, we gained insights into how different macrophages communicate with

each other and how they can affect subsequent treatment outcomes. The global structure of

UMAP is also reflected in the similarity between macrophage subtypes [67]. Moreover, our

findings suggested that targeting differences in macrophages and changing the immune micro-

environment may be a promising treatment for cancer. Future studies on drug resistance of

different macrophage subtypes can evaluate the function and outcome of therapies of drug-

resistant tumor. The current study outlined the functions and differences between the different

subtypes, providing a basis for further clinical relevance studies.

Materials and methods

Cell lines and cell culture

The THP-1 human monocytic cell line, MDA-MB 231 breast cancer cell lines, A549 lung can-

cer cell lines, HepG2 liver cancer cell lines were obtained from the American Type Culture

Collection (ATCC). THP-1 was maintained in RPMI 1640 (Life Technologies) supplemented

with 10% fetal bovine serum (FBS, Life Technologies), 1% penicillin/streptomycin and 0.05

mM 2-mercaptoethanol (Sigma). MDA-MB 231, A549 and HepG2 was maintained in DMEM

(Life Technologies) supplemented with 10% fetal bovine serum (Life Technologies). To gener-

ate adherent THP-1-derived macrophages, 1 × 106 cells were added to wells in an untreated

TCP six-well plate (Becton Dickinson) and treated with 20 nmol/L of phorbol myristate acetate

(PMA; Sigma) dissolved in media for 48 h at 37˚C, 5% CO2. Macrophage was confirmed using

flow cytometry by detecting CD14, and for the purposes of this study, will be considered as

having an M0 phenotype. For TAM generation, in co-culture system, macrophages were co-

cultured with cancer cells or condition medium from cancer cells to generate TAMs. Macro-

phages were seeded in lower inserts of 6-well transwell plate [0.4 μm pore size polycarbonate

transwell filters (Life Sciences)], and cancer cells were seeded in upper inserts. The two cells

were co-cultured without direct contact. After 48 h, the macrophages in the lower inserts were
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used for next treatment. Tumor cells and macrophages were treated with rh SPP1 (MedChem-

Express) and anti-SPP1 antibody (R&D).

Plasmids and lenti-virus infection

The SPP1 expression vector was constructed into the pLVPT plasmid. Lentivirus including

human SPP1 was produced in 293T cells. THP-1 cell lines with vector and stable SPP1 overex-

pression were constructed by infecting lentivirus as previously described [68].

Western blotting

After being washed three times by PBS, cells were harvested and solubilized in cold radioim-

munoprecipitation assay (RIPA) lysis buffer containing phenylmethylsulfonyl fluoride

(PMSF) and protease inhibitor cocktail. Total protein was quantified using a BCA protein

assay. Equal amounts of each protein sample (30 μg) were separated on 10–15% sodium dode-

cyl sulfate polyacrylamide and transferred to a polyvinylidene fluoride (PVDF) membrane for

1–1.5 h. The membranes were blocked with 5% milk or BSA in Tris-buffered saline with

Tween (TBST), the membranes were incubated with primary rabbit antibodies to anti-osteo-

pontin antibody (1:1000, ab214050, Abcam) or anti-ACTB (1:1000, 6487S, Cell Signaling

Technology) at 4˚C overnight. Subsequently, the membrane was washed with TBST three

times (5 mins each) and incubated with secondary anti-rabbit antibody to IgG (1:2000, 7074S,

Cell Signaling Technology) at room temperature for 2 h. After washing, the protein signals on

the membranes were visualized with enhanced chemiluminescence (ECL) substrate in a

FluorChem Q imaging system.

Enzyme-linked immunosorbent assay (ELISA)

The plasma SPP1, TGF β, IL10 and VEGF levels in media (FBS-free) were assayed using a

commercial enzyme-linked immunosorbent assay (ELISA) kit (ELH-OPN-1; Abcam). The

25-fold diluted plasma samples were directly transferred to a 96-well plate coated with an anti-

body specific for human SPP1, assay buffer was added to each well, then the test sample and

the control sample were added to the corresponding wells and incubated at room temperature

for 2 h. The wells were washed and the detection antibody solution was added, and incubated

for another 1 h at room temperature. After washing once using PBS, the enzyme-labeled sec-

ondary antibody was added for 30 min, the developer was added in the dark for 15 min, and

then the stop solution was added. The absorbance value was recorded at 450 nm in a microtest

plate spectrophotometer with the correction wavelength set at 540 nm. SPP1 levels were quan-

tified using a calibration curve based on a human osteopontin standard. Both standards and

samples were evaluated in duplicate, and the results were adopted only when the inter-assay

variations were within the range provided by the manufacturer.

Data acquisition and preprocessing

We used single-cell data downloaded from the Gene Expression Omnibus (GEO) database for

breast cancer (GSE148673), liver cancer (GSE166635), and lung adenocarcinoma

(GSE171145). The selection of specific single-cell datasets we based on the following three con-

siderations. Firstly, we prioritized Illumina NovaSeq 6000 (Homo sapiens), a unified sequenc-

ing platform, to minimize the impact on the results due to the errors associated with

sequencing with different instrumentation. Secondly, this platform in the GEO database pro-

vides a wide range of resources, and we purposely selected data from recent years to reduce the

batch-to-batch variation between different tumor datasets and to ensure the consistency and
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comparability of the data. Single-cell sequencing technologies and platforms have undergone

significant development and improvement over the past few years, so the selection of recent

data allows for the use of more technologically stable and advanced data, and reduces the

impact of possible technological differences on the results. Finally, single-cell sequencing data

for different types of cancers were selected with the goal of comparing and analyzing the differ-

ences and commonalities between these tumors. Different types of cancers may differ in their

pathophysiology and immune environments, and by understanding the commonalities and

differences in macrophages across cancer types, it helps to develop an understanding of pan-

cancer traits, which are shared biological characteristics across multiple cancer types. For these

reasons, we found single-cell sequencing data from only three of the above tumors eligible for

analysis. We integrated all datasets using a "merge" technique designed to fully integrate the

information. We then reduced batch effects using the canonical correlation analysis (CCA)

method [69, 70]. The "CCA" method is a method that comes with the Seruat package and elim-

inates technical bias by constituting paired anchor cells. Additionally, we downloaded a total

of 33 datasets of all cancers from The Cancer Genome Atlas (TCGA) by utilizing the TCGA-

biolinks package (v 2.25.3). To analyze the TCGA data, we employed the Transcripts Per Kilo-

base of exon model per Million mapped reads (TPM) method.

Single Cell RNA-seq analysis of macrophages

We used the data in the public database to extract the macrophage types by the Seurat (v 4.3.0)

to perform a detailed cluster analysis of each macrophage in cancer separately. Cells with the

number of expressing genes below 200 or above 6000 were removed. In addition, Cells with

higher than 10% mitochondrial gene content were removed prior to further analysis. Visual-

ized the images by dimensionality reduction (UMAP), and annotated them according to dif-

ferent clusters. To compare and identify macrophage subpopulations between different tumor

types, datasets from BRCA, LIHC, and lung cancer (LUAD) were integrated by canonical cor-

relation analysis (CCA). We used KEGG and Gene Ontology (GO)—Biological Process, to

analyze macrophage function in different tumors as well as macrophage function after integra-

tion, respectively, and when the enrichment for pathway was considered significant at

p< 0.05. To assess the differences in transcription factors between subpopulations, we used

DoRothEA (v 1.6.0) to analyze them based on single-cell RNA data.

Cell communication analysis

We used CellChat (v 1.5.0) [71], a network analysis and pattern recognition tool, to analyze the

single-cell RNA-sequencing data of macrophages. Cellular communication analysis involved

the use of gene expression data to infer communication between cells based on the network

analysis and pattern recognition methods provided by CellChat. We used CellChat to analyze

single-cell RNA data of macrophages to obtain the strength and number of information inter-

actions between various subpopulations. Moreover, we calculated the strongest information

interaction pathway SPP1 and performed further analysis, and finally obtained the communi-

cation between the senders and receivers in the SPP1 pathway.

TCGA data analysis

We downloaded TCGA data using the TCGAbiolinks package [72]. All the tumors with signif-

icant differences in SPP1 in tumor and normal tissues were analyzed by single-sample gene set

enrichment analysis (ssGSEA) immune infiltration, and the correlation between SPP1 expres-

sion and different degrees of immune cell infiltration was analyzed by Hmisc package (v 5.1.0).

We performed spearman correlation analysis on the genes of CD44, ITGB1, and ITGB6 in 33
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cancers, and when the correlation was higher than 0.3 and the pvalue was below 0.05 as related

genes, KEGG enrichment analysis was performed. The intersection of the enriched pathways

in different cancers was demonstrated using the UpSetR package (v1.4.0). We performed prog-

nostic analysis of macrophage subpopulations in pan-cancer by defining the signature genes

for each subpopulation. We screened the genes that differed from other subpopulations of

cells in the three cancer types BRCA, LIHC, and LUAD by the FindMarkers function in Seurat.

To ensure significance of the differential genes, we setted genes with adjust.P < 0.05 and

log2FoldChange > 0.3 as specific signature genes. The expression of these macrophage signa-

ture genes was extracted from the TPM values of 33 cancer types RNA data from the TCGA

database, and the expression of each subgroup of signature genes was obtained by averaging all

the signature genes after Z-score calculation. We represented the overall expression of the sig-

nature genes in tumor samples by averaging all the signature genes after Z-score calculation.

After sorting the different cancer types of different signature genes, we selected the top 1/4 and

bottom 1/4 samples for survival analysis. The p-values were converted to false discovery rate

(FDR) by R (v 4.1.3), and FDR< 0.05 cancers were screened for subsequent analysis. In addi-

tion, we conducted multivariate analysis for each cancer, adjusting for age and gender as con-

tinuous and dichotomous variables, respectively. We conducted univariate analysis for all

cancers and calculated FDR values, with FDR< 0.05 being statistically significant.

Gene Set Enrichment Analysis (GSEA)

We performed GSEA in cancer types with significant survival differences between high and

low expression signature genes of different macrophage subpopulations. We used edgeR and

Wilcoxon rank sum tests to obtain differential expression between the first and last 1/4 sam-

ples. The gene set of differential genes in the REACTOME database were analyzed, with signif-

icance adjust. P< 0.05. We used different colors to express enrichment or depletion in cancer,

and results of the selection of enrichment scores in the top 10 were selected separately in order

to reduce the results with smaller effects.

Immunotherapy sensitivity and resistance analysis

We selected data from melanoma (GSE78220) [73], NSCLC (GSE126044)[66], and thymic car-

cinoma (GSE181815)[74] after anti-PD-1 treatment. We performed enrichment analysis of the

marker gene sets of each subgroup by the GSEA to analyze their significant enrichment

between the therapeutically resistant or sensitive.

Supporting information

S1 Fig. Macrophages in different cancer types. (A) UMAP distribution, expression of marker

genes and gene enrichment analysis of macrophages in breast cancer. (B) Distribution of

UMAP, expression of marker genes, and gene enrichment analysis of macrophages in hepato-

cellular carcinoma. (C) Distribution of UMAP, expression of marker genes, and gene enrich-

ment analysis of macrophages in lung cancer.

(TIF)

S2 Fig. Differential gene and functional analysis of similarly expressed subpopulations.

Differential gene volcano maps for different cancer types in Cluster0(A) and Cluster2 (B) (tis-

sue-resident macrophages). (C) Expression of cancer-specific resident macrophage gene sets

in different subpopulations.

(TIF)
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S3 Fig. Functional analysis of similarly expressed subpopulations. Functional differences

between similar subgroups, (A) Cluster0 vs Cluster2, (B) Cluster1 vs Cluster3, (C) Cluster6 vs

Cluster8.

(TIF)

S4 Fig. Cellular communication between macrophage subtypes. (A) The number of inter-

cellular communications in different subpopulations, the greater the number, the thicker

the linkage between different subgroups. (B) Intercellular communication strength of dif-

ferent subpopulations, the higher the intensity, the thicker the linkage between subgroups.

(C) The communication patterns of intercellular inputs of different cell subpopulations.

(D) The communication patterns of intercellular outgoings of different cell subpopula-

tions.

(TIF)

S5 Fig. Relative expression of SPP1 in each cell type in different cancers. (A) UMAP distri-

bution of cell types of THCA and UMAP showing SPP1 expression. (B) UMAP distribution of

cell types of COAD and UMAP showing SPP1 expression. (C) UMAP distribution of cell types

of PRAD and UMAP showing SPP1 expression

(TIF)

S6 Fig. Prognostic effects of SPP1 in different cancers. The light-colored background area is

the confidence interval of the probability of survival at each time point calculated by the KM

method, which is the 95% confidence interval, Time(D) = Time (Days).

(TIF)

S7 Fig. Enrichment pathways of different receptors in different cancers. Intersection of

enrichment pathways for different receptors in 33 cancers, CD44(A), ITGB1(B).

(TIF)

S8 Fig. ITGB6 receptor enrichment pathways in different cancers. Intersection of ITGB6

receptor enrichment pathways in 33 cancers.

(TIF)

S9 Fig. Expression of different subgroups (Cluster0-2) of characteristic genes in pan-can-

cer. Expression of genes characteristic of macrophage subpopulations in 33 tumors in

descending order, Cluster0 (A), Cluster1 (B), Cluster2 (C).

(TIF)

S10 Fig. Expression of different subgroups (Cluster3-5) of characteristic genes in pan-can-

cer. Expression of genes characteristic of macrophage subpopulations in 33 tumors in

descending order, Cluster3 (A), Cluster4 (B), Cluster5 (C).

(TIF)

S11 Fig. Expression of different subgroups (Cluster6-8) of characteristic genes in pan-can-

cer. Expression of genes characteristic of macrophage subpopulations in 33 tumors in

descending order, Cluster6 (A), Cluster7 (B), Cluster8 (C).

(TIF)

S12 Fig. Expression of different subgroups (Cluster9-10) of characteristic genes in pan-

cancer. Expression of genes characteristic of macrophage subpopulations in 33 tumors in

descending order, Cluster9 (A), Cluster10 (B).

(TIF)
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S13 Fig. Tumor types with a better prognosis for characteristic genes. Kaplan-Meier curves

depicting survival differences in high and low expression signature genes in multiple subpopu-

lations for THYM (A), and SKCM (B-K), BRCA (L), UCEC (M). The light-colored back-

ground area is the confidence interval of the probability of survival at each time point

calculated by the KM method, which is the 95% confidence interval, Time(D) = Time (Days).

(TIF)

S14 Fig. Networks of REACTOME terms enriched or depleted in tumors with high expres-

sion of different macrophage subtypes (Cluster4-Cluster7) signature genes. (A) Results of

THYM, SKCM and LGG for Cluster4. (B) Results of PAAD, LGG, SKCM, THYM on Cluster5.

(C) Results of SKCM, LGG, GBM in Cluster6. (D) Results of UCEC, BRCA, SKCM, LGG in

Cluster7.

(TIF)

S15 Fig. Networks of REACTOME terms enriched or depleted in tumors with high expres-

sion of different macrophage subtypes (Cluster8-Cluster10) signature genes. (A) Results of

SKCM, LGG in Cluster8. (B) Results of LUAD, PAAD, KIRP, THYM, MESO, LGG, ACC,

UCEC in Cluster 9. (C) Results for SKCM, LGG in Cluster10.

(TIF)

S16 Fig. Macrophage subtypes (Cluster8, Cluster10) in anti-PD-1 resistant NSCLC. Gene

set enrichment analysis of anti-PD 1 treatment for NSCLC of Cluster8 and Cluster10 showed

that patients in complete remission (CR) and partial remission (PR) compared with those in

patients with progressive disease (PD).

(TIF)

S1 Table. Relationship between the number of different macrophage subtypes in a single

cancer.

(XLSX)

S2 Table. Signaling pathways between different macrophage subpopulations and corre-

sponding strengths.

(XLSX)

S3 Table. Signaling pathways and corresponding strengths between epithelial cells and

macrophages.

(XLSX)

S4 Table. Multivariate Cox proportional risk modeling analysis of individual macrophage

subtype gene signatures while adjusting for age and gender.

(XLSX)
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pontin in patients with chronic kidney disease: The German chronic kidney disease study. Plos Genet.

2022; 18(4). ARTN e1010139. https://doi.org/10.1371/journal.pgen.1010139 PMID: 35385482

43. Papazoglou A, Huang M, Bulik M, Lafyatis A, Tabib T, Morse C, et al. Epigenetic Regulation of Profibro-

tic Macrophages in Systemic Sclerosis-Associated Interstitial Lung Disease. Arthritis Rheumatol. 2022;

74(12):2003–14. https://doi.org/10.1002/art.42286 PMID: 35849803

44. Li H, Feng Z, He ML. Lipid metabolism alteration contributes to and maintains the properties of cancer

stem cells. Theranostics. 2020; 10(16):7053–69. https://doi.org/10.7150/thno.41388 PMID: 32641978

45. Wang CD, Yu QX, Song TT, Wang ZF, Song LJ, Yang Y, et al. The heterogeneous immune landscape

between lung adenocarcinoma and squamous carcinoma revealed by single-cell RNA sequencing. Sig-

nal Transduct Tar. 2022; 7(1). ARTN 289. https://doi.org/10.1038/s41392-022-01130-8 PMID:

36008393

46. Liu L, Zhang R, Deng J, Dai X, Zhu X, Fu Q, et al. Construction of TME and Identification of crosstalk

between malignant cells and macrophages by SPP1 in hepatocellular carcinoma. Cancer Immunol

Immunother. 2022; 71(1):121–36. https://doi.org/10.1007/s00262-021-02967-8 PMID: 34028567

47. Greene JT, Brian BFt, Senevirathne SE, Freedman TS. Regulation of myeloid-cell activation. Curr Opin

Immunol. 2021; 73:34–42. https://doi.org/10.1016/j.coi.2021.09.004 PMID: 34601225

48. Gui P, Ben-Neji M, Belozertseva E, Dalenc F, Franchet C, Gilhodes J, et al. The Protease-Dependent

Mesenchymal Migration of Tumor-Associated Macrophages as a Target in Cancer Immunotherapy.

Cancer Immunol Res. 2018; 6(11):1337–51. https://doi.org/10.1158/2326-6066.CIR-17-0746 PMID:

30181209

49. Li X, Yu W, Liang C, Xu Y, Zhang M, Ding X, et al. INHBA is a prognostic predictor for patients with

colon adenocarcinoma. BMC Cancer. 2020; 20(1):305. https://doi.org/10.1186/s12885-020-06743-2

PMID: 32293338

50. Liu M, Smith R, Liby T, Chiotti K, Lopez CS, Korkola JE. INHBA is a mediator of aggressive tumor

behavior in HER2+ basal breast cancer. Breast Cancer Res. 2022; 24(1):18. https://doi.org/10.1186/

s13058-022-01512-4 PMID: 35248133

51. Zhao K, Yi Y, Ma Z, Zhang W. INHBA is a Prognostic Biomarker and Correlated With Immune Cell Infil-

tration in Cervical Cancer. Front Genet. 2021; 12:705512. https://doi.org/10.3389/fgene.2021.705512

PMID: 35058963

52. Ojeda-Fernandez L, Recio-Poveda L, Aristorena M, Lastres P, Blanco FJ, Sanz-Rodriguez F, et al.

Mice Lacking Endoglin in Macrophages Show an Impaired Immune Response. Plos Genet. 2016; 12

(3):e1005935. https://doi.org/10.1371/journal.pgen.1005935 PMID: 27010826

53. Si M, Lang J. The roles of metallothioneins in carcinogenesis. J Hematol Oncol. 2018; 11(1):107.

https://doi.org/10.1186/s13045-018-0645-x PMID: 30139373

54. Ma S, Zhou B, Yang Q, Pan Y, Yang W, Freedland SJ, et al. A Transcriptional Regulatory Loop of Mas-

ter Regulator Transcription Factors, PPARG, and Fatty Acid Synthesis Promotes Esophageal Adeno-

carcinoma. Cancer Res. 2021; 81(5):1216–29. https://doi.org/10.1158/0008-5472.CAN-20-0652 PMID:

33402390

55. Wilson HE, Stanton DA, Rellick S, Geldenhuys W, Pistilli EE. Breast cancer-associated skeletal muscle

mitochondrial dysfunction and lipid accumulation is reversed by PPARG. Am J Physiol Cell Physiol.

2021; 320(4):C577–C90. https://doi.org/10.1152/ajpcell.00264.2020 PMID: 33439777

56. Kang JW, Choi SC, Cho MC, Kim HJ, Kim JH, Lim JS, et al. A proinflammatory cytokine interleukin-

32beta promotes the production of an anti-inflammatory cytokine interleukin-10. Immunology. 2009;

128(1 Suppl):e532-40. https://doi.org/10.1111/j.1365-2567.2008.03025.x PMID: 19740314

57. Yun HM, Oh JH, Shim JH, Ban JO, Park KR, Kim JH, et al. Antitumor activity of IL-32beta through the

activation of lymphocytes, and the inactivation of NF-kappaB and STAT3 signals. Cell Death Dis. 2013;

4(5):e640. https://doi.org/10.1038/cddis.2013.166 PMID: 23703385

58. Amraei R, Yin W, Napoleon MA, Suder EL, Berrigan J, Zhao Q, et al. CD209L/L-SIGN and CD209/DC-

SIGN Act as Receptors for SARS-CoV-2. ACS Cent Sci. 2021; 7(7):1156–65. https://doi.org/10.1021/

acscentsci.0c01537 PMID: 34341769

PLOS GENETICS Analysis of macrophages in pan-cancer

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1011235 April 22, 2024 30 / 31

https://doi.org/10.3389/fimmu.2022.798022
https://doi.org/10.3389/fimmu.2022.798022
http://www.ncbi.nlm.nih.gov/pubmed/35432310
https://doi.org/10.1186/s13058-016-0674-8
https://doi.org/10.1186/s13058-016-0674-8
http://www.ncbi.nlm.nih.gov/pubmed/26821678
https://doi.org/10.1371/journal.pgen.1010139
http://www.ncbi.nlm.nih.gov/pubmed/35385482
https://doi.org/10.1002/art.42286
http://www.ncbi.nlm.nih.gov/pubmed/35849803
https://doi.org/10.7150/thno.41388
http://www.ncbi.nlm.nih.gov/pubmed/32641978
https://doi.org/10.1038/s41392-022-01130-8
http://www.ncbi.nlm.nih.gov/pubmed/36008393
https://doi.org/10.1007/s00262-021-02967-8
http://www.ncbi.nlm.nih.gov/pubmed/34028567
https://doi.org/10.1016/j.coi.2021.09.004
http://www.ncbi.nlm.nih.gov/pubmed/34601225
https://doi.org/10.1158/2326-6066.CIR-17-0746
http://www.ncbi.nlm.nih.gov/pubmed/30181209
https://doi.org/10.1186/s12885-020-06743-2
http://www.ncbi.nlm.nih.gov/pubmed/32293338
https://doi.org/10.1186/s13058-022-01512-4
https://doi.org/10.1186/s13058-022-01512-4
http://www.ncbi.nlm.nih.gov/pubmed/35248133
https://doi.org/10.3389/fgene.2021.705512
http://www.ncbi.nlm.nih.gov/pubmed/35058963
https://doi.org/10.1371/journal.pgen.1005935
http://www.ncbi.nlm.nih.gov/pubmed/27010826
https://doi.org/10.1186/s13045-018-0645-x
http://www.ncbi.nlm.nih.gov/pubmed/30139373
https://doi.org/10.1158/0008-5472.CAN-20-0652
http://www.ncbi.nlm.nih.gov/pubmed/33402390
https://doi.org/10.1152/ajpcell.00264.2020
http://www.ncbi.nlm.nih.gov/pubmed/33439777
https://doi.org/10.1111/j.1365-2567.2008.03025.x
http://www.ncbi.nlm.nih.gov/pubmed/19740314
https://doi.org/10.1038/cddis.2013.166
http://www.ncbi.nlm.nih.gov/pubmed/23703385
https://doi.org/10.1021/acscentsci.0c01537
https://doi.org/10.1021/acscentsci.0c01537
http://www.ncbi.nlm.nih.gov/pubmed/34341769
https://doi.org/10.1371/journal.pgen.1011235


59. Zhao J, Chen J, Li M, Chen M, Sun C. Multifaceted Functions of CH25H and 25HC to Modulate the

Lipid Metabolism, Immune Responses, and Broadly Antiviral Activities. Viruses. 2020; 12(7). https://doi.

org/10.3390/v12070727 PMID: 32640529

60. Engeland K. Cell cycle regulation: p53-p21-RB signaling. Cell Death Differ. 2022; 29(5):946–60. https://

doi.org/10.1038/s41418-022-00988-z PMID: 35361964

61. Scheurer L, Das Gupta RR, Saebisch A, Grampp T, Benke D, Zeilhofer HU, et al. Expression of immu-

noglobulin constant domain genes in neurons of the mouse central nervous system. Life Sci Alliance.

2021; 4(11). https://doi.org/10.26508/lsa.202101154 PMID: 34433614

62. Leader AM, Grout JA, Maier BB, Nabet BY, Park MD, Tabachnikova A, et al. Single-cell analysis of

human non-small cell lung cancer lesions refines tumor classification and patient stratification. Cancer

Cell. 2021; 39(12):1594-+. https://doi.org/10.1016/j.ccell.2021.10.009 PMID: 34767762

63. Dammeijer F, van Gulijk M, Mulder EE, Lukkes M, Klaase L, van den Bosch T, et al. The PD-1/PD-L1-

Checkpoint Restrains T cell Immunity in Tumor-Draining Lymph Nodes. Cancer Cell. 2020; 38(5):685–

700 e8. https://doi.org/10.1016/j.ccell.2020.09.001 PMID: 33007259

64. Gordon SR, Aute RLM, Dulken BW, Hutter G, George BM, Ccracken MNM, et al. PD-1 expression by

tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 2017; 545

(7655):495-+. https://doi.org/10.1038/nature22396 PMID: 28514441

65. Chen Y, Jin H, Song Y, Huang T, Cao J, Tang Q, et al. Targeting tumor-associated macrophages: A

potential treatment for solid tumors. J Cell Physiol. 2021; 236(5):3445–65. https://doi.org/10.1002/jcp.

30139 PMID: 33200401

66. Cho JW, Hong MH, Ha SJ, Kim YJ, Cho BC, Lee I, et al. Genome-wide identification of differentially

methylated promoters and enhancers associated with response to anti-PD-1 therapy in non-small cell

lung cancer. Exp Mol Med. 2020; 52(9):1550–63. https://doi.org/10.1038/s12276-020-00493-8 PMID:

32879421

67. Becht E, McInnes L, Healy J, Dutertre CA, Kwok IWH, Ng LG, et al. Dimensionality reduction for visual-

izing single-cell data using UMAP. Nat Biotechnol. 2018. https://doi.org/10.1038/nbt.4314 PMID:

30531897

68. Luo Y, Chen Y, Jin H, Hou B, Li H, Li X, et al. The suppression of cervical cancer ferroptosis by macro-

phages: The attenuation of ALOX15 in cancer cells by macrophages-derived exosomes. Acta Pharm

Sin B. 2023; 13(6):2645–62. https://doi.org/10.1016/j.apsb.2023.03.025 PMID: 37425043

69. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, 3rd, et al. Comprehensive Inte-

gration of Single-Cell Data. Cell. 2019; 177(7):1888–902 e21. https://doi.org/10.1016/j.cell.2019.05.031

PMID: 31178118

70. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across

different conditions, technologies, and species. Nat Biotechnol. 2018; 36(5):411–20. https://doi.org/10.

1038/nbt.4096 PMID: 29608179

71. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, et al. Inference and analysis of cell-

cell communication using CellChat. Nat Commun. 2021; 12(1):1088. https://doi.org/10.1038/s41467-

021-21246-9 PMID: 33597522

72. Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al. TCGAbiolinks: an R/Bioconductor

package for integrative analysis of TCGA data. Nucleic Acids Res. 2016; 44(8):e71. https://doi.org/10.

1093/nar/gkv1507 PMID: 26704973

73. Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, et al. Genomic and Transcriptomic

Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma. Cell. 2016; 165(1):35–44. https://

doi.org/10.1016/j.cell.2016.02.065 PMID: 26997480

74. He Y, Ramesh A, Gusev Y, Bhuvaneshwar K, Giaccone G. Molecular predictors of response to pembro-

lizumab in thymic carcinoma. Cell Rep Med. 2021; 2(9):100392. https://doi.org/10.1016/j.xcrm.2021.

100392 PMID: 34622229

PLOS GENETICS Analysis of macrophages in pan-cancer

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1011235 April 22, 2024 31 / 31

https://doi.org/10.3390/v12070727
https://doi.org/10.3390/v12070727
http://www.ncbi.nlm.nih.gov/pubmed/32640529
https://doi.org/10.1038/s41418-022-00988-z
https://doi.org/10.1038/s41418-022-00988-z
http://www.ncbi.nlm.nih.gov/pubmed/35361964
https://doi.org/10.26508/lsa.202101154
http://www.ncbi.nlm.nih.gov/pubmed/34433614
https://doi.org/10.1016/j.ccell.2021.10.009
http://www.ncbi.nlm.nih.gov/pubmed/34767762
https://doi.org/10.1016/j.ccell.2020.09.001
http://www.ncbi.nlm.nih.gov/pubmed/33007259
https://doi.org/10.1038/nature22396
http://www.ncbi.nlm.nih.gov/pubmed/28514441
https://doi.org/10.1002/jcp.30139
https://doi.org/10.1002/jcp.30139
http://www.ncbi.nlm.nih.gov/pubmed/33200401
https://doi.org/10.1038/s12276-020-00493-8
http://www.ncbi.nlm.nih.gov/pubmed/32879421
https://doi.org/10.1038/nbt.4314
http://www.ncbi.nlm.nih.gov/pubmed/30531897
https://doi.org/10.1016/j.apsb.2023.03.025
http://www.ncbi.nlm.nih.gov/pubmed/37425043
https://doi.org/10.1016/j.cell.2019.05.031
http://www.ncbi.nlm.nih.gov/pubmed/31178118
https://doi.org/10.1038/nbt.4096
https://doi.org/10.1038/nbt.4096
http://www.ncbi.nlm.nih.gov/pubmed/29608179
https://doi.org/10.1038/s41467-021-21246-9
https://doi.org/10.1038/s41467-021-21246-9
http://www.ncbi.nlm.nih.gov/pubmed/33597522
https://doi.org/10.1093/nar/gkv1507
https://doi.org/10.1093/nar/gkv1507
http://www.ncbi.nlm.nih.gov/pubmed/26704973
https://doi.org/10.1016/j.cell.2016.02.065
https://doi.org/10.1016/j.cell.2016.02.065
http://www.ncbi.nlm.nih.gov/pubmed/26997480
https://doi.org/10.1016/j.xcrm.2021.100392
https://doi.org/10.1016/j.xcrm.2021.100392
http://www.ncbi.nlm.nih.gov/pubmed/34622229
https://doi.org/10.1371/journal.pgen.1011235

