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Cat Flea Coinfection with Rickettsia felis and Rickettsia typhi

Hanna J. Laukaitis-Yousey1,2 and Kevin R. Macaluso1

Abstract

Purpose: Flea-borne rickettsioses, collectively referred to as a term for etiological agents Rickettsia felis,
Rickettsia typhi, and RFLOs (R. felis-like organisms), has become a public health concern around the world,
specifically in the United States. Due to a shared arthropod vector (the cat flea) and clinical signs, discriminating
between Rickettsia species has proven difficult. While the effects of microbial coinfections in the vector can
result in antagonistic or synergistic interrelationships, subsequently altering potential human exposure and dis-
ease, the impact of bacterial interactions within flea populations remains poorly defined.
Methods: In this study, in vitro and in vivo systems were utilized to assess rickettsial interactions in arthropods.
Results: Coinfection of both R. felis and R. typhi within a tick-derived cell line indicated that the two species
could infect the same cell, but distinct growth kinetics led to reduced R. felis growth over time, regardless of
infection order. Sequential flea coinfections revealed the vector could acquire both Rickettsia spp. and sustain
coinfection for up to 2 weeks, but rickettsial loads in coinfected fleas and feces were altered during coinfection.
Conclusion: Altered rickettsial loads during coinfection suggest R. felis and R. typhi interactions may enhance
the transmission potential of either agent. Thus, this study provides a functional foundation to disentangle
transmission events propelled by complex interspecies relationships during vector coinfections.
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Introduction

R ickettsial infections, which are spread by blood-
feeding arthropods, are both historically and currently

important diseases affecting human health worldwide. In the
United States, flea-borne rickettsioses, collectively caused by
Rickettsia typhi (murine typhus) and Rickettsia felis (flea-
borne spotted fever), have become a concern in California,
Texas, and Hawaii, where murine typhus has reemerged as
an endemic febrile illness (Azad et al., 1997; Blanton et al.,
2015; Ruiz et al., 2020). Cases have more than doubled in the
last decade in southern California and Texas alone (Blanton,
2019; Blanton and Walker, 2017; Blanton et al., 2015), where
it is a reportable disease by the public health department
(Anstead, 2020; CA.gov, 2023) and has recently been asso-
ciated with human deaths (Alarcon et al., 2023).

However, both flea-borne diseases are undistinguishable
febrile illnesses, making diagnoses complicated. In addition,
emerging flea-borne rickettsial species, such as R. felis-like
organisms (RFLOs), are increasingly detected among flea
populations around the globe with pathogenicity to vertebrate
hosts inconclusive (Maina et al., 2018; Maina et al., 2016;
Tay et al., 2015). With the ubiquitous detection of R. felis and
RFLOs within fleas across the United States, why cases of
murine typhus are re-appearing in endemic regions remains
unresolved.

The cosmopolitan distribution of murine typhus cases is
perpetuated by the biology of the transmitting vector, the cat
flea, Ctenocephalides felis. Cat fleas are known to harbor
several bacterial pathogens (e.g., R. felis, R. typhi, and Bar-
tonella henselae) and are the most prevalent flea species
found on peri-domestic and companion animals (cats and
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dogs) (Mullins et al., 2018; Rust, 2017). As infected fleas
feed on a host, transmission can occur not only through sal-
ivary secretions but also through the inoculation of infected
flea feces into abrasions in host skin or mucosal membranes
(Gillespie et al., 2009), providing increased opportunity for
pathogen dispersal. The diversity and implications of sym-
patric flea-associated Rickettsia spp. have only recently
begun to be appreciated, leaving little understood regarding
their geographic distribution and potential as human or
animal pathogens.

Multiple factors influence the spread of vector-borne dis-
eases, including host susceptibility to infection, microbiome,
vectorial capacity, environment, and, most importantly, the
tripartite host-vector-pathogen interactions. Within vector
populations, coinfections with multiple pathogens are known
to occur and can alter disease epidemiology, resulting in
antagonistic, mutualistic, or synergistic interactions between
organisms (Ginsberg, 2008; Goertz et al., 2017; Levin and
Fish, 2001; Levin et al., 2018). For example, the relationship
governing tick-borne rickettsial coinfections suggests a pri-
mary infection excludes transovarial transmission of a sec-
ondarily acquired organism from infected females to an egg
clutch (Burgdorfer et al., 1980; Macaluso et al., 2002).

For flea-borne rickettsiae, naturally, R. felis-infected fleas
acquire R. typhi at a lower prevalence, suggesting an antag-
onistic relationship may exist (Noden et al., 1998). However,
interpretations of the impact of coinfection on the epidemi-
ology of vector-borne diseases are highly stringent on labo-
ratory settings, bacterial strains, and vector species (Levin
et al., 2018). Although carriage of multiple rickettsial agents
by fleas occurs in nature (Eremeeva et al., 2008; Maina et al.,
2016), the influence of the temporal effects of flea-borne
rickettsial interactions is not well understood.

While R. felis and R. typhi are known to colonize their rat
flea and cat flea hosts for life without an observable effect
on vector viability (Adams et al., 1990; Farhang-Azad and
Traub, 1985; Farhang-Azad et al., 1984; Healy et al., 2017;
Wedincamp and Foil, 2002), the epidemiology surround-
ing cases of flea-borne rickettsioses is confounding as field
studies seldom report coinfections (Eremeeva et al., 2008;
Maina et al., 2016) (Table 1). Therefore, it is hypothesized
that if rickettsial interactions influence pathogen persis-
tence in flea populations, then infection order will impact
rickettsial maintenance by fleas.

In this study, an in vitro and in vivo model of R. felis and
R. typhi coinfection was used to assess interaction pheno-
types. While distinct interspecies growth profiles were obs-
erved in both systems, coinfection of individual arthropod
cells was visualized by microscopy using species-specific
antibodies. Similarly, naive fleas acquired both Rickettsia
spp. and sustained coinfection for 2 weeks. A combination of
both an in vitro and flea infection bioassay provides a mul-
tidimensional platform to examine the complex biology
perpetuating sympatric distributions of rickettsial species.

Materials and Methods

Fleas, cell lines, and Rickettsia

Cat fleas were purchased from Elward II Laboratory
(Soquel, CA) and maintained using an artificial dog system
(Wade and Georgi, 1988). Before use in each bioassay, a
subset of fleas was confirmed to be pathogen-specific (R. felis

and R. typhi) free by quantitative PCR (qPCR) (Danchenko
et al., 2021; Laukaitis et al., 2022).

For in vitro infection bioassays, the Ixodes scapularis-
derived cell line (ISE6), and the rickettsial isolate, R. felis
strain LSU passage 3 was maintained as previously described
(Brown et al., 2015; Danchenko et al., 2021; Laukaitis et al.,
2022; Pornwiroon et al., 2006). R. typhi strain Wilmington
passage <5 was originally cultured in Vero cells using Dul-
becco’s Modified Eagle Media (DMEM) supplemented with
5% fetal bovine serum (FBS) at 34�C with 5% CO2. It was
purified from Vero cells through needle lysis for in vitro
coinfection assays in ISE6 cells. For flea infections, R. typhi
was grown in ISE6 cells. Rickettsial infection was monitored
by Diff-Quik staining (Brown et al., 2015; Danchenko et al.,
2021; Laukaitis et al., 2022; Pornwiroon et al., 2006).

In vitro coinfection assays

While the lack of a currently available flea cell line limits
the ability to directly assess flea-specific infection mecha-
nisms, other arthropod cells, such as tick-derived cell lines,
have successfully facilitated the study of obligate intracel-
lular organisms in the Rickettsiales order (Felsheim et al.,
2006; Kurtti et al., 2016; Wang et al., 2020a; Wang et al.,
2020b). Specifically, R. felis strains have been isolated
from insects using ISE6 cells (Pornwiroon et al., 2006;
Thepparit et al., 2011). Therefore, ISE6 cells were seeded
into 48-well plates at a density of 5 · 105 cells/well or
seeded onto glass coverslips in 24-well plates at a density of
8 · 105 cells/well to enumerate rickettsiae by qPCR or visu-
alize rickettsial infection by microscopy, respectively. All
plates were incubated at 32�C with 5% CO2 for 48 h before
infection.

For coinfections, each Rickettsia sp. was enumerated by
BacLight viability stain kit (Sunyakumthorn et al., 2008)
to determine a multiplicity of infection (MOI) of 5 rickett-
siae/cell. Coinfections consisted of simultaneous and sequ-
ential inoculation with reciprocal primary infections. To
inoculate ISE6 cells, rickettsiae were partially purified as
previously established (Simser et al., 2001; Sunyakumthorn
et al., 2008). Briefly, infected cells were lysed using a
27-gauge needle. To remove large host cell debris, the
inoculum was centrifuged at 275 g for 10 min. The super-
natant was filtered through a 2.0 lm filter and rickettsiae were
pelleted at 16,200 g for 10 min and resuspended in the ap-
propriate volume of media.

For sequential coinfections, the partially purified primary
Rickettsia sp. was added to a monolayer of ISE6 cells at a low
volume, and host cell contact was induced by centrifugation
at 300 g for 5 min. Plates were incubated for 1 h at 32�C, after
which unbound bacteria were removed by pipetting, and the
secondary Rickettsia sp. was added to the cells in the same
manner. Growth curve analyses were initiated after removing
unbound rickettsiae from the secondary inoculation. Whole
well contents were collected by washing with 1 · phosphate
buffered saline (PBS) beginning at 12 h postinfection (hpi) to
1, 3, 5, and 7 days postinfection (dpi).

Contents were transferred to 1.7 mL microcentrifuge tubes
and pelleted at 16,200 g for 10 min, in which media were then
removed before genomic DNA (gDNA) extraction. Rick-
ettsial growth was calculated as a change over time deter-
mined by enumeration of genomic equivalents through a
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species-specific qPCR. To compare the effects of coinfection
on species-specific growth, parallel assays of single infec-
tions were carried out. Cells grown on coverslips were col-
lected at representative time points (12 h, 1 day, and 5 days)
for immunofluorescence staining. All in vitro assays were
performed in duplicate for qPCR and microscopy analysis.

Immunofluorescence

Cells grown on coverslips were washed thrice with
1 · PBS and fixed using 4% paraformaldehyde, permeabi-
lized with 0.5% Triton-X100, and blocked with 3% bovine
serum albumin (BSA). A polyclonal rabbit anti-Rickettsia
I1789 antibody (provided by Ted Hackstadt; National Ins-
titutes of Health’s Rocky Mountain Laboratories) diluted
1:1000 was used to probe for R. felis, while specific detection
of R. typhi was achieved using a monoclonal mouse antibody
directed against R. typhi OmpB (Rt-mOmpB; provided by
Lee Fuller; Fuller labs) at a dilution of 1:2000.

Primary antibodies were detected using conjugated sec-
ondary antibodies, Alexa Fluor 488 goat anti-rabbit (A11008;
1:1000 dilution; Invitrogen) and Alexa Fluor 594 goat anti-
mouse (A11005; 1:1000 dilution; Invitrogen). Host cell actin
was stained using Alexa Fluor Plus 647 Phalloidin (A30107;
1:1000 dilution; Invitrogen). Coverslips were mounted with
VECTASHEILD� Hard Set� antifade mounting medium
with DAPI (4¢,6-diamidino-2-phenylindole; Vector Labora-
tories, Inc.) for nuclear staining. Secondary antibody-only
controls were included as negative controls for nonspecific
binding. Samples were visualized using a confocal Nikon A1
microscope (S10RR027535).

Flea coinfection

For flea infection, both Rickettsia spp. were grown inde-
pendently in ISE6 cells, and rickettsiae were enumerated
using the BacLight kit. To assess coinfection in the vector,
cages were prepared with *200 mixed-sex cat fleas and
prefed heat-inactivated bovine blood (HemoStat Labora-

tories) for 24 h. Cat fleas were then starved for 6 h before
exposure to a Rickettsia-infected bloodmeal at an infectious
dose of 3 · 1010 rickettsiae (Brown et al., 2015; Danchenko
et al., 2021).

The primary infectious bloodmeal was supplemented with
the fluorescent biomarker uranine O at a concentration of
0.05 mg/L, and fleas were allowed continuous access for 48 h
(Mascari and Foil, 2010). Postfeeding, fleas were assessed
under a fluorescence stereo microscope (NIGHTSEA; Elec-
tron Microscopy Sciences) for the presence of uranine O, and
only fluorescent fleas were returned to the cage and main-
tained on uninfected, defibrinated blood (Fig. 1). Five days
following the removal of the primary infectious bloodmeal,
the initial flea cage was split into two cohorts. The first cohort
(*100 fleas) remained a control infection (primary Rick-
ettsia sp. alone).

The other cohort (*100 fleas) was exposed to a second-
ary Rickettsia-infected bloodmeal supplemented with the
fluorescent biomarker rhodamine B at a concentration of
0.025 mg/L for 48 h (Hirunkanokpun et al., 2011; Mascari
and Foil, 2010). Again, fluorescence was assessed to confirm
bloodmeal acquisition. Reciprocal primary infections were
completed in parallel for a total of three independent repli-
cates (Fig. 1). Coinfections were monitored over 2 weeks.
A subset of fleas (5 male and 5 female) was collected initially
postexposure and weekly thereafter (30 fleas total per time
point), along with flea feces. Flea feces were collected from
flea cages after removal of flea carcasses, larvae, and eggs.
Rickettsial prevalence and load within individual fleas and
fecal samples were analyzed using a species-specific qPCR
assay (Table 2).

DNA extraction and qPCR

Fleas were surface sterilized (Danchenko et al., 2021;
Laukaitis et al., 2022) and homogenized using 2- and 3-mm
stainless steel beads in a Bead Ruptor 96 (Omni Interna-
tional). Flea lysates were incubated overnight at 56�C, and
gDNA was extracted from the sample using the DNeasy

FIG. 1. Experimental design for
flea coinfections. Primary Rickettsia-
infected bloodmeals (green box) were
supplemented with the fluorescent
biomarker, uranine O, and fleas were
allowed continuous access for 48 h.
Fleas were maintained on uninfected
defibrinated blood until 7 dpe, in
which a subset of fleas (orange line)
were exposed to a secondary
Rickettsia-infected bloodmeal with
rhodamine B, RhoB (orange box). The
remaining subset of fleas (dashed
green line) were maintained on unin-
fected blood for the duration of the
study to serve as a control for a sin-
gle rickettsial infection. Individual
fleas (five male and five female) and
feces were collected, indicated by par-
agraph and hashtag symbols, respec-
tively, for detection of rickettsiae by
qPCR. dpe, Days postexposure; qPCR,
quantitative PCR.
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Blood and Tissue Kit (Qiagen) following the manufacturer’s
blood extraction protocol. Flea feces were collected and 200lL
of 1 · PBS with 20 lL of Proteinase K was added to each mi-
crocentrifuge tube. Feces were incubated overnight at room
temperature and gDNA was extracted following the same blood
extraction protocol used for flea lysates. For host cells, cell
pellets collected in 1.7 mL microcentrifuge tubes were prepared
following the manufacturer’s instructions for cultured cells.

Rickettsial and host gene copies were quantified by qPCR
with the appropriate primers and probes (Table 2) using iTaq
Universal Probes Supermix (Bio-Rad) on a LightCycler 480
II (Roche Life Sciences). Standard curves were generated by
creating 10-fold serial dilutions of pCR4-TOPO plasmids
containing the R. felis ompB, R. typhi ompB, C. felis 18sRNA,
or ISE6 calreticulin genes to quantify each target sequence.
Amplification conditions were as follows: An initial dena-
turation step at 95�C for 3 min, followed by 45 cycles of
denaturation at 95�C for 15 s, annealing, and elongation at
60�C for 60 s with fluorescence acquisition in single mode.

Statistical analyses

For assessment of rickettsial growth between species
during in vitro and in vivo (flea and feces) single infections at
a given time point, an unpaired t-test with Welch’s correc-
tion for unequal variances was performed when appropriate.
If data did not meet normal distribution assumptions, a Mann-
Whitney U test was used. To compare growth kinetics in vitro
during coinfection to single infections over time, a two-way
analysis of variance (ANOVA) was performed with Dunnett’s
multiple comparisons test. R. felis data were log transformed
for normality. Rickettsial prevalence between conditions was
compared using Fisher exact test. Due to the highly non-
normal distribution of mean rickettsial loads for coinfected
fleas, a computationally intensive, but assumption-free ran-
domization test, also referred to as the permutation test, was
applied (Edgington and Onghena, 2007).

To examine whether the mean distribution varied between
coinfection and single infections, a resampling method
involving 1000 permutations was performed for each anal-
ysis. The randomization test was carried out using Microsoft
Excel. For changes in rickettsial loads in fleas and feces
during coinfection, the number of rickettsiae detected during
coinfection was divided by the average load detected during
single infection, and statistical significance was determined

by two-way ANOVA. Data were log2 transformed for
graphical representation. To assess relationships between
rickettsial loads detected in coinfected fleas, correlation
analysis was performed. Other than the randomization test,
all statistical analyses were performed using Prism 10 soft-
ware (GraphPad Software Version 10.0.2). A p value <0.05 was
considered statistically significant.

Results

Rickettsial growth kinetics in ISE6 cells
during single infection

Tick cells, which served as a surrogate arthropod infection
model, were exposed to rickettsiae, and growth was moni-
tored over 7 days. Comparing interspecies growth kinetics,
R. typhi displayed a shortened lag phase (0–24 hpi), reaching
stationary phase at a faster rate (5 dpi) compared to R. felis
(7 dpi) under the conditions examined (Fig. 2A). Further-
more, R. typhi reached significantly higher rickettsial densi-
ties than R. felis beginning at 1 dpi.

Impact of coinfection on rickettsial growth in ISE6 cells

To determine the effect of coinfection on rickettsial
growth, simultaneous and sequential coinfections with
reciprocal primary Rickettsia sp. were performed. Growth
curves from each coinfection experiment were compared to
single infections alone to analyze the influence of rickettsial
interaction on normal growth kinetics of each species. During
coinfection, R. felis exhibited limitations in the ability to reach
an equivalent exponential growth phase when compared to
single infection beginning at 5 dpi (Fig. 2B). By 7 dpi, R. felis
loads were significantly decreased during simultaneous coin-
fection. Conversely, R. typhi growth was unaffected by the
presence of R. felis during coinfection (Fig. 2C).

Detection of rickettsiae within individual ISE6 cells

To determine if flea-borne rickettsiae can infect and
occupy the same arthropod cell, tick cells were serially and
simultaneously coinfected and visualized by fluorescence
microscopy. The use of a monoclonal antibody generated
against R. typhi was vital in allowing its distinction from that
of R. felis (Fig. 3). At early time points post-coinfection, both
Rickettsia spp. were visualized in individual cells under all
experimental conditions (Fig. 4). However, cells visualized

Table 2. Primers and Probes Used for Species-Specific Quantitative PCR

Oligo name: primer set (5¢-3¢);
probe (5¢-3¢) Sequence Citation

Rt557F TGGTATTACTGCTCAACAAGCT Henry et al. (2007)
Rt678R CAGTAAAGTCTATTGATCCTACACC
Rt4446_4476.Cy5 Cy5/TAATAGCAGCACCAGCATTAACTTTTGAAAC This study
Rfel.OmpB.FOR TAATTTTAACGGAACAGACGGT Odhiambo et al. (2014)
Rfel.OmpB.REV GCCTAAACTTCCTGTAACATTAAAG
Rfel.OmpB.HEX/FAM HEX/or FAM/TGCTGCTGGTGGCGGTGC
18srRNA.FOR GAGTTCCGACCAGAGATGGA This study
18srRNA.REV CGCAGAAACTACCATCGACA
18srRNA.FAM FAM/TGCCTTGCTCACCGTTTGACTTGGTG
ISE6.cal.FOR AGCAGGGAACTTTCAAGCTG Harris et al. (2018)
ISE6.cal.REV AGAAAGGCTCGAACTTGGTG
ISE6.cal.HEX HEX/AGACCTCTGAAGATGCCCGCTTT
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after 24 h of coinfection skewed host cell infection in favor of
R. typhi (Supplementary Fig. S1), which was consistent with
species-specific detection by qPCR.

Flea infection kinetics of rickettsiae during
single infection

Fleas were independently exposed to 3 · 1010 rickettsiae
through an infectious bloodmeal to assess species-specific
infection dynamics. Rickettsial prevalence (percentage of

Rickettsia-positive fleas/total fleas collected) between spe-
cies was not significantly different (Fig. 5A). However,
infection dynamics varied in a species-specific manner. Inc-
reasing R. felis loads were observed weekly over a 21-day
infection period, while R. typhi presented a more dynamic
infection cycle in which significantly lower rickettsial loads
were observed after 9 days postexposure (dpe) (Fig. 5B). As
insect-borne rickettsiae utilize infectious feces as a mecha-
nism of transmission to vertebrate hosts (Laukaitis and
Macaluso, 2021), flea feces were collected weekly and

FIG. 2. In vitro coinfection growth
kinetics. ISE6 cells were infected at an
MOI of 5 rickettsiae/cell. Whole well
contents were collected beginning at
12 hpi and every other day thereafter
for 1 week. (A) Representative growth
curve kinetics of Rickettsia felis
(orange) and Rickettsia typhi (blue)
during single infections. An unpaired
t-test with Welch’s correction for
unequal variances or Mann-Whitney
U test was performed to determine
significance between the rickettsial
loads at a given time point. (B) Growth
of R. felis during coinfection compared
to single infection alone (superimposed
line graph). (C) R. typhi growth during
coinfections compared to single infec-
tion alone (superimposed line graph).
All data are normalized to input bac-
teria at 1 h post-coinfection. Data are
representative of mean – SEM from
two experiments, each with three
technical replicates. Significance was
assessed at a 95% confidence inter-
val (*p < 0.05; ***p < 0.001;
****p < 0.0001) by two-way ANOVA
with Dunnett’s multiple-comparison
test to assess variation in the means
during coinfection compared to the
control infection of the same species
over time. Two-way ANOVA was per-
formed on log-transformed data for
R. felis infection. ANOVA, analysis
of variance; hpi, hours postinfection;
MOI, multiplicity of infection; SEM,
standard error of the mean.
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assessed for rickettsial burden by qPCR. While an increase in
rickettsiae over a 3-week period of infection was observed for
both species (Fig. 5C), loads did not significantly differ at any
time point examined.

Impact of flea coinfection on rickettsial growth kinetics

To determine the ability of naive fleas to acquire both R. felis
and R. typhi, fleas were exposed to sequential Rickettsia-
infected bloodmeals. Sequential coinfections occurred 7 dpe to
the primary infection, permitting rickettsiae to establish infec-
tion within the flea (Azad, 1990; Ito et al., 1975; Thepparit
et al., 2013). Reciprocal coinfections were performed in
parallel to determine if a priority effect upon pathogen
acquisition occurred. Coinfection prevalence and rickettsial
loads were monitored over a 14-day period, where fleas were
collected weekly for rickettsial enumeration through qPCR
using a species-specific assay. Fleas were able to maintain
coinfection to similar percentages between treatments ranging
from 55% at 2 dpe, 75% at 7 dpe, to 45% at 14 dpe (Fig. 6A).

To analyze the effects of coinfection on the growth kinetics
of each Rickettsia sp. during flea infection, change differ-
ences were calculated based on single infection profiles.
Coinfection led to significant differences in rickettsial loads
during the 2-week period (Fig. 6B). R. felis-infected fleas
acquired significantly higher R. typhi loads after removal of
the bloodmeal, and R. typhi remained elevated 14 days later.
In addition, R. typhi loads significantly increased 7 days after
acquiring R. felis, which continued for the duration of the
experiment.

Conversely, levels of R. felis declined after the acquisition
of R. typhi within the first 2 weeks of coinfection when
compared to single infection. R. typhi-infected fleas devel-
oped moderately higher loads of R. felis when R. felis was
acquired as a secondary bloodmeal. Altogether, R. typhi loads
generally increased in the presence of R. felis compared to
single infections alone, where inverse effects were observed
for R. felis. To determine the potential impacts of coinfection
on transmission, rickettsial loads were monitored in excreted
feces. Both Rickettsia spp. were detected at higher loads in

FIG. 3. Antibody specificity of flea-borne rickettsiae. Fluorescence microscopy representing antibody specificity of anti-
Rickettsia ( panel 2) and anti-Rt-mOmpB ( panel 3) antibodies during single species infection. Rickettsia felis (green) and
Rickettsia typhi (red), host cell nuclei (blue), and actin (magenta). Images are representative of two independent experi-
ments. Scale bar = 10 lm. Rt-mOmpB = R. typhi monoclonal outer membrane protein B antibody.

FIG. 4. Assessment of rickettsial coinfection at 12 h in ISE6 cells by microscopy. Infected host cells were washed, and
bound rickettsiae were differentially stained for Rickettsia felis (green) and Rickettsia typhi (red) during reciprocal se-
quential or simultaneous coinfection along with host cell nuclei (blue). Coinfected cells are designated by white circles.
Images are representative of two independent replicates. Scale bar = 10 lm.
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feces when compared to single infection across all coinfec-
tion scenarios (Fig. 6C). Specifically, acquiring R. felis as
a secondary exposure significantly propelled R. typhi and
R. felis excretion in feces at 7 days post-coinfection.

Correlation between rickettsial loads during
flea coinfection

To examine whether changes in rickettsial loads during
coinfection were driven by interspecies relationships, rick-
ettsial loads detected for each species were graphed and
re-analyzed for correlational significance. When fleas were
pre-exposed to R. felis, detection of both species signifi-
cantly trended in a positive direction with an R2 value of
0.73 at 2 days post-coinfection, 0.38 at 7 days post-
coinfection, and 0.35 at 14 days post-coinfection (Supple-
mentary Fig. S2A–C). However, there was no statistical
evidence linking correlation between rickettsial loads
when R. typhi was the primary exposure (Supplementary
Fig. S2D–F).

Discussion

The eco-epidemiological factors contributing to the
reemergence of murine typhus in the United States is com-
plicated by the circulation of several closely related flea-
borne rickettsial agents, such as R. typhi, R. felis, and RFLOs
(Abramowicz et al., 2012; Eremeeva et al., 2020; Eremeeva
et al., 2012; Eremeeva et al., 2008; Karpathy et al., 2009;
Maina et al., 2016; Williams et al., 1992). Overlapping
peridomestic transmission cycles, where the cat flea is highly
prevalent, present a likely scenario for bacterial interac-
tions within the vector to occur. However, most field studies
compile pooled flea sample data to assess rickettsial preva-
lence; thus, the true etiological agent and detection of coin-
fection remain difficult to define. Therefore, the goal of this
study was to provide insight into the epidemiology sur-
rounding flea-borne rickettsioses. The data presented herein
suggest that R. felis and R. typhi coinfection prompts sig-
nificant changes in rickettsial infection dynamics.

Consistent with studies in other arthropod cells, R. felis
displayed a lag in growth lasting 3 days (Horta et al., 2006;

FIG. 5. Single rickettsial species infection in cat fleas. Fleas were exposed to Rickettsia felis or Rickettsia typhi, inde-
pendently, at an infectious dose of 3 · 1010 rickettsiae for 48 h. Individual fleas (five male and five female) were collected
weekly over a 21-day period for enumeration of rickettsiae through species-specific qPCR. (A) Rickettsial prevalence, or the
number of fleas positive for Rickettsia felis (orange) or R. typhi (blue) or negative (gray) out of the total number of fleas
collected totaling 100%. (B) Rickettsial infection loads for R. felis (orange) and R. typhi (blue) over time in individual fleas.
(C) Flea feces were collected weekly for 3 weeks, where R. felis (orange) and R. typhi (blue) loads were quantified by
qPCR. For all data, significance was assessed at a 95% confidence interval with (A) Fisher exact test; (B) Mann-Whitney
U test; (C) unpaired t-test with a Welch’s correction for unequal variances (*p < 0.05; ***p < 0.001; ****p < 0.0001). Data
represent mean – SEM with 3 independent experiments for a total of 30 fleas.

208 LAUKAITIS-YOUSEY AND MACALUSO



Luce-Fedrow et al., 2014). Comparatively, R. typhi is pri-
marily cultivated in vertebrate cell lines, such as Vero,
macrophages, and L929 cells (Dreher-Lesnick et al., 2008;
Rennoll-Bankert et al., 2015; Teysseire et al., 1992; Voss
et al., 2020). Successful propagation of R. typhi in tick-
derived cells, mimicking infection kinetics observed during
vertebrate cell culture (Radulovic et al., 2002; Weiss et al.,

1972), presents an opportunity to investigate arthropod-
associated interrelationships. While ISE6 cells were investi-
gated in this study because of their universal role in the
isolation and propagation of R. felis, the use of other arth-
ropod cell lines, such as Aedes-derived (C6/36, or AeAl2) or
Drosophila-derived (S2) cells, would be of particular interest
in future studies.

FIG. 6. Rickettsial infection kinetics during cat flea coinfection. Fleas were exposed to sequential Rickettsia-infected
bloodmeals at an infectious dose of 3 · 1010 rickettsiae for 48 h. Individual fleas (five male and five female) were assessed
for the presence of rickettsiae by a species-specific qPCR assay. (A) Number of fleas that tested positive for Rickettsia felis
only (orange), Rickettsia typhi only (blue), both species (striped pattern), or uninfected (gray) out of the total number of
fleas collected totaling 100%. (B) Change in rickettsial load in coinfected fleas was calculated as a change from the single
infection of the same species at a given time point. Data were log2 transformed for graphical representation. R. felis
(orange) and R. typhi (blue) were detected when exposed as the primary bloodmeal (solid bar) or secondary bloodmeal
(checkered pattern). (C) Flea feces were collected weekly for the detection of rickettsiae. Data were calculated as a change
from the single infection of the same species at a given time point, and log2 transformed for graphical representation.
R. felis (orange) and R. typhi (blue) were detected when exposed as the primary bloodmeal (solid bar) or secondary
bloodmeal (checkered pattern). For all data, significance was assessed at a 95% confidence interval with (A) Fisher exact
test; (B) randomization test with 1000 permutations; (C) two-way ANOVA with a Dunnett’s post-hoc test (*p < 0.05;
**p < 0.01). All data are representative of the mean – SEM from 3 independent experiments for a total of 30 fleas.
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Sympatric distribution of rickettsiae fosters bacterial
interactions to occur within communal transmitting vectors.
Although the distinction of closely related rickettsial species
has proven difficult, adaptation of a species-specific probe-
based qPCR assay (Henry et al., 2007; Odhiambo et al.,
2014), as well as polyclonal and monoclonal antibodies
against R. felis and R. typhi, respectively, enabled discrimi-
nation within individual host cells.

In the presence of R. typhi, R. felis growth was limited,
beginning at 5 dpi, regardless of infection order, suggesting
that the accelerated growth of R. typhi consequently deprived
R. felis of essential molecules required for growth. Tick-
borne bacterial interactions describe competition between
more closely related species (Cull et al., 2022; de la Fuente
et al., 2002). Although the long-term persistence of cellular
coinfection was not assessed, future studies examining int-
racellular niches during coinfection are warranted to fully
encapsulate the impact carriage of two species has regarding
resource allocation, host cell response, and sustainability.

Flea-borne rickettsiae are known to utilize multiple routes
of transmission, including both vertical (to flea progeny) and
horizontal (inoculation of infectious feces or salivary secre-
tions to vertebrates) (Laukaitis and Macaluso, 2021). If
imbibed in a bloodmeal, rickettsiae are exposed to the flea’s
midgut, which is regarded as the primary site of infection.
Throughout infection, R. typhi remains largely centralized to
the flea’s digestive tract. As R. typhi reaches exponentially
high levels of infection, it causes rupture of midgut epithelial
cells, facilitating excretion through flea feces (Azad, 1990;
Ito et al., 1975). This phenomenon was mirrored by the dy-
namic infection profile of R. typhi where rickettsial loads
decline between 9 and 14 dpe.

Alternatively, R. felis can quickly disseminate to distal
tissues from the midgut (e.g., the hindgut, reproductive tis-
sues, and salivary glands) as early as 24 hpi (Danchenko
et al., 2021; Laukaitis et al., 2022; Thepparit et al., 2013).
Although also detected in flea feces, in similar levels to that
of R. typhi, R. felis exhibited increased loads within its flea
host over a 21-day period (Hirunkanokpun et al., 2011;
Laukaitis et al., 2022; Reif et al., 2011; Reif et al., 2008;
Thepparit et al., 2013), suggesting bacterial replication
in other tissues compensate for those rickettsiae expelled in
feces. The contrasting infection phenotypes presented in
this study pose an intriguing opportunity to investigate the
implications of distinct interspecies interactions between
Rickettsia spp. and their flea host on transmission.

Interactions between rickettsiae have been examined,
primarily in the context of tick-borne spotted fever Rickettsia,
yet less is known in respect to insect-borne Rickettsia.
A wild-caught R. felis-infected flea colony has been previ-
ously used to examine the relationship between R. felis and
R. typhi during vector infection (Noden et al., 1998). How-
ever, wild-caught hematophagous arthropods, such as fleas
and ticks, have difficulty adapting to artificial blood-feeding
systems, presenting limitations in controlling rickettsial dose
and, therefore, monitoring lifelong infection kinetics due to
low vector success. Thus, the goal of this study was to assess
rickettsial acquisition and sustainability in naive, Rickettsia-
free fleas to control for these variables. Nonetheless, consti-
tutively infected fleas present an opportunity to employ
vertebrate host systems where natural horizontal and vertical
transmission events can be simulated.

Sequential exposure to Rickettsia-infected bloodmeals
using an artificial host system, revealed naive fleas were able
to acquire both Rickettsia spp. and maintain coinfection for
at least 2 weeks. Overall, independent of infection order,
R. typhi loads were enhanced during coinfection compared to
single infection alone, which was contrasting to the gener-
alized trends observed for R. felis. However, by 14 days post-
coinfection, both R. felis and R. typhi were detected at higher
levels compared to singular infections, signifying fleas may
tolerate overall higher rickettsial burdens during coinfection.

These data, complemented by strong correlational evi-
dence, indicate prior exposure to R. felis provides an
advantageous flea environment in which both species benefit.
Importantly, higher detection within individual fleas may
have implications on transmission efficacy through excreted
flea feces. Although direct transmission to vertebrate hosts
was not assessed in this study, enhanced detection of both
R. felis and R. typhi in flea feces across all coinfection sce-
narios suggests coinfection may drive horizontal transmis-
sion. Use of a vertebrate host in future studies will elucidate
whether higher rickettsial loads during coinfection enhance
vertebrate exposure to either species.

Surveillance studies seldom detect flea-borne rickettsial
coinfections, implying additional biological factors may
influence microbial interactions in fleas, such as microbiome
composition and vertebrate reservoir hosts. For example,
stable vertical maintenance of R. felis by fleas impacts the
richness of flea microbiota, but the consequence of dual
rickettsial exposure remains elusive (Pornwiroon et al.,
2007). Although in its infancy, flea genotyping through
metagenomics studies has emphasized the circulation of
distinct geographically displaced flea groupings throughout
the world, harboring different microbiome compositions,
therefore influencing pathogen dispersal (Manvell et al.,
2022; Vasconcelos et al., 2018).

Interpretations of laboratory coinfections related to the
epidemiology of vector-borne diseases are difficult as they
only encapsulate a singular scenario and are highly stringent
on strains used (Levin et al., 2018). Nonetheless, the results
presented signify a situation in which R. felis and R. typhi
interact within their vector host, resulting in exacerbated
infection and excretion in flea feces. The confounding epi-
demiology surrounding the resurgence of murine typhus
affiliated with the overlapping geographic distribution of
rickettsiae stresses the importance of studying the implica-
tions of bacterial interactions. Further investigation into the
contribution of coinfection on flea-borne rickettsial trans-
mission, considering different flea strains, flea microbiomes,
and timing of rickettsial exposure, is essential.

The study presented herein provides novel insight into
rickettsial interactions within an arthropod environment.
While distinct growth phenotypes exist between Rickettsia
spp. and strains in mammalian backgrounds (McGinn and
Lamason, 2021), direct comparison of kinetics during flea
infection is limited. Coinfection of single cells and antago-
nistic growth phenotypes were observed during in vitro cul-
ture, but further investigation is warranted to uncover the
molecular interplay occurring during dual infection. The
enhanced rickettsial loads observed during flea coinfection
present an exciting opportunity to investigate whether hori-
zontal transmission events result in higher transmission rates
to vertebrate hosts. In summary, this study provides insight
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into the interplay between closely related flea-borne rickett-
siae, suggesting coinfection perpetuates bacterial success in
the vector. Integration of in vitro and in vivo models can
deconvolute interspecies interactions, providing a platform
for greater understanding of factors governing flea-borne
rickettsiosis epidemiology.
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