Skip to main content
. 2024 Apr 10;10(8):e29334. doi: 10.1016/j.heliyon.2024.e29334

Table 3.

DTL models performance.

DTL Models AUC (95%CI) Accuracy Sensitivity Specificity Precision Recall F1-score
Vgg19
 Training 0.999 (0.998–1.000) 0.984 0.990 0.975 0.981 0.990 0.985
 Validation 0.968 (0.943–0.994) 0.913 0.922 0.902 0.922 0.922 0.922
resnet50
 Training 0.988 (0.982–0.994) 0.944 0.971 0.910 0.931 0.971 0.951
 Validation 0.888 (0.830–0.946) 0.833 0.923 0.717 0.809 0.923 0.862
GoogLeNet
 Training 0.993 (0.985–1.000) 0.975 0.980 0.967 0.974 0.980 0.977
 Validation 0.912 (0.866–0.958) 0.819 0.883 0.738 0.810 0.883 0.845
Inception-v3
 Training 0.976 (0.964–0.989) 0.935 0.951 0.914 0.933 0.951 0.942
 Validation 0.835 (0.769–0.901) 0.761 0.792 0.721 0.782 0.792 0.787

DTL, Deep transfer learning; AUC, area under the curve; 95%CI, 95 % confidential interval.