Table 3.
DTL models performance.
| DTL Models | AUC (95%CI) | Accuracy | Sensitivity | Specificity | Precision | Recall | F1-score |
|---|---|---|---|---|---|---|---|
| Vgg19 | |||||||
| Training | 0.999 (0.998–1.000) | 0.984 | 0.990 | 0.975 | 0.981 | 0.990 | 0.985 |
| Validation | 0.968 (0.943–0.994) | 0.913 | 0.922 | 0.902 | 0.922 | 0.922 | 0.922 |
| resnet50 | |||||||
| Training | 0.988 (0.982–0.994) | 0.944 | 0.971 | 0.910 | 0.931 | 0.971 | 0.951 |
| Validation | 0.888 (0.830–0.946) | 0.833 | 0.923 | 0.717 | 0.809 | 0.923 | 0.862 |
| GoogLeNet | |||||||
| Training | 0.993 (0.985–1.000) | 0.975 | 0.980 | 0.967 | 0.974 | 0.980 | 0.977 |
| Validation | 0.912 (0.866–0.958) | 0.819 | 0.883 | 0.738 | 0.810 | 0.883 | 0.845 |
| Inception-v3 | |||||||
| Training | 0.976 (0.964–0.989) | 0.935 | 0.951 | 0.914 | 0.933 | 0.951 | 0.942 |
| Validation | 0.835 (0.769–0.901) | 0.761 | 0.792 | 0.721 | 0.782 | 0.792 | 0.787 |
DTL, Deep transfer learning; AUC, area under the curve; 95%CI, 95 % confidential interval.