Skip to main content
. 2024 Apr 10;10(8):e29334. doi: 10.1016/j.heliyon.2024.e29334

Table 4.

Fusion models performance.

Fusion Models AUC (95%CI) Accuracy Sensitivity Specificity Precision Recall F1-score
Vgg19
 Training 0.999 (0.999–1.000) 0.985 0.993 0.975 0.981 0.993 0.987
 Validation 0.972 (0.946–0.997) 0.935 0.935 0.934 0.947 0.935 0.941
resnet50
 Training 0.995 (0.988–1.000) 0.978 0.987 0.967 0.974 0.987 0.981
 Validation 0.923 (0.875–0.971) 0.891 0.922 0.852 0.888 0.922 0.904
GoogLeNet
 Training 0.997 (0.995–1.000) 0.987 0.987 0.988 0.990 0.987 0.989
 Validation 0.947 (0.914–0.980) 0.861 0.908 0.803 0.852 0.908 0.879
Inception-v3
 Training 0.988 (0.982–0.994) 0.942 0.961 0.918 0.936 0.961 0.948
 Validation 0.883 (0.826–0.940) 0.790 0.883 0.672 0.773 0.883 0.824

AUC, area under the curve; 95%CI, 95 % confidential interval.