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Abstract

Statistical shape modeling is the computational process of discovering significant shape 

parameters from segmented anatomies captured by medical images (such as MRI and CT scans), 

which can fully describe subject-specific anatomy in the context of a population. The presence of 

substantial non-linear variability in human anatomy often makes the traditional shape modeling 

process challenging. Deep learning techniques can learn complex non-linear representations of 

shapes and generate statistical shape models that are more faithful to the underlying population-

level variability. However, existing deep learning models still have limitations and require 

established/optimized shape models for training. We propose Mesh2SSM, a new approach that 

leverages unsupervised, permutation-invariant representation learning to estimate how to deform 

a template point cloud to subject-specific meshes, forming a correspondence-based shape model. 

Mesh2SSM can also learn a population-specific template, reducing any bias due to template 

selection. The proposed method operates directly on meshes and is computationally efficient, 

making it an attractive alternative to traditional and deep learning-based SSM approaches.
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1 Introduction

Statistical shape modeling (SSM) is a powerful tool in medical image analysis and 

computational anatomy to quantify and study the variability of anatomical structures 

within populations. SSM has shown great promise in medical research, particularly in 

diagnosis [12,23], pathology detection [19,25], and treatment planning [27]. SSM has 

enabled researchers to better understand the underlying biological processes, leading to the 

development of more accurate and personalized diagnostic and treatment plans [17,3,14,9].

Over the years, several SSM approaches have been developed that implicitly represent the 

shapes (deformation fields [8], level set methods [22]) or explicitly represent them as a 

ordered set of landmarks or correspondence points (aka point distribution models, PDMs). 
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Here, we focus on the automated construction of PDMs because, compared to deformation 

fields, point correspondences are easier to interpret by clinicians, are computationally 

efficient for large datasets, and less sensitive to noise and outliers than deformation fields 

[5].

SSM performance depends on the underlying process used to generate shape 

correspondences and the quality of the input data. Various correspondence generation 

methods exist, including non-optimized landmark estimation and parametric and non-

parametric correspondence optimization. Non-optimized methods manually label a reference 

shape and warp the annotated landmarks using registration techniques [18,10,16]. Parametric 

methods use fixed geometrical bases to establish correspondences [26], while group-wise 

non-parametric approaches find correspondences by considering the variability of the 

entire cohort during the optimization process. Examples of non-parametric methods include 

particle-based optimization [4] and Minimum Description Length (MDL) [7].

Traditional SSM methods assume that population variability follows a Gaussian distribution, 

which implies that a linear combination of training shapes can express unseen shapes. 

However, anatomical variability can be far more complex than this linear approximation, 

in which case nonlinear variations normally exist (e.g., bending fingers, soft tissue 

deformations, and vertebrae with different types). Furthermore, conventional SSM pipelines 

are computationally intensive, where inferring PDMs on new samples entail an optimization 

process. Deep learning-based approaches for SSM have emerged as a promising avenue 

to overcoming these limitations. Deep learning models can learn complex non-linear 

representations of the shapes, which can be used to generate shape models. Moreover, 

they can efficiently perform inference on new samples without computation overhead 

or re-optimization. Recent works such as FlowSSM [15], ShapeFlow [11], DeepSSM 

[2], and VIB-DeepSSM [1] have incorporated deep learning to generate shape models. 

FlowSSM [15] and ShapeFlow [11] operate on surface meshes and use neural networks 

to parameterize the deformations field between two shapes in a low dimensional latent 

space and rely on an encoder-free setup. Encoder-free methods randomly initialize the latent 

representations for each sample that are then optimized to produce the optimal deformations. 

One major caveat of an encoder-free setup is that inference on new meshes is no longer 

straightforward; the latent representation has to be re-optimized for every new sample. 

On the other hand, DeepSSM [2], TL-DeepSSM [2], and VIB-DeepSSM [1] learn the 

PDM directly from unsegmented CT/MRI images, and hence alleviate the need for PDM 

optimization given new samples and can bypass anatomy segmentation by operating directly 

on unsegmented images. However, these methods rely on supervised losses and require 

volumetric images, segmented images, and established/optimized PDMs for training. This 

reliance on supervised losses introduces linearity assumptions in generating ground truth 

PDMs. TL-DeepSSM [2], a variant of DeepSSM [2], differs from the others by not utilizing 

PCA scores as shape descriptors. Instead, it adopts an established correspondence model 

hence, similar to the vanilla DeepSSM [2] learns a linear model.

In this paper, we introduce Mesh2SSM 3, a deep learning method that addresses the 

limitations of traditional and deep learning-based SSM approaches. Mesh2SSM leverages 

unsupervised, permutation-invariant representation learning to learn the low dimensional 
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nonlinear shape descriptor directly from mesh data and uses the learned features to generate 

a correspondence model of the population. Mesh2SSM also includes an analysis network 

that operates on the learned correspondences to obtain a data-driven template point cloud 

(i.e., template point cloud), which can replace the initial template, and hence reducing 

the bias that could arise from template selection. Furthermore, the learned representation 

of meshes can be used for predicting related quantities that rely on shape. Our main 

contributions are:

1. We introduce Mesh2SSM, a fully unsupervised correspondence generation deep 

learning framework that operates directly on meshes. Mesh2SSM uses an 

autoencoder to extract the shape descriptor of the mesh and uses this descriptor 

to transform a template point cloud using IM-Net [6].

2. The proposed method uses an autoencoder that combines geodesic distance 

features and EdgeConv [28] (dynamic graph convolution neural network) to 

extract meaningful feature representation of each mesh that is permutation-

invariant.

3. Mesh2SSM also includes a variational autoencoder (VAE) [13,21] operating on 

the learned correspondence points and trained end-to-end with correspondence 

generation network. This VAE branch serves two purposes: (a) serves as a shape 

analysis module for the non-linear shape variations and (b) learns a data-specific 

template from the latent space of the correspondences that is fed back to the 

correspondence generation network.

To motivate the need for the mesh feature encoder and study the effect of the template 

selection, we considered the box-bump dataset, a synthetic dataset of 3D shapes of boxes 

with a moving bump. In Figure 1, we compare Mesh2SSM (sans the VAE analysis branch) 

with FlowSMM [15] since this approach is the closest to Mesh2SSM. We performed 

experiments with three templates: medoid, sphere, and box without the bump. Although both 

methods show some sensitivity to the choice of template, FlowSSM is more sensitive toward 

the choice of the template than Mesh2SSM. Moreover, FlowSSM fails to identify the correct 

mode of variation, the horizontal movement of the bump as the primary variation, which can 

also be inferred by comparing the compactness curves in Figure 1.c. Mesh2SSM performs 

best when the template is a medoid shape, which makes the case for learning a data-specific 

template. Since Mesh2SSM model uses an autoencoder, inference on unseen meshes only 

requires a single forward pass (1 second per sample); FlowSSM requires re-optimization, 

increasing the inference time drastically and require a convergence criteria to determine the 

best number of iterations per sample (0.15 seconds for one iterations per sample).

2 Method

The overview of the proposed pipeline is provided in Figure 2. This section provides a brief 

description of each module.

3Source code: https://github.com/iyerkrithika21/mesh2SSM_2023
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2.1 Correspondence Generation

Given a set of N aligned surface meshes X = X1, X2, …XN , each mesh Xi = V i, Ei , where 

V i and Ei represent the vertices and edge connectivity, respectively. The goal of the model 

is to predict a set Ci of M 3D correspondence points that fully describe each surface Xi

and are anatomically consistent across all meshes. This goal is achieved by learning a low 

dimensional representation of the surface mesh zm ∈ ℝL using the mesh autoencoder and 

then zm is used to transform the template point cloud via the implicit field decoder (IMNet) 

[6]. The network optimization is driven primarily by point-set to point-set two-way Chamfer 

distance between the learned correspondence point sets Ci and the vertex locations V i of the 

original meshes. To ensure that the encoder learns useful features for the task, we regularize 

the optimization using the vertex reconstruction loss of the autoencoder between the input V i

and the predicted V i. The correspondence loss function is given by:

ℒC = ∑
i = 1

N
ℒL2Cℎamfer(V i, Ci) + αℒL1Cℎamfer(V i, Ci) + γℒMSE(V i, V i)

(1)

where α, γ, are the hyperparameters. We consider a combination of L1 and L2 two-way 

Chamfer distance for numerical stability as the magnitude of L2 loss can be low over epochs 

and L1 can compensate for it. The correspondence generation uses two networks:

Mesh Autoencoder (M-AE): We use EdgeConv [28] blocks, which are dynamic graph 

convolution neural network (DGCNN) blocks in the encoder and decoder to capture local 

geometric features of the mesh. The model takes vertices as input, computes an edge feature 

set of size k (using nearest neighbors) for each vertex at an EdgeConv layer, and aggregates 

features within each set to compute EdgeConv responses. The output features of the last 

EdgeConv layer are then globally aggregated to form a 1D global descriptor zi
m of the mesh. 

The first EdgeConv block uses geodesic distance on the surface of the mesh to calculate the 

k features. The dynamic feature creation property of EdgeConv and the global pooling make 

this autoencoder permutation invariant.

Implicit field decoder (IM-NET): The IM-NET [6] architecture consists of fully 

connected layers with non-linearity and skip-layer connections. This network enforces the 

notion of correspondence across the samples. The network takes in two inputs, the latent 

representation of the mesh zm and a template point cloud (a set of unordered points). IM-

NET estimates the deformation of each point in the template required to deform the template 

to each sample, conditioned on zm. Based on the learned deformation, IM-NET directly 

produces the resultant displaced template point without the computational complexity of the 

deformation fields. Correspondence is established since the same template is deformed to all 

the samples.
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2.2 Analysis

The Mesh2SSM model also consists of an analysis branch that acts as a shape analysis 

module to capture non-linear shape variations identified by the learned correspondences 

Ci i = 1
N  and also learns a data-informed template from the latent space of correspondences to 

be fed back into the correspondence generation network during training. This branch uses 

one network module:

Shape Variation Autoencoder (SP-VAE): The VAE [13,21] is a latent variable model 

parameterized by an encoder ϕ, decoder θ, and the prior p zp ∼ N(0, I). The encoder maps 

the shape represented by the learned correspondence points C to the latent space and the 

decoder reconstructs the correspondences from the latent representation zp. By capturing the 

underlying structure of the PDM through a low-dimensional representation, SP-VAE allows 

for the estimation of the mean shape of the learned correspondences. The SP-VAE is trained 

using the loss function given by:

ℒ(θ, ϕ) = − Eqϕ(zi
p ∣ Ci) log pθ(Ci ∣ zi

p) + KL(qϕ(zi
p ∣ Ci) ∥ p(zi

p))

(2)

The main difference between M-AE and a SP-VAE lies in the input and output 

representations they handle. SP-VAE operates directly on sets of landmarks or 

correspondences, aiding in the analysis of shape models. It takes a set of correspondences 

describing a shape as input and aims to learn a compressed latent representation of the 

shape. Importantly, the SP-VAE maintains the same ordering of correspondences at the input 

and output, so it does not use permutation-invariant layers or operations like pooling. .

2.3 Training

We begin with a burn-in stage, where only the correspondence generation module is trained 

while the analysis module is frozen. After the burn-in stage, alternate optimization of the 

correspondence and analysis module begins. During the alternate optimization phase, we 

generate the data-informed template from the latent space of SP-VAE at regular intervals. 

The learned data-informed template is used in the correspondence generation module 

in the subsequent epochs. For the learned template, we sample 500 samples from the 

prior p zp ∼ N(0, I) and pass it through the decoder of SP-VAE to get the reconstructed 

correspondence point set. The mean template is defined by taking the average of these 

generated samples. Inference with unseen meshes is straight forward; the meshes are passed 

through the mesh encoder and IM-NET of the correspondence generation module to get 

the predicted correspondences. All hyperparameters and network architecture details are 

mentioned in the supplementary material.

3 Experiments and Discussion

Dataset:

We use the publicly available Decath-Pancreas dataset of 273 segmentations from patients 

who underwent pancreatic mass resection [24]. The shapes of the pancreas are highly 
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variable and have thin structures, making it a good candidate for non-linear SSM analysis. 

The segmentations were isotropically resampled, smoothed, centered, and converted to 

meshes with roughly 2000 vertices. Although the DGCNN mesh autoencoder used in 

Mesh2SSM does not require the same number of vertices, uniformity across the dataset 

makes it computationally efficient; hence, we pad the smallest mesh by randomly repeating 

the vertices (akin to padding image for convolutions). The samples were randomly divided, 

with 218 used for training, 26 for validation, and 27 for testing.

3.1 Results

We perform experiments with two templates: sphere and medoid. We compare the 

performance of FlowSSM [15] with Mesh2SSM with the template feedback loop. For 

Mesh2SSM template, we use 256 points uniformly spread across the surface of the 

sample. Mesh2SSM and FlowSSM do not have a equivalent latent space for comparison 

of the shape models, hence, we consider the deformed mesh vertices of FlowSSM as 

correspondences and perform PCA analysis. Figure 3 shows the top three PCA modes of 

variations identified by Mesh2SSM and FlowSSM. Similar to the observations made box-

bump dataset, FlowSSM is affected by the choice of the template, and the modes of variation 

differ as the template changes. On the other hand, PDM predicted by Mesh2SSM identifies 

the same primary modes consistently. Pancreatic cancer mainly presents itself on the head of 

the structure [20] and for the Decath dataset, we can see the first mode identifies the change 

in the shape of the head. We evaluate the models based on compactness, generalization, 

and specificity. Compactness measures the ability of the model to reconstruct new shape 

instances with fewer parameters using PCA explained variance. Generalization measures the 

average surface distance between all test shapes and their reconstructions, and specificity 

measures the distance between randomly generated PCA samples. Figure 4.a shows the 

metrics for the pancreas dataset. Mesh2SSM outperforms FlowSSM in all three metrics, 

despite using only 256 correspondence points compared to FlowSSM’s ~2000 vertices. 

Mesh2SSM correspondence generation module efficiently parameterizes the surface of the 

pancreas with a minimum number of parameters. Mesh2SSM template, shown in Figure 

4.b, becomes more detailed as optimization continues, regardless of the starting template. 

The model can learn correct deformations in the correspondence generation module and 

identify the correct mean shape in the latent space of SP-VAE in the analysis module. 

Using the analysis module of Mesh2SSM, we visualized the top three modes of variation 

identified by by sorting the latent dimensions of SP-VAE based on the standard deviations 

of the latent embeddings of the training dataset. Variations are generated by perturbing the 

latent representation of a sample in three directions, resulting in non-linear modes such as 

changes in the size and shape of the pancreas head and narrowing of the neck and body. This 

is shown in Figure 4.c for MeshSSM model with medoid starting template. The distance 

metrics for the reconstructions of the testing samples were also computed. The results of the 

metrics are summarized in Table 1. The calculation involved the L1 Chamfer loss between 

the predicted points (correspondences in the case of Mesh2SSM and the deformed mesh 

vertices in the case of FlowSSM) and the original mesh vertices. Additionally, the surface to 

surface distance of the mesh reconstructions (using the correspondences in Mesh2SSM and 

deformed meshes in FlowSSM) was included. For the pancreas dataset with the medoid as 

the initial template, Mesh2SSM with the template feedback produced more precise models.
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3.2 Limitations and Future Scope

As SSM is included a part of diagnostic clinical support systems, it is crucial to address 

the drawbacks of the models. Like most deep learning models, performance of Mesh2SSM 

could be affected by small dataset size, and it can produce overconfident estimates. An 

augmentation scheme and a layer uncertainty calibration are could improve its usability in 

medical scenarios. Additionally, enforcing disentanglement in the latent space of SP-VAE 

can make the analysis module interpretable and allow for effective non-linear shape analysis 

by clinicians.

4 Conclusion

The paper presents a new systematic approach of generating non-linear statistical shape 

models using deep learning directly from meshes, which overcomes the limitations of 

traditional SSM and current deep learning approaches. The use of an autoencoder for 

meaningful feature extraction of meshes to learn the PDM provides a versatile and scalable 

framework for SSM. Incorporating template feedback loop via VAE [13,21] analysis module 

helps in mitigating bias and capturing non-linear characteristics of the data. The method 

is demonstrated to have superior performance in identifying shape variations using fewer 

parameters on synthetic and clinical datasets. To conclude, our method of generating highly 

accurate and detailed models of complex anatomical structures with reduced computational 

complexity has the potential to establish statistical shape modeling from non-invasive 

imaging as a powerful diagnostic tool.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Top two PCA modes of variations identified by (a) Mesh2SSM and (b) FlowSSM [15] with 

three templates: sphere, box without a bump, and medoid shape. FlowSSM fails to capture 

the horizontal movement as the primary mode of variation. (c) The compactness curves for 

both models with different templates.
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Fig. 2. Mesh2SSM:
Architecture and loss of the proposed method.
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Fig. 3. 
Top three PCA modes of variations identified by (a) Mesh2SSM and (b) FlowSSM [15] with 

two templates: sphere, medoid. The color map and arrows show the signed distance and 

direction from the mean shape.
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Fig. 4. 
(a) Shape statistics of pancreas dataset: compactness (higher is better), generalization (lower 

is better), and specificity (lower is better). (b) Mesh2SSM Learned template across epochs 

for pancreas dataset. (c) Non-linear modes of variations identified by Mesh2SSM.
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Table 1.

Distance metrics (measured in mm) of the testing samples and their reconstructions for the pancreas dataset

Mesh2SSM FlowSSM [15]

Metrics
Template

Medoid Sphere Medoid Sphere

L1 Chamfer 0.033 ± 0.002 0.035 ± 0.002 0.391 ± 0.162 1.91 ± 0.687

Surface-to-Surface 2.378 ± 0.7325 5.436 ± 2.232 5.918 ± 2.026 4.918 ± 1.925
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