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ABSTRACT: Precision measurement of the growth rate of individual single crystal facets (hkl) represents an important component
in the design of industrial crystallization processes. Current approaches for crystal growth measurement using optical microscopy are
labor intensive and prone to error. An automated process using state-of-the-art computer vision and machine learning to segment
and measure the crystal images is presented. The accuracies and efficiencies of the new crystal sizing approach are evaluated against
existing manual and semi-automatic methods, demonstrating equivalent accuracy but over a much shorter time, thereby enabling a
more complete kinematic analysis of the overall crystallization process. This is applied to measure in situ the crystal growth rates and
through this determining the associated kinetic mechanisms for the crystallization of β-form L-glutamic acid from the solution phase.
Growth on the {101} capping faces is consistent with a Birth and Spread mechanism, in agreement with the literature, while the
growth rate of the {021} prismatic faces, previously not available in the literature, is consistent with a Burton−Cabrera−Frank screw
dislocation mechanism. At a typical supersaturation of σ = 0.78, the growth rate of the {101} capping faces (3.2 × 10−8 m s−1) is
found to be 17 times that of the {021} prismatic faces (1.9 × 10−9 m s−1). Both capping and prismatic faces are found to have dead
zones in their growth kinetic profiles, with the capping faces (σc = 0.23) being about half that of the prismatic faces (σc = 0.46). The
importance of this overall approach as an integral component of the digital design of industrial crystallization processes is
highlighted.

1. INTRODUCTION
The manufacture of solid-form materials such as pharmaceut-
icals, foods, and agrochemicals often involves their processing in
crystalline form with crystallization being used in order to isolate
and purify high-quality products.1 Crystal size and shape and,
through the latter, the corresponding surface chemistry can play
an important role in the efficient performance of the
downstream processes used for formulation such as filtration,
drying, milling, blending, granulation, and tableting, with
concomitant impact upon product performance. An in-depth
understanding of crystal face-based growth as a function of the
variation in the crystallization environment can thus be
important in quantifying and hence controlling the crystal-
lization processes. Within this perspective, the use of crystal size

and shape measurements for determining crystal facet (hkl)-
based growth kinetics for incorporation into morphological
population balance processmodels2,3 and, through this, enabling
the prediction and control of crystal size and shape represents an
important element in digital crystallization process design.4

Molecular-based simulation approaches have been used to
predict and understand crystal morphology associated with face-
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based crystal growth.1 However, while they provide a useful
baseline, these techniques have not so far been able to predict
the kinetic aspects of the growth process. Molecular modeling
software such as HABIT98,5 for example, has been used to
predict the crystal lattice energy, intermolecular interactions
(synthons), relative growth rates, crystal morphology, etc.
Joswiak et al.6 have used atomistic simulations to calculate kink
site attachment rates for crystal growth rate prediction, while
molecular dynamics (MD) simulations have been used to model
the energetic balance between solute and solvent intermolecular
interactions (e.g., references 7, 8) and for investigating crystal
nucleation and growth in the solution state.9 Despite this,
current simulation approaches have not, as of yet, been found to
be readily available to accurately predict de novo face-based
crystal growth rates and their associated mechanisms under
representative crystallization process conditions such as
variations in solvent, temperature, solute concentration, and
supersaturation.

Crystallization studies with online imaging systems have been
performed to determine crystal growth kinetics within a
population of crystals (e.g., references 10−17), to investigate
the effect of operating conditions on the processing behavior and
to monitor variations of crystal size and shape during the
processes (e.g., references 18−20). However, the crystal images
captured from within a crystallizer are, by their very nature,
transient due to their motion under process hydrodynamic
conditions. As a result, often such images can be quite poorly
resolved due to the rotation of crystals under agitation making it
quite challenging to track the growth behavior of individual
crystals. In comparison, single crystal growth measurements
using temperature-controlled growth cells together with high-
resolution optical microscopy provide a much more effective
and accurate approach for facet growth measurements, e.g.,
references 15,21−25, when compared to other methods such as
atomic force microscopy,26 rotating disk techniques,27 or
microfluidics.28

A growth cell with temperature control by a recirculation bath
has been developed to grow single crystals from solution using a
microscope to capture images of the growing crystals for growth
rate determination along individual face directions. This has
been previously reported for studies of ibuprofen,22,23,29 methyl
stearate,25 para-aminobenzoic acid,8 LGA,14,21,30 α-glycine,24
and tolfenamic acid.31 Traditionally, manual image analysis
methods have been used for processing the images, but these can
be problematic due to their low accuracy and consistency due to
human error. This approach can also be highly time-consuming
with concomitant impact upon the operator’s health from
continuously interacting with a video screen and tracking the
dynamic progression of the crystal edges during the growth
process. The Hough transform method has been used to find
lines in very ideal crystal images captured from a growth flow cell
for measuring facet growth rates of α-glycine.24 However, these
techniques could often not provide accurate enough outputs for
less ideal images, as this technique was not always able to provide
clean lines or too many lines for the analysis algorithm to work
consistently.

Analysis of crystal growth kinetics and mechanism has been
based on growth interfacial models such as BCF,32 B&S,33 and
power law34 and, in the latter case, where the exponent is 1, then
this would correspond to an unstable rough interface growth.35

Such growth interface kinetic models have been integrated to
incorporate the effect of solute mass transfer25,36 on crystal
growth mechanism, using user-defined functions such as

developed by Camacho et al.25 to fit the growth data. Through
this approach, the effects of the incorporation of growth units
into the crystal surface (growth surface integration, GSI) and
their diffusion within the solution (mass transfer, MT) on facet
crystal growth kinetics and mechanisms can be assessed and
quantified with respect to which of these two kinetic aspects is
the rate-limiting step. Apart from the interfacial kinetics models
used to model the GSI process during crystal growth, MT may
also have a significant impact on the facet growth rate.25 This has
been previously highlighted by Garside and Tavare37 through
their definition of an effectiveness factor and their highlighting of
the importance of growth rate dispersion for modeling its
influence on crystal size distribution in a crystallizer. An
improved understanding of MT has been demonstrated by
Nicholson et al.38 who used laser interferometry to characterize
theMTwithin the boundary layer between the bulk solution and
the crystal faces during growth and dissolution.39

Attempts have been made to utilize deep learning technology
to track and measure individual crystals in images captured
during solution crystallization processes.20,40 Crystal properties
including size distribution, morphology, and surface area of LGA
α and β polymorphs were obtained in situ for individual crystals
with the image processing speed achieving up to 10 frames per
second.20 Bischoff et al.40 developed software to generate a
synthetic data set of realistic protein crystal images in suspension
by employing ray tracing rendering algorithms for use in
supervised machine learning. The robust object detection
models developed using this data set were used to quantify
and characterize protein crystallization processes under different
conditions, especially with low-resolution imaging systems.
However, the use of machine learning techniques for character-
izing facet crystal growth has, up to now, been quite limited.

Significant advancements have been made in the realm of
image segmentation by using deep learning models. Modern
image segmentation tools, such as Mask-RCNN,41 have been
found to exhibit high accuracy and efficiency in segmentation
outcomes but require customization and additional training for
specific image domains. Consequently, segmentation models
with the ability to generalize across various tasks hold a distinct
advantage, especially when additional labeled data have not been
readily available. Currently, the state-of-the-art approach in this
field is the segment anything model42 (SAM) from Meta AI
research. SAM is particularly noteworthy for its remarkable
ability to segment diverse objects in any domain. This prowess is
attributed to its training on an extensive data set of over 11
million images, encompassing one billion segmentationmasks.42

The capability to identify virtually any object within an image
establishes a promising foundation for the development of a tool
tailored to detecting crystals in microscope images.

This study focuses on the crystallization of L-glutamic acid
(LGA), an amino acid widely used in the food and
pharmaceutical industries. LGA has been also widely used as a
mode l compound in crys ta l l i za t ion process re -
search10−16,19−21,43−45 and has two polymorphs: the prismatic-
shaped metastable α-form and the more needle-like shaped
stable β-form.45 Data on the needle-like β-form LGA (β-LGA) is
widely available, and many studies have investigated its
crystallization behavior and processing performance. Previous
work has examined the growth rate measurements of LGA
crystallization from solution using instruments such as
FBRM10,46 and laser light scattering44 using a spherical crystal
assumption in the latter case even for the needle-like β-LGA,
hence only a one-dimensional (1D), spherical-based growth rate
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could be measured. With the advances of in-process imaging
systems, online images of LGA crystals captured during
crystallization processes have been used to estimate two-
dimensional (2D, length and width) growth rates (e.g.,
references 11−16). However, the growth rates reported for the
published slow growth face in the width direction of β-LGA have
been found to be highly variable with high variance16 or indeed
could not be realistically obtained.30 Kitamura and Ishizu21,30

measured the growth rates of α- and β-LGA crystals and found
that the growth of the prismatic faces of β-LGA was too slow to
produce meaningful growth rate/kinetics, which echoes the
large discrepancy of this face’s growth rate when obtained from
in-process crystal images in crystallizers.16 Previous studies also
revealed that the single crystal growth rates determined under
stagnant conditions are comparable to those estimated from
within crystal populations in agitated vessels,15,23 indicating the
value of obtaining accurate growth rates under more easily
controlled stagnant environments. The crystal shape of LGA has
been investigated by Turner et al.47 who developed a digital
mechanistic workflow for predicting crystal morphology of LGA
in aqueous solution revealing the β-LGA structure to have an
anisotropic distribution of its dominant extrinsic synthons
across its crystal habit faces, directly impacting upon the relative
crystal growth rates of the β-LGA faces and rationalizing the
understanding of its needle-like crystal morphology.

In this paper, crystal growth rates of the capping and prismatic
faces of the β-form L-glutamic acid have been investigated. A
machine learning powered automatic analysis tool has been
developed that demonstrates improved accuracy and efficiency
over manual and semi-automatic measurement approaches.
Using this approach, accurate, manually validatedmeasurements
of face-based growth rates and growth mechanisms for β-LGA
were obtained.

2. MATERIALS AND EXPERIMENTAL METHODS
2.1. Materials. L-Glutamic acid (LGA) with a purity of

≥99% was purchased from Sigma-Aldrich. The distilled water
was obtained in-house. The LGA was directly used for this study
without any further purification.

This work focused on the faceted crystal growth of the stable
β-form LGA; hence, no polymorphic transformation issues were
present. Based upon the crystal structure for the β-form of
LGA,54 the schematic crystal morphology is shown in Figure 1.
Note that the crystallographic setting of the unit cell parameters
(a, b, c) adopted here is a < c < b after the convention byDavey et
al.54 (LGLUAC11) which is different from that used by Turner
et al.47 (LGLUAC01) which used a < b < c. In the former case,
the angles between (101) and (10−1) faces and between (021)
and (02−1) faces are 108° and 78°, respectively.54
2.2. Experimental Apparatus. A temperature-controlled

crystal growth cell system (Figure 2) to capture high-quality
single crystal images of β-LGA comprises a glass cuvette cell,22,25

a Keyence VHX7000 digital optical microscope48 integrated
with 3 zooming lenses (20−100× , 100−500×, and 500−
2500×) and a 1/1.7-in. 4K CMOS image sensor (108
megapixels) camera, connected to a computer with image
capturing and analysis software. The crystallization vessel itself
was a UV cuvette glass cell with a volume of 0.5mL (sizes of 54 ×
10 × 1 mm) submerged in a small shallow cell filled with
circulating water whose temperature was directly controlled by a
Julabo F25 recirculation bath (Figure 2).
2.3. Experimental Methods. 2.3.1. Preparation of β-LGA

Seeds. All experiments in this study were carried out using

crystal seeds of LGA β-form single crystals, which were prepared
by slow evaporation from solution with 10 g of LGA and 1 L of
water and corresponding to a saturated temperature of around
33 °C. The solution was heated to ensure complete dissolution
and then left in a crystallizing dish covered by parafilm, which
was pierced in several places to allow for slow evaporation and
left at room temperature for several days resulting in the
formation of crystal seeds. To minimize the potential effect of
seed size on growth rate, crystals with similar lengths were
selected for use as seeds, and these were then used to measure
the growth rates under different supersaturations.
2.3.2. In Situ Growth Rate Measurements. The solubility of

β-LGA in distilled water has been previously reported in the
literature,49 and this was used for this study. The LGA solution
for all experiments was prepared by dissolving 35 g of the solute
LGA in 1 L of deionized water (corresponding to a saturation
temperature of 67 °C). The solution prepared was transferred
into the cuvette cell using a pipet. The crystal seeds of β-LGA

Figure 1. Schematic of the β-LGA crystal morphology together with
some face-to-face angles.

Figure 2. Experimental setup for the growth rate measurements of β-
LGA single crystals in individual face directions. A single crystal seed is
placed in the growth cell and maintained at the target temperature by a
recirculating water bath. A digital microscope records images
periodically on the computer.
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were placed into the cuvette cell, which was then rapidly sealed
and carefully and firmly attached to the bottom of the growth
cell. After this, the growth cell was sealed within its water bath at
a preset initial temperature of 67 °C in order to limit potential
secondary nucleation. When a β-LGA seed was placed in the
growth cell, it was arranged that the slowest growth face {010},
hence, the surface with the largest surface area, would lay flat on
the cuvette base. This geometry allowed measurement of the
growth of other faces {101} and {021} through captured 2D
crystal images. Hence the growth of the individual growth
directions normal to the {101}, {10−1} and {021} habit planes
under different solution supersaturations could be measured
within the cuvette. The bath temperature was then set to a value
higher than the saturated one (67 °C) to slightly dissolve back
the surfaces of the single crystal seeds in order to attain the
required seed size and also to remove any possible surface
imperfections. The solutions were then cooled down to a
constant temperature between 44 and 60 °C (corresponding
relative supersaturations σ ranging from 1.21 to 0.28 with σ
being defined as a ratio of the difference between solute
concentration and its solubility at the same temperature to the
solubility) until the end of the growth process, hence achieving
the solution supersaturation at a specific value. Note that all
experiments performed in this study were conducted within the
metastable zone; under conditions where no further crystal
nucleation (primary or secondary) took place. Furthermore, the

whole internal area of the cuvette including its corners/edges
and also seed surface was checked using the microscope at a
higher magnification by scanning its translation stage to ensure
only a single crystal seed existed in the cuvette before starting
automatic image recording of faceted crystal growth.

Temporal images were captured under reflective light mode
with automatic focus at constant time intervals during the entire
crystal growth process and saved with the associated time, lens
information and scale bar for reference. The preset time intervals
were typically in a range of 1−10 min depending on the size of a
seed (length = 1600−1800 μm and width = 300−1220 μm),
temperature (44, 46, 48, 50, 52, 54.5, 57, 59, and 60 °C), and the
corresponding relative supersaturation (σ = 1.21, 1.05, 0.91,
0.78, 0.66, 0.53, 0.40, 0.32, and 0.28). Note that the facet growth
rate was calculated from the projected distances of the habit
faces by allowing for the appropriate interplanar angles.
Experiments at relative supersaturations of 0.78 and 1.05 were
repeated six and five times, respectively, to verify the
repeatability of growth rate measurements. Additionally, the
distances calculated were based on the normal distance of a face
from the nucleation center of the crystal, i.e., half of the
measured distances between paired faces.

3. DATA ANALYSIS
3.1. An Automated Method for Crystal Growth

Measurement. To evaluate the feasibility of an automated

Figure 3. (a) Facet growth is determined by measuring the distances between opposing parallel crystal faces; (b) normal distances measured using
Keyence software for the paired faces of β-LGA single crystal (manual method); (c) user interface of VGG Image Annotator for labeling coordinate
positions (semi-automatic method).
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method for crystal growth measurement, a fully automatic
method based on machine learning and two baseline methods
(manual and semi-automatic) were applied to the same set of
crystal images. These images were captured under the same
relative supersaturation of 1.05, yielding a data set of 235 images.
All images were processed by using the automatic method. For
comparison, a subset of 21 images were selected and processed
with the manual and semi-automatic measurement methods.
3.1.1. Baseline Methods. In this study, several pairs of

opposite faces of the β-LGA crystal were selected for growth rate
investigation (as shown in Figure 3). The Keyencemeasurement
software48 was used to process the crystal images captured by
manually drawing parallel lines along the edges of two paired
crystal faces on a crystal image, hence determining the normal
distance in the pixelated image between these two lines. Note
that the normal distance between the paired (021)/(0−2−1)
faces was calculated based on the projected width and the angle
between (021) and (02−1) faces. Further details can be found in
Section S3. The actual distance in length units was found based
on the calibrated actual pixel size. Through this, the actual
distances between paired faces were directly obtained (Figure
3). The procedure was repeated for all paired faces and all crystal
images at various supersaturation levels. These distances were
then used in the fitting with respect to time used to calculate the
face-based growth rates.

A semi-automatic measurement method was developed with
an OpenCV-Python code in which users provided the
coordinates of six vertices identified from the 2D projected
crystal contour of β-LGA. A third-party UI tool, VGG Image
Annotator,50 was adapted for labeling the coordinate’s positions
(Figure 3). The code automatically measured the corresponding
real normal distances based on these coordinates and then saved
these distances with associated time when capturing the image
for crystal facet growth rates and kinetics.
3.1.2. Automatic Method. The automatic crystal sizing

process encompassed two distinct stages: (1) segmentation of
the images to separate the crystals from the background and then
(2) fitting to the β-LGA’s characteristic hexagon morphological
shape to match the segmentation masks from stage (1). The
overall process is outlined in Figure 4.

The segmentation stage was carried out using the state-of-the-
art segment anything model (SAM), developed by MetaAI.42

SAM consists of a neural network that takes an image and

approximate coordinates of a point of interest and returns a
binary mask the same size as the input image, where values of 1
correspond to the foreground object and values of 0 correspond
to the background. This is an off-the-shelf, open-source tool that
requires no additional data, no training, and no further
parameter tuning to produce very effective segmentation results.
SAM provides an effective and robust method for directly
producing crystal silhouettes from the images.

In the second stage, hexagon shapes were fitted to the
segmentation masks. This is a direct optimization approach that
requires no separate training and no data set other than the
crystal images being analyzed. These shapes were parametrized
by a center point, three angles, and three pairs of lengths. Each
angle and distance-pair defined two parallel lines that, after
optimization, aligned to a pair of parallel faces in the crystal
image. The three sets were used to construct three bounding
region masks (i.e., binary images), and a final hexagon shape was
produced by taking the product of these masks (Figure 4). The
first angle defines the perpendicular direction, corresponding to
the shortest face distance. The second and third angles are
manually defined relative angles to be added to the first angle.
The relative angles could be estimated by hand from an image or,
as in the case of β -LGA, looked up from the theory16,21 with an
angle of 108° between the two capping faces (Figure 1) and 126°
between the capping and prismatic faces being taken. A distance-
pair was measured from the origin in each direction and by
allowing these to differ from each other, they could capture
asymmetric crystal growth and even continue to track distances
when faces have “grown out”. Note that this latter case could
result in a fitted shape with fewer than six sides.

The fitting process was performed by using iterative gradient
descent. A batch of initial candidate hexagons were para-
metrized, their corresponding masks generated, and an error was
calculated as the mean squared pixel-difference between the
masks of the input crystals (pregenerated by SAM) and the
masks for the candidate hexagons. Additional regularization loss
terms were also added: the sum of the distances (to ensure a
minimal bounding polygon), the sum of squared differences
between the distance-pairs (to encourage some symmetry), and
a temporal loss term to ensure the distances change smoothly
across the sequence.

As the generation of candidate masks from the hexagon
parameters used differentiable operations, gradients with respect

Figure 4. A candidate hexagon shape is constructed from the intersection of three sets of parallel lines. The generated candidate mask was compared
against a segmented mask of the input image as produced by SAM. The error (the difference between the masks) was used to iteratively update the
parameters by gradient descent.
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to the parameters could be calculated by automatic differ-
entiation using PyTorch51 and parameters were updated using a
gradient descent optimization algorithm (Adam52 was used for
this, but others were similarly successful). The optimization was
run until convergence with the learning rate decreasing
exponentially as the loss plateaus to ensure stable and smooth
results. Fitting a typical sequence of 250 images was found
typically to take about 20 min on a V100 GPUmachine (∼5 min
for SAM and ∼15 min for hexagon fitting).

This process has been developed into a software package
known as Automatic Crystal Sizer, which performs the overall
task automatically once the user has selected the desired crystal
to be measured. In Figure 5, a screenshot of the software is
shown in which a crystal image was selected and automatically
measured. The green lines indicate the boundary of the crystal
found by the software, and the blue arrows show the measured
perpendicular distance from the center of the crystal to each
crystal edge. The scale is set by typing in the units of the scale in
the image and then selecting it. A sequence of images, from a
time series of microscope images observing the growth of a
crystal over time, can be batch processed without intervention.
By selecting a crystal in any image of the sequence, the software
tracks the crystal forward and backward in time automatically,
using the center of the crystal in the previous image as its new
point of interest. Once completed, the measurements were
exported to aMicrosof t Excel file, where each image is listed with

its associated hexagon parameters. These values can then be
used for growth rate measurements.
3.2. Analysis of Crystal Growth Rates and Derivation

of Growth Interface Kinetics. The crystal growth kinetic
mechanisms including effects of MT and GSI were assessed with
respect to establishing mechanistic models25 by
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where ρs is the solute density, MWs is the solute molecular
weight, and Ce is the equilibrium concentration (solubility).

For the LGA examined in this study, MWs = 147.13 g mol−1

and ρs = 1.54 g cm−3. Ce can be calculated using the original
solution concentration C0 = 237.88 mol m−3 and relative
supersaturation during growth:

C
C

1e
0=

+ (3)

Figure 5. A screenshot of the Automatic Crystal Sizer. A crystal had been selected in the image and automatically measured. The green lines indicate
the boundary of the crystal found by the software, and the blue arrows show the measured perpendicular distance from the center of the crystal to each
crystal edge.
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In eq 1, the kSI term can be modeled based upon the three
standard mechanistic models:1

power law model,

k k ( )r
SI G

1= (4)

B&S model,

k k
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( ) expSI G
1/6 1= i

k
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{
zzz (5)

BCF model,
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( )tanhSI G
2= i

k
jjj y

{
zzz (6)

where ( )kG
m
s

is the growth rate constant, r is the growth
exponent, and A1 and A2 are thermodynamic parameters. The
situation where r = 1 corresponds to a rough interface growth
mechanism.

The facet growth rates at supersaturations of 0.78 and 1.05
with six and five repeats, respectively, were further processed to
find their mean values with the corresponding standard
deviations. Further details can be found in Section S4. The
mean growth rates were used for the determination of the
growth kinetic mechanisms.

Comparison between the fitted parameters with respect to eq
1 was used to assess whether the growth rate was limited by
either the MT or GSI.

The experimental fits to the observed data were used to
estimate the face-specific critical supersaturation σc for growth,
i.e., when G = 0 and setting σc equal to σ.

The data fitting to the models was carried out using Origin
software53 with the Levenberg−Marquardt algorithm with the
fitting of the data assessed through R2 (coefficient of
determination) being used to assess the regression quality.

For comparison purposes, the measured growth rates in the
length and width directions of β-LGA crystals from the literature
were converted to the facet growth rates for the {101} capping
and {021} prismatic faces using the corresponding angles of
108° and 78° (Figure 1), respectively.

4. RESULTS AND DISCUSSION
4.1. Comparison Between Baseline and Automatic

Methods. Analysis of the growing sizes of the β-LGA {021},
{101}. and {10−1} faces revealed that at the early stage of the
growth process, there was a good linear fit between the paired
interplanar projected distances with time as evidenced by an R2

of 0.99 (Figure S1), consistent with only a slight consumption of
the solute, hence the initial supersaturation and with no obvious
evidence for growth rate dispersion.3,37 However, at a later stage,
the measured growth rates were found to deviate significantly
from a linear relationship reflecting the depletion of the solute.
Therefore, the slopes of the fitted linear equations using the early
stage data were used as a measure of the growth rates of the
paired faces at a given solution temperature or supersaturation.
Figure S1 provides further information about the linear fitting
for the determination of the growth rate.

A comparison between the results of the crystal length
measurements based on the three analytical methods is given in
Figure 6. The analysis of these results reveals very close
agreement with a discrepancy of ±5%. Taking the manual
measurement as the ground truth, the average relative
percentage errors of the other two methods are both under

5%, which is within an acceptable margin of error. An estimate of
the image processing times reveals that they are typically
approximately 114, 57, and 5 s per image, respectively,
highlighting the advantages of the automatic sizing method for
delivering more reliable and consistent results over a much
shorter data processing time. Hence, the automated method
allows users the ability to process a much wider range of in situ
data sets of temporal crystal images rather than having to rely
upon the analysis of only a selection of representative images
using either the manual or semi-automatic methods. Reflecting
upon this outcome, the subsequent analysis of all further results
presented here were obtained using the automatic sizing
approach for efficiently, accurately, and consistently measuring
the facet growth rates.
4.2. Face-Specific Crystal Growth Rates as a Function

of Solution Supersaturation. The results of the crystal-
lization experiments carried out spanning nine different solution
supersaturations are summarized in Figure S6. These contain,
respectively, a typical sequence of the images and typical facet
growth distances, i.e., the normal distance (length of paired
faces) in a face direction. At two representative supersaturations
(σ = 0.78 and σ = 1.05), the repeatability of the experimental
results were checked by six and five repeated runs, respectively,
as shown in Figures S4 and S5, revealing standard deviations
(Tables S2 and S3) that are consistent with literature data.22

Further details can be found in Section S4. The measured crystal
facet lengths, as a function of time, for all nine supersaturations
are given in Figure S6. Linear fits to the early stage of the length
data with time (Section 4.1) revealed the facet crystal growth
rates with a typical fitting result, which is plotted in Figure S1.

Table 1 lists the face-base growth rates of the capping faces
(101)/(−10−1) and (10−1)/(−101), and the prismatic faces
(021)/(0−2−1) for all nine supersaturations with the
corresponding fixed solution temperatures. As expected, growth
rates were generally found to increase with supersaturation with
the growth rates of capping faces (101)/(−10−1), (−101)/
(10−1) being observed to be much faster than that for the
prismatic faces (021)/(0−2−1). This is consistent with the
findings of Kitamura and Ishizu30 that the prismatic faces grow
too slow to produce meaningful growth kinetics from their
experiments, which is evidenced by the experimental run at σ =

Figure 6. Comparison of the normal distances (lengths) between
paired crystal faces during crystal growth in a growth cell, using the
manual (open triangle), semi-automatic (open circle),and automatic
sizing (line) methods (red: (101)/(−10−1) faces; blue: (10−1)/
(−101) faces; green: (021)/(0−2−1) faces). The images were
captured under a relative supersaturation of 1.05 (run #1, Section S4).
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0.28 (Table 1) of this study, and also the large discrepancy of the
growth rate of the {021} face obtained from in-process β-LGA
crystal images in crystallizers16 due to its much slower growth.

Table 2 shows a comparison between the growth rate
measurement presented here with those from the litera-
ture.11−13,15,16,21,30 It can be seen that while the growth rates
may differ between the different experimental setups or
conditions, they broadly agree within the same order of
magnitude. A big discrepancy of the growth rates for capping
faces exists between the studies of Kitamura and Ishizu21,30 and
others11−13,15,16 with the latter growing about 2.5−9.5 times
faster than the former (Table 2) even in comparison with the
result from an apparently similar flow cell setup.15 This might
reflect, to a degree, the results from the low-resolution crystal
images captured by video TV system.21,30 Overall, this study
reveals that the growth rates of prismatic faces were consistently
many times lower than those for the capping faces aligned with
literature data (Table 2).
4.3. Face-Specific Crystal Growth Kinetic Mechanisms.

The fitting results for different faces using the crystal growth
kinetics fitting model,25 including both growth resistances of
MT and GSI, are listed in Table 3 with the best fitting models
highlighted with bold and italic texts and shown in Figure 7. The

best fitting model for capping faces (101)/(−10−1) and (10−
1)/(−101) is the B&S model with the R2 being 0.97 and 0.99,
respectively, for the two capping faces, although the power law
fitting was found to have the similar high values of R2, but the
unrealistic power value of ∼1.0 × 10−14 (Table 3) makes the
fitting unreliable. For the prismatic faces (021)/(0−2−1), it was
found that only the BCF model produced reasonably good
fitting results with R2 = 0.97. Table 3 shows that at the average σ
(= 0.75), for the {101} capping faces, the values of MT
resistance (9.81 × 106 and 9.18 × 106) were found to be larger
than those of the GSI resistance (5.24 × 106 and 6.18 × 106),
consistent with the mass transfer of solute molecules from the
bulk solution to the {101} capping faces being the growth
limiting factor. However, for the {021} prismatic faces, the value
of GSI resistance (1.74 × 108) was found to be greater than that
of theMT resistance (7.83 × 107); consistent with the GSI being
the main resistance to the growth of the {021} prismatic faces.

The calculated resistance values on MT and GSI on facet
growth rates under nine different supersaturations are given in
Table 4. Within the relative supersaturation range studied
(0.28−1.21), it can be seen that on the prismatic faces, (021)/
(0−2−1), the resistance of GSI is generally greater than that of
MT, which means that the GSI is the rate-limiting step. For the
capping faces, the resistance of MT is greater than that of GSI,
which indicates that the MT within bulk solution is the rate-
limiting factor on these faces. However, at the higher
supersaturations, the resistances due to both MT and GSI are
roughly equivalent, with those two factors gradually playing a
more balanced role in mediating the face-specific growth. This
probably is a reflection of the higher solute concentration and
hence higher viscosity leading to stronger MT resistance.
4.4. Face-Specific Supersaturation Dead Zones. The

critical relative supersaturation (σc) or dead zone for
crystallization, as defined as the range of 0−σc with no growth
being observed as obtained from themodel fittings, was found to
be 0.23, 0.24, and 0.46 for the {101} and {−101} capping faces
and the {021} prismatic faces, respectively, which are given in
Figure 7 and Table 3.

The data highlights that a significantly higher supersaturation
is needed to initiate growth on the prismatic faces compared to
that on the capping faces consistent with a smaller cluster size for
surface nucleation in the former case. These findings are in
agreement with the recent morphological analysis by Turner et
al.,47 who demonstrated that the prismatic faces have a much

Table 1. Facet Growth Rates of {101} Capping and {021}
Prismatic Faces Under Different Supersaturationsa

aNote that the facet growth rates at σ = 0.78* and 1.05* represent
their corresponding mean values.

Table 2. Experimentally Measured Facet Growth Rates of β-Form LGA Crystals from the Literature and This Studya

growth rate (×10−8 m s−1)

reference σ capping faces {101} prismatic faces {021} data acquisition method

Kitamura and Ishizu30 0.48 0.37 N/A microscope with video TV system
Kitamura and Ishizu21 0.48 0.46 N/A microscope with video TV system
Ma et al.13 0.49 3.52 0.71 online in-process imaging system
Wang et al.16 0.49 1.17 0.30 online in-process imaging system
Ma and Wang12 0.49 1.33 0.38 online in-process imaging system
Ochsenbein et al.15 0.20 1.91 0.07 stereoscopic imaging with flow cell
Huo and Guan11 0.5 1.76 0.81 online imaging system
this study 0.28 − 1.21 0.46−4.13 0.002−0.44 in situ microscope with growth cell

(0.40) (1.92−2.02) (0.002)
(0.53) (2.72−2.86) (0.01)

aNote that the values in italics are the growth rates converted from measured lengths and widths to {101} capping and {021} prismatic faces for
comparison purpose with the two supersaturation values (0.40 and 0.53) and their corresponding growth rates in parentheses being provided also
for easy comparison.
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lower surface attachment energy when compared to the capping

faces. Hence, this result is not unexpected.
Interestingly, the face-specific dead zone data suggest that

below the σc of the {021} faces, growth should only occur on the

capping faces.

5. CONCLUSIONS
The growth of both capping and prismatic faces of β-LGA was
measured in situ using a temperature-controlled crystal growth
cell with optical microscopy. An automatic sizing methodology
using state-of-the-art machine learning-based computer vision
techniques to segment the images was developed to quantify the

Table 3. Parameters of Crystal Growth Kinetics from the Best Fitting of Experimental Growth Data with the Models (eqs 1−6)a

aNote that the data listed in this table are calculated using the fitting models with σ = 0.75 (the average value of the superstations studied in the
present work). The bold and italic texts donate the typical best fits determined by the highest goodness-of-fit (R2)

Figure 7. Measured growth rates (symbols) of β-LGA crystals of different faces and their best kinetic model fitting (dashed lines): red cycles and
dashed line (B&S): (101)/(−10−1) faces; blue squares and dashed line (B&S): (10−1)/(−101) faces; green triangles and dashed line (BCF): (021)/
(0−2−1) faces. The vertical dashed red, blue, and green lines indicate the critical relative supersaturations obtained from kinetics model fittings for the
(101)/(−10−1) faces, (10−1)/(−101) faces, and (021)/(0−2−1) faces, respectively. For supersaturations of 0.78 and 1.05, the mean growth rates
were used for the fittings with the minimum and maximum growth rates being plotted by error bars.

Crystal Growth & Design pubs.acs.org/crystal Article

https://doi.org/10.1021/acs.cgd.3c01548
Cryst. Growth Des. 2024, 24, 3277−3288

3285

https://pubs.acs.org/doi/10.1021/acs.cgd.3c01548?fig=tbl3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.cgd.3c01548?fig=tbl3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.cgd.3c01548?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.cgd.3c01548?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.cgd.3c01548?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.cgd.3c01548?fig=fig7&ref=pdf
pubs.acs.org/crystal?ref=pdf
https://doi.org/10.1021/acs.cgd.3c01548?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


facet crystal growth rates as a function of solution super-
saturation, with their associated interface kinetic growth
mechanisms being determined. Evaluation of the new method-
ology against existing manual and semi-automatic approaches
demonstrates its equivalent accuracy in a much shorter time. It
was found from the crystal growth kinetic data that the growth of
the {101} capping faces was consistent with a Birth and Spread
mechanism, while growth of the {021} prismatic faces was
consistent with a Burton−Cabrera−Frank screw dislocation
mechanism, with the former being in agreement with the
available literature. Determination of rate-limiting kinetic
parameters revealed growth of the {101} capping faces to be
dominantly controlled by the MT of solute molecules from the
bulk solution to the crystal surfaces, while the molecular
integration process on the crystal surface generally limits the
growth of the {021} prismatic faces, which is consistent with its
elongated morphology. Both capping and prismatic faces were
found to have dead zones associated with their facet growth,
with the {021} prismatic faces being found to have larger (∼2
times) dead zone compared to the {101} capping faces. This
suggests that the nucleation requires a higher supersaturation to
initiate growth and concomitantly a smaller cluster size.

Further work is currently in progress to address the more
challenging issue of directly measuring the growth of the crystals
normal to the slowest growing faces {010}, i.e., in the vertical
direction with respect to the optical axis of the microscope, by
combining machine learning with molecular-based morpho-
logical modeling. Techniques are also under development to
directly monitor the solute concentration during the crystal
growth and, through this, be able to utilize the full set of
temporal data acquired during the growth process. The
outcomes from this work will be reported in due course.
Overall, the face-based growth rates and growth mechanisms
obtained in this study form part of an integrated digital design
strategy encompassing morphological population balance
modeling linked to hydrodynamic modeling of industrial scale
crystallization.4
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