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ABSTRACT Archaea, bacteria, and fungi in the soil are increasingly recognized as 
determinants of agricultural productivity and sustainability. A crucial step for exploring 
soil microbiomes with important ecosystem functions is to perform statistical analyses 
on the potential relationship between microbiome structure and functions based on 
comparisons of hundreds or thousands of environmental samples collected across 
broad geographic ranges. In this study, we integrated agricultural field metadata with 
microbial community analyses by targeting 2,903 bulk soil samples collected along 
a latitudinal gradient from cool-temperate to subtropical regions in Japan (26.1–42.8 
°N). The data involving 632 archaeal, 26,868 bacterial, and 4,889 fungal operational 
taxonomic units detected across the fields of 19 crop plant species allowed us to conduct 
statistical analyses (permutational analyses of variance, generalized linear mixed models, 
randomization analyses, and network analyses) on the relationship among edaphic 
factors, microbiome compositions, and crop disease prevalence. We then examined 
whether the diverse microbes form species sets varying in potential ecological impacts 
on crop plants. A network analysis suggested that the observed prokaryotes and fungi 
were classified into several species sets (network modules), which differed substantially 
in association with crop disease prevalence. Within the network of microbe-to-microbe 
coexistence, ecologically diverse microbes, such as an ammonium-oxidizing archaeon, an 
antibiotics-producing bacterium, and a potentially mycoparasitic fungus, were inferred 
to play key roles in shifts between crop-disease-promotive and crop-disease-suppressive 
states of soil microbiomes. The bird’s-eye view of soil microbiome structure will provide 
a basis for designing and managing agroecosystems with high disease-suppressive 
functions.

IMPORTANCE Understanding how microbiome structure and functions are organized 
in soil ecosystems is one of the major challenges in both basic ecology and applied 
microbiology. Given the ongoing worldwide degradation of agroecosystems, building 
frameworks for exploring structural diversity and functional profiles of soil microbiomes 
is an essential task. Our study provides an overview of cropland microbiome states in 
light of potential crop-disease-suppressive functions. The large data set allowed us to 
explore highly functional species sets that may be stably managed in agroecosystems. 
Furthermore, an analysis of network architecture highlighted species that are potentially 
used to cause shifts from disease-prevalent states of agroecosystems to disease-sup
pressive states. By extending the approach of comparative analyses toward broader 
geographic ranges and diverse agricultural practices, agroecosystem with maximized 
biological functions will be further explored.
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T he ongoing global-scale degradation of agroecosystems is threatening food 
production (1, 2). Maximizing the functions of microbial communities (microbiomes) 

is a prerequisite for building bases of sustainable agriculture (3–7). Archaea, bacteria, and 
fungi in the soil drive cycles of carbon, nitrogen, and phosphorus within agroecosystems 
(8–12). Many of those microbes also work to promote crop plant’s tolerance to drought 
and high temperature stresses as well as resistance to pests and pathogens (13–18). 
Importantly, those microbes vary greatly in their physiological impacts on crop plants 
(19–21). Therefore, gaining insights into soil microbiome compositions and functions 
is an essential starting point for managing resource-use efficient and disease-tolerant 
agroecosystems.

Since the emergence of high-throughput DNA sequencing, a number of studies have 
revealed taxonomic compositions of prokaryotes and/or fungi in agroecosystem soil 
(22–24). Those studies have explored microbial species that potentially support crop 
plant growth and/or prevent crop plant disease (9, 16, 25, 26). Meanwhile, each of the 
previous studies has tended to focus on specific crop plant species in specific farm fields 
(27), although there are some exceptionally comprehensive studies comparing multiple 
research sites (15, 22, 28). Therefore, generality in relationship between microbiome 
structure and functions remains to be examined in broader contexts (cf. global-scale 
analyses of soil microbiomes in natural ecosystems [29–32]). In other words, we still 
have limited knowledge of general patterns and features common to soil microbiomes 
with high crop plant yield or those with least crop disease risk. Thus, statistical analyses 
comparing microbiome structure among diverse crop plants across broad geographic 
ranges (15, 22) are expected to deepen our understanding of microbial functions in 
agroecosystems. In particular, comparative studies of thousands of soil samples covering 
a wide range of latitudes will provide opportunities for finding general properties 
common to microbial communities with plant-growth-promoting or crop-disease-sup
pressive functions across diverse climatic conditions.

Large data sets of soil microbiomes will also allow us to estimate interspecific 
interactions between microbial species (3, 33, 34). Archaea, bacteria, and fungi in soil 
ecosystems potentially form entangled webs of facilitative or competitive interactions, 
collectively determining ecosystem-level functions such as the efficiency of nutrient 
cycles and the prevalence of plant pathogens (35, 36). In fact, ecological network 
studies have inferred how sets of microbial species could respond to the outbreaks or 
experimental introductions of crop plant pathogens (37–39). Although various statistical 
platforms for deciphering the architecture of such microbial interaction networks have 
been proposed (33, 40), hundreds or more of microbial community samples are required 
to gain reliable inferences on interactions that reproducibly occur in real ecosystems (41). 
Thus, data sets consisting of thousands of soil samples collected across a number of 
local ecosystems will provide fundamental insights into how soil ecological processes are 
driven by cross-kingdom interactions involving archaea, bacteria, and fungi.

In this study, we conducted a comparative analysis of agroecosystem soil micro
biomes based on 2,903 bulk soil samples collected from subtropical to cool-temperate 
regions across the Japan Archipelago. Based on the amplicon sequencing data set 
representing farm fields of 19 crop plant species, we profiled prokaryotic and fungal 
community compositions in conventional agricultural fields in Japan. By compiling the 
metadata of the soil samples, we examined the potential relationship between soil 
microbiome structure and the prevalence of crop disease. The microbiome data set 
was then used to infer the structure of a microbe-to-microbe coexistence network 
consisting of diverse archaea, bacteria, and fungi. Specifically, we examined whether the 
network architecture was partitioned into compartments (modules) of closely interacting 
microbial species. In addition, we tested the hypothesis that such network modules 
could differ in their positive/negative associations with crop plant disease/health status. 
To explore prokaryotic and fungal species keys to manage agroecosystem structure and 
functions, we further explored “core” or “hub” species that were placed at the central 
positions within the inferred microbial interaction network. Overall, this study provides 
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an overview of soil microbial diversity of cropland soil across a latitudinal gradient, 
setting a basis for diagnosing soil ecosystem status and identifying sets of microbes to be 
controlled in sustainable crop production.

RESULTS

Diversity of agroecosystem microbiomes

We compiled the field metadata of 2,903 bulk soil samples collected in the research 
projects of National Agricultural and Food Research Organization (NARO), Japan. The 
bulk soil of farmlands was sampled from subtropical to cool-temperate regions (26.1–
42.8 °N) across the Japan Archipelago from 2006 to 2014, targeting 19 crop plant species 
(Fig. 1A; Data S1). Most of the croplands were managed with conventional agricultural 
practices (characterized by intensive tillage and chemical fertilizer/pesticide application), 
while some were experimentally controlled as organic agricultural fields. The meta
data (Data S1) included the information of chemical [e.g., pH, electrical conductivity, 
carbon/nitrogen (C/N) ratio, and available phosphorous concentration], physical (e.g., soil 
taxonomy), and biological (e.g., crop disease level) properties, providing a platform for 
profiling ecosystem states of cropland soil.

To integrate the metadata with the information of microbial community structure, 
we performed DNA metabarcoding analyses of both prokaryotes (archaea and bacteria) 
and fungi. After a series of quality filtering, prokaryotic and fungal community data were 
obtained from 2,676 and 2,477 samples, respectively. In total, 632 archaeal operational 
taxonomic units (OTUs) representing 22 genera (24 families), 26,868 bacterial OTUs 
representing 1,120 genera (447 families), and 4,889 fungal OTUs representing 1,190 
genera (495 families) were detected (Fig. 1B; Fig. S1).

The prokaryotic communities lacked apparently dominant taxa at the genus and 
family levels (Fig. 1B). In contrast, the fungal communities were dominated by fungi 
in the families Mortierellaceae, Chetomiaceae, and Nectriaceae, depending on localities 
(Fig. 1B). A reference database profiling of fungal functional groups suggested that the 
fungal communities were dominated by soil saprotrophic and plant pathogenic fungi 
(Fig. 1C) as characterized by the dominance of Mortierella and Fusarium at the genus level 
(Fig. S1). Meanwhile, mycoparasitic fungi had exceptionally high proportions at some 
research sites, as represented by the dominance of Trichoderma (Hypocreaceae) at those 
sites (Fig. 1B; Fig. S1).

Microbiome structure and crop disease prevalence

Compiling the metadata of edaphic factors, we found that variation in the community 
structure of prokaryotes and fungi was significantly explained by crop plant identity and 
soil taxonomy as well as by soil chemical properties such as pH, electrical conductivity, 
and C/N ratio (Fig. 2A; Fig. S2 and S3; Table 1). In addition, the ratio of prokaryotic 
abundance to fungal abundance, which was estimated based on a quantitative amplicon 
sequencing technique (42) (see Materials and Methods for details), was associated with 
both prokaryotic and fungal community structure (Table 1). The prokaryotic and fungal 
community structure also showed variation along latitude (Fig. S4; Table 1). Nonetheless, 
the explanatory powers of these variables were all small as indicated by the low R2 values 
(Table 1).

Both prokaryotic and fungal community structures were significantly associated with 
the severity of crop disease (Fig. 2B; Table 2). Specifically, the crop plants’ disease/health 
status (disease level 1 vs disease levels 2–5; see Materials and Methods) was explained by 
some of the principal components (PCs) defined based on prokaryotic/fungal commun
ity structure (Fig. 2).
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Microbes associated with crop disease/health status

We explored microbial OTUs whose prevalence is associated with crop plant dis
ease/health status. Based on a randomization analysis, prokaryotic/fungal OTUs whose 

FIG 1 Comparison of soil microbiome structure across the Japan Archipelago. (A) Map of research sites across the Japan Archipelago. The 2,903 soil samples 

were grouped into 42 research sites when their latitude and longitude profiles were rounded to one decimal place. (B) Taxonomic compositions of prokaryotes 

(archaea and bacteria; top) and fungi (bottom) at the family level. See Fig. S1 for results at the genus, order, and class levels. (C) Compositions of functional 

groups of fungi.
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distribution is biased in samples representing the minimal crop disease level (disease 
level 1) were screened (Fig. S5).

To examine whether the OTUs highlighted in the across-Japan spatial scale could 
actually show tight associations with crop disease status at local scales, the randomiza
tion analysis was performed as well in each of the six sub-data sets representing unique 
combinations of research sites, crop plant species, and experimental/research purposes 
(Data S2). Statistically significant specificity for crop disease level [false discovery rate 
(FDR) <0.025; two-tailed test] was observed for at least one OTU in five of the six sub-data 
sets (Data S2). Among them, exceptionally strong specificity to the lowest crop disease 
level (standardized specificity score ≥6.0; FDR <0.0001) was detected in two sub-data 
sets (Table 3). The relative abundance of these OTUs was tightly associated with crop 
disease level across samples within each sub-data set (Fig. 3).

FIG 2 Dimensions of soil microbiome structure. (A) Prokaryote and fungal community structure. Principal co-ordinate analyses (PCA) were performed based on 

OTU-level compositional matrices, respectively, for the prokaryotic and fungal communities. The identify of crop plants is shown by colors. See Fig. S2 and S3 

for relationship between community structure and environmental factors. Vectors with maximum correlations with respective soil environmental variables are 

shown as arrows. (B) Crop disease level and microbial community structure. On the PCA surface, crop disease level (see Materials and Methods) is indicated.
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Microbe-to-microbe network

We then examined the network architecture of potential microbe-to-microbe interac
tions within the soil microbiomes. The inferred network of coexistence was subdivided 
into several modules, in which archaeal, bacterial, and fungal OTUs sharing environmen
tal preferences and/or those in positive interactions were linked with each other (Fig. 
3A; Fig. S6 to S9). The network modules differed considerably in their association with 
crop-plant disease level (Fig. 4B; Fig. S6; Data S3). Modules 2, 6, and 8, for example, were 
characterized by microbes associated with the lowest disease level. Module 6, which 
showed the highest mean specificity to the minimal crop disease level (Fig. 4B), included 
a bacterial OTU allied to the genus Gemmatimonas (Bac_00025) that allied to the genus 
Thermanaerothrix (Bac_00258) and a fungal OTU assigned to the genus Plectosphaerella 
(Fun_4447) (Table 4). In contrast to these modules, modules 1 and 7 were constituted 
by microbes negatively associated with crop plant health (Fig. 4B). Module 1 included 
a bacterial OTU distantly allied to the genus Ureibacillus (Bac_00165) that assigned 
to the genus Nonomuraea (Bac_00004) and that assigned to the genus Streptomyces 
(Bac_00010), while module 7 involved a fungal OTU assigned to the genus Fusarium 
(Fun_4028) and an archaeal OTU assigned to the genus Nitrososphaera (Arc_006) (Table 
4).

TABLE 1 Effects of environmental variables on prokaryotic/fungal community structurea

Model Data set Variable df R2 F P

Categorical variables Prokaryotes Research site 34 0.051 5.13 <0.001
Month 11 0.014 4.36 <0.001
Crop 16 0.006 1.21 0.030
Former crop 22 0.024 3.78 <0.001
Soil category 10 0.006 2.12 <0.001
  Residual 2,301 0.673
  Total 2,400 1.000

Fungi Research site 33 0.064 6.91 <0.001
Month 11 0.012 3.96 <0.001
Crop 15 0.006 1.54 <0.001
Former crop 20 0.023 4.14 <0.001
Soil category 10 0.005 1.75 <0.001
  Residual 2,109 0.591
  Total 2,206 1.000

Continuous variables Prokaryotes pH 1 0.011 16.52 <0.001
Electrical conductivity 1 0.009 14.09 <0.001
Available P 1 0.009 13.81 0.626
C/N ratio 1 0.004 6.19 <0.001
Latitude 1 0.006 9.00 <0.001
Longitude 1 0.008 11.41 <0.001
Prokaryote/fungus ratio 1 0.004 5.98 <0.001
  Residual 1,408 0.936
  Total 1,415 1.000

Fungi
pH 1 0.013 19.64 <0.001
Electrical conductivity 1 0.011 17.49 <0.001
Available P 1 0.009 13.38 0.477
C/N ratio 1 0.008 12.74 <0.001
Latitude 1 0.016 25.58 <0.001
Longitude 1 0.017 26.37 0.230
Prokaryote/fungus ratio 1 0.009 13.61 <0.001
  Residual 1,408 0.904
  Total 1,415 1.000

aFor each set of categorical/continuous environmental variables, a PERMANOVA was performed for each of the prokaryotic and fungal community data sets.
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Core species within the microbial network

We next explored microbial OTUs that potentially have great impacts on commun
ity- or ecosystem-scale processes based on an analysis of the microbe-to-microbe 
network architecture (Data S3). Among the microbes disproportionately found from 
the samples with the minimal crop disease level, a Pyrinomonadaceae bacterial OTU 
allied to the genus Brevitalea (Bac_00182 in module 6; Table 4), for example, showed 
a high betweenness centrality score (Fig. 5). Meanwhile, among the microbes nega
tively associated with crop health status, a bacterial OTU distantly allied to the genus 
Ureibacillus (Bac_00165 in module 1; Table 4) was inferred to be located at a central 
position within the network (Fig. 5).

We further ranked microbial OTUs in terms of their topological roles in interlinking 
multiple network modules. We then found that OTUs linked with many other OTUs 
within modules were not necessarily placed at the topological positions interconnecting 
different modules (Fig. 6). In module 6, which showed high specificity to the minimal 
crop disease level (Fig. 4), a bacterial OTU distantly allied to the genus Thermanaerothrix 

TABLE 2 Relationship between prokaryotic/fungal community structure on the disease level of crop 
plantsa

Data set Variable z P

Prokaryotes (N = 1,379) PC1 1.59 0.1111
PC2 −1.65 0.1000
PC3 1.82 0.0684
PC4 −2.32 0.0205
PC5 3.98 0.0001

Fungi (N = 1,320) PC1 1.52 0.1281
PC2 1.39 0.1656
PC3 −2.11 0.0348
PC4 2.62 0.0089
PC5 −0.84 0.4002

aA generalized linear mixed model (GLMM) of crop plants’ disease level (disease level 1 vs disease levels 2–5) 
with a logit-link function and binomial errors was constructed by setting principal components of prokaryotic/fun
gal community structure (Fig. 2) as explanatory variables (fixed effects). The identity of experimental/research 
purposes, sampling month, and crop plant species was included as random effects in the GLMM.

TABLE 3 Prokaryotic and fungal OTUs showing highest associations with crop health status within local croplandsa

Specificity to 

disease level 1 BLAST top-hit results

Site Crop Experiment/research 

identity

ID Score FDR Scientific name Query 

cover (%)

E value Identity (%) Accession

Kuki Eggplant Control of bacterial wilt Bac_00034 6.53 <0.0001 Denitratisoma oestradiolicum 100 9.0E−103 95.1 KF810120.1

Bac_00044 6.67 <0.0001 Nocardioides cynanchi 100 4.0E−121 99.6 CP044344.1

Bac_00061 7.12 <0.0001 Piscinibacter aquaticus 100 4.0E−121 99.6 KY284087.1

Bac_00224 7.52 <0.0001 Dongia sp. 100 9.0E−123 100.0 AB835804.1

Bac_00237 8.76 <0.0001 Chondromyces robustus 100 2.0E−89 91.8 AJ233942.2

Fun_0059 6.83 <0.0001 Moesziomyces aphidis 100 9.0E−123 100.0 MH777069.1

Fun_1871 6.27 <0.0001 Pseudeurotium bakeri 100 3.0E−122 100.0 MK911621.1

Fun_3676 7.72 <0.0001 Cladosporium proteacearum 100 8.0E−118 100.0 OR857360.1

Fun_3688 6.38 <0.0001 Nigrospora sphaerica 100 8.0E−118 100.0 OP113684.1

Fun_3993 7.01 <0.0001 Fusarium equiseti 100 3.0E−112 99.6 MT588081.1

Fun_4311 8.75 <0.0001 Gibellulopsis nigrescens 100 5.0E−110 100.0 OP498056.1

Kashihara Tomato Control of Fusarium wilt Bac_00031 6.74 <0.0001 Ramlibacter algicola 100 9.0E−123 100.0 NR_175506.1

Bac_00861 6.98 <0.0001 Rhizomicrobium sp. 100 4.0E−116 98.4 LN876448.1

Fun_0056 6.28 <0.0001 Corynascus sepedonium 100 9.0E−123 100.0 OW986289.1
aAmong the six sub-data sets representing unique combinations of research sites, crop plant species, and research experimental/research purposes, OTUs showing strongest 
specificity to the minimal crop disease level (z-standardized specificity to disease level 1 ≥ 6.0) were observed in two sub-data sets (“eggplant in Kuki City” and “tomato in 
Kashihara City”). The OTUs are shown with the NCBI BLAST top-hit results. See Data S2 for the full results.
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(Bac_00258) was designated as a “within-module hub,” while a fungal OTU assigned 
to the genus Plectosphaerella (Fun_4447) showed a high “among-module connectivity” 
score (Table 4). Likewise, in module 1, which consisted of many OTUs with negative 
associations with crop plant health (Fig. 4), a bacterial OTU allied to the genus Gemma
timonas (Bac_00258) had the highest numbers of within-module links, while a fungal 
OTU assigned to the genus Curvularia (Fun_0043) was inferred to be an among-module 
hub (Table 5). The list of microbial OTUs placed at the interface of modules (OTUs with 
high among-module connectivity scores) involved an archaeal OTU assigned to the 
genus Nitrosotenuis, bacterial OTUs assigned to the genera Arenimonas, Arthrobacter, and 
Streptomyces bacteria, and fungal OTUs assigned to the genera Mortierella, Curvularia, 
and Trichoderma (Table 5).

DISCUSSION

We here profiled the diversity of agroecosystem microbiome structure across a latitudinal 
gradient from cool-temperate to subtropical regions based on the analysis of >2,000 soil 

FIG 3 Relationship between OTU abundance and crop plant health. Among the six sub-data sets representing unique crop plant × site combinations, OTUs 

showing strongest specificity to the minimal crop disease level (z-standardized specificity to disease level 1 ≥ 6.0) were observed in two sub-data sets (“eggplant 

in Kuki City” and “tomato in Kashihara City”; Table 4; see Data S2 for full results). For each OTU in each sub-data set, generalized linear model with a logit function 

and binomial errors was constructed to examine relationship between OTU relative abundance and crop disease level (level 1 vs levels 2–5). All the regression 

lines are statistically significant (FDR <0.0001). The OTUs exhibiting statistically significant specificity to disease level 1 in the analysis with the entire data set (FDR 

<0.025; two-tailed test; Fig. S5 and S6) are highlighted with red squares.
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samples. As partially reported in previous studies comparing microbiome compositions 
across broad geographic ranges (15, 22), prokaryotic and fungal community structure 
varied depending on season, crop plant species, former crop identity, and background 
soil categories (Fig. 2A; Fig. S2; Table 1). In addition, soil chemical properties such as pH, 
electrical conductivity, and C/N ratio as well as the prokaryote/fungus abundance ratio 
significantly explained variation in microbiome structure (Fig. S3; Table 1). In contrast, 
available phosphorus concentrations had significant effects on neither prokaryotic nor 
fungal communities in the multivariate model (Table 1), suggesting that nitrogen cycles 
rather than phosphorous ones are more tightly linked with microbiome structure. The 
integration of the microbiome data sets with agricultural field metadata allowed us to 
perform statistical tests of potential relationships between microbiome structure and 
agroecosystem performance (Fig. 2; Table 2). A series of OTU-level analyses further 
highlighted taxonomically diverse prokaryotes and fungi showing strong positive or 
negative associations with crop health status (Fig. 3; Fig. S5; Table 3).

We then examined how these microbes differing in association with crop dis
ease/health status form a network of coexistence. The architecture of the network 
involving diverse archaeal, bacterial, and fungal OTUs was highly structured, being 
partitioned into 11 modules (Fig. 4A). Intriguingly, the network modules varied 
considerably in constituent microbes’ association with crop disease levels (Fig. 4B). This 
result suggests that sets of microbes can be used to design soil microbiomes with 
crop-disease-suppressive functions. Among the detected modules, modules 2, 6, and 
8 were of particular interest with regard to the assembly of microbial OTUs positively 
associated with crop health status (Fig. 4 and 5). In contrast, modules 1 and 7 were 
constituted mainly by microbial OTUs negatively associated with plant health (Fig. 4B). 
In particular, module 7 was characterized by the presence of a notorious plant patho
genic fungus, Fusarium oxysporum (43, 44; but see reference 45 for diversity of their 
impacts on plants). All these modules included both prokaryotes and fungi (Fig. S9; Data 
S3), illuminating the importance of inter-kingdom interactions (3, 34). The presence of 

FIG 4 Architecture of microbe-to-microbe network. (A) Co-occurrence networks of archaea, bacteria, and fungi. Specificity of occurrences to disease-level-1 (the 

lowest disease level) samples (Fig. S5 and S6) is shown for each OTU within the network. The specificity is shown as node size separately for positive (left) and 

negative (right) associations with lowest-diseased states of crop plants. Colors indicate network modules, in which microbial OTUs in commensalistic/mutualistic 

interactions and/or those sharing environmental preferences are densely linked with each other. See Fig. S9 for taxonomy (archaea, bacteria, or fungi) of 

respective nodes. (B) Characteristics of network modules. Mean specificity to the minimal crop disease level (disease level 1; left in panel A) is shown for each 

network module.
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microbial species sets differing in plant-associated ecological properties suggests that 
keeping specific sets of compatible prokaryotes and fungi is essential for maximizing the 
stability of agricultural production (3).

The analysis of network architecture further allowed us to explore core or hub 
species within the microbial network (Fig. 6). Because the microbes highlighted with the 
examined network indices occupy key positions interconnecting many other microbes 
(46), their increase/decrease is expected to have profound impacts on whole community 
processes (3, 33, 34). In particular, control or manipulation of microbes located at the 
central positions interlinking different network modules (41) (i.e., microbes with high 
among-module connectivity; Fig. 6B) may trigger drastic shifts in microbial community 
structure between disease-promotive and disease-suppressive states (3). The candidate 
list of such core species involved an ammonium-oxidizing archaeon (Nitrosotenuis) 
(47), an antibiotics-producing bacterium (Streptomyces) (48), a prevalent soil fungus 
(Mortierella) (49, 50), a potentially mycoparasitic fungus (Trichoderma) (51, 52), and 
fungi allied to plant pathogenic clades (Curvularia and Plectosphaerella [anamorph = 
Fusarium]) (53, 54) (Table 5). Given that many of the bacterial and fungal taxa listed 

FIG 5 Properties of the microbe-to-microbe network modules. For each network module, specificity to the minimal crop disease level (disease level 1) is shown 

for each prokaryote/fungal OTU along the vertical axis. Betweenness centrality, which measures the extent to which an OTU is located within the shortest paths 

connecting pairs of other nodes in a network, is shown along the horizontal axis. The OTUs mentioned in the main text are highlighted with red squares.
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above are culturable, experimental studies examining their ecological roles are awaited. 
Specifically, it would be intriguing to test whether substantial shifts in soil microbiome 
structure and functions can be caused by the introduction of those among-module hub 
microbes.

Although the data set across a latitudinal gradient provided an opportunity for 
gaining bird’s-eye insights into the structure and potential functions of soil microbiomes, 
the results should be interpreted carefully with the recognition of potential methodolog
ical shortcomings and pitfalls. First, the approach of geographic comparison per se does 
not give a firm basis for deciphering microbial community dynamics. To gain fundamen
tal insights into microbiome dynamics, we need to perform time-series monitoring (42, 
55, 56) of soil prokaryotic and fungal community compositions. Second, information of 
microbial communities alone does not provide comprehensive insights into agroecosys
tem soil states. Given that soil ecosystem processes are driven not only by microbes 
but also by nematodes, arthropods, earthworms, and protists (57–60), simultaneous 
analyses of all prokaryotic and eukaryotic taxa (61, 62) will help us infer whole webs of 
biological processes. Third, meta-analyses of agroecosystem performance across diverse 
crop fields require utmost care because there is no firm criterion commonly applicable 
to different crop plant species or different pest/pathogen species. As implemented in 
this study, effects of such difference may be partially controlled by including them as 
random variables in generalized linear mixed models (GLMMs; Table 2). Nonetheless, 
local-scale analyses targeting specific crop plant species and disease symptoms (Fig. 
3; Table 3; Data S2) are necessary to gain reliable inferences of potential microbial 
functions. Fourth, along with the potential pitfall discussed above, network modules 
can differ not only in properties related to crop disease/health status but also in those 
associated with crop plant identity or cropland management (Fig. S6 to S7). Again, 
findings in broad-geographic-scale analyses need to be supplemented by insights from 
local-scale observations (Fig. 3). Fifth, amplicon sequencing approaches provide only 
indirect inference of biological functions. With the current capacity of sequencing 
and bioinformatic technologies, it is hard to assemble tens of thousands of microbial 
genomes based on the analysis of thousands of environmental samples. Furthermore, 

FIG 6 Topological roles of OTUs within and across network modules. (A) Position of potential hubs within the network. In each graph, node size roughly 

represents within-module degree (left) or among-module connectivity (right). (B) Network hub indices. For each OTU, within-module degree represents the 

number of OTUs linked with the target OTU within a module (z-standardized). Among-module connectivity represents the extent to which an OTU interlinks 

OTUs belonging to different network modules. The prokaryotic/fungal OTU with the highest within-module degree or among-module connectivity in each of the 

modules 1, 2, 6, 7, and 8 (highlighted in the main text and Table 4) is indicated with its OTU ID. See Table 5 for the taxonomic profiles of the OTUs.
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due to the paucity of the information of fungal ecology and physiology, it remains 
difficult to annotate high proportions of genes within fungal genomic data. Nonetheless, 
with the accumulation of methodological breakthroughs, shotgun sequencing of soil 
microbiomes will deepen our understanding of agroecosystem processes (63–65). Sixth, 
the cooccurrence network approach employed in this study did not allow us to separate 
direct and indirect interactions between microbes. Shotgun metagenomic sequencing 
analyses will provide detailed insights into the structure of metabolic interdependence 
among microbial species (66, 67). Seventh, in this study, full sets of metadata were not 
available for all the sequenced samples, inevitably decreasing the number of samples 
examined in some statistical modeling. Although substantial efforts had been made to 
profile cropland soils in the national projects in which the soil samples were collected, 
continuous efforts are required to gain further comprehensive insights into agroecosys
tem structure and functions.

Expanding the comparative microbiome analysis to different geographic regions 
and agroecosystem management practices will contribute to a more comprehensive 
understanding of microbiome structure and function. For example, comparison with 
soil agroecosystems in lower-latitudinal or higher-latitudinal regions or meta-analyses 
covering multiple continents will provide further comprehensive knowledge of the 
diversity of microbiome structure. In addition to extensions toward broader geographic 
ranges, those toward diverse agroecosystem management are of particular importance. 
Given that our samples were collected mainly from croplands managed with conven
tional agricultural practices, involvement of soil samples from regenerative or conserva
tion agricultural fields (68–71) will reorganize our understanding of the relationship 
between microbiome compositions and functions. In conclusion, this data-driven 
research lays the groundwork for understanding fundamental mechanisms in soil 
ecosystems, offering innovative strategies for the design of sustainable agriculture.

MATERIALS AND METHODS

Soil samples and metadata

Over research projects of NARO, which were carried out through five national research 
programs funded by Ministry of Agriculture, Forestry and Fisheries, 2,903 rhizo
sphere/bulk soil samples were collected from conventional agricultural fields across the 
Japan Archipelago from 23 January 2006, to 28 July 2014 (Data S1). When the latitude 
and longitude of the sampling positions were rounded to one decimal place, 42 research 
sites were distinguished. Across the metadata of the 2,903 samples, the information of 19 
crop plants, 34 former crop plants (including “no crop”), 13 soil taxonomic groups (e.g., 
“Andosol”), 60 experimental/research purposes (e.g., “soil comparison between organic 
and conventional management”) was described. Likewise, the metadata included the 
information of dry soil pH, electrical conductivity, carbon/nitrogen ratio, and available 
phosphorous concentration from 2,830, 2,610, 2,346, and 2,249 samples, respectively. In 
addition, the information of the severity of crop plant disease was available for 1,472 
samples (tomato, 637 samples; Chinese cabbage, 336 samples; eggplant, 202 samples; 
celery, 97 samples; Broccoli, 96 samples, etc.). The values of the proportion of diseased 
plants or disease severity index (72) were normalized within the ranges from 0 to 100, 
and they were then categorized into five levels (level 1, 0–20; level 2, 20–40; level 3; 40–
60; level 4, 60–80; level 5, 80–100). The plant pathogens examined in the disease-level 
evaluation were Colletotrichum gloeosporioides on the strawberry, Fusarium oxysporum 
on the celery, the lettuce, the strawberry, and the tomato, Phytophthora sojae on the 
soybean, Plasmodiophora brassicae on Cruciferae plants, Pyrenochaeta lycopersici on the 
tomato, Pythium myriotylum on the ginger, Ralstonia solanacearum on the eggplant and 
the tomato, and Verticillium spp. on Chinese cabbage. For continuous variables within 
the metadata, emergent outliers (mean + 5 SD) were converted into “NA” in the data 
matrix used in the following statistical analyses as potential measurement/recording 
errors. Unrealistic electrical conductivity records (>20) were converted into “NA” as well.
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At each sampling position, five soil sub-samples collected from the upper layer (0–10 
cm in depth) at five points (ca. 100 g each) were mixed. The mixed soil sample (ca. 500 g) 
was then sieved with 2-mm mesh in the field. The samples were stored at −20°C until 
DNA extraction. In laboratory conditions, 0.4 g of soil (fresh weight) was subjected to 
DNA extraction with FastDNA SPIN Kit for Soil (Q-BioGene).

DNA amplification and sequencing

Profiling of soil microbial biodiversity was performed by targeting archaea, bacteria, 
and fungi. For the amplification of the 16S rRNA V4 region of archaea and bacteria 
(prokaryotes), the set of the forward primer 515f (5′- GTG YCA GCM GCC GCG GTA A 
-3′) and the reverse primer 806rB (5′- GGA CTA CNV GGG TWT CTA AT -3′) were used 
as described elsewhere (42). The primers were fused with 3–6-mer Ns for improved 
Illumina sequencing quality and Illumina sequencing primers. PCR was performed using 
KOD ONE PCR Master Mix (TOYOBO, Osaka) with the temperature profile of 35 cycles 
at 98°C for 10 seconds (denaturation), 55°C for 5 seconds (annealing of primers), and 
68°C for 30 seconds (extension), and a final extension at 68°C for 2 minutes. The ramp 
rate through the thermal cycles was set to 1°C/s to prevent the generation of chimeric 
sequences. In the PCR, we added five artificial DNA sequence variants with different 
concentrations (i.e., standard DNA gradients; 1.0 × 10−4, 5.0 × 10−5, 2.0 × 10−5, 1.0 × 10−5, 
and 5.0 × 10−6 nM; Table S1) to the PCR master mix solution as detailed elsewhere (42). 
By comparing the number of sequencing reads between the artificial standard DNA and 
real prokaryotic DNA, the concentration of prokaryotic 16S rRNA genes in template DNA 
samples was calibrated (42).

In addition to the prokaryotic 16S rRNA region, the internal transcribed spacer 1 
(ITS1) region of fungi was amplified using the set of the forward primer ITS1F_KYO1 (5′- 
CTH GGT CAT TTA GAG GAA STA A -3′) and the reverse primer ITS2_KYO2 (5′ - TTY RCT 
RCG TTC TTC ATC - 3′) (73). PCR was performed using the Illumina sequencing fusion 
primer design mentioned above with the temperature profile of 35 cycles at 98°C for 10 
seconds, 53°C for 5 seconds, and 68°C for 5 seconds, and a final extension at 68°C for 2 
minutes (ramp rate = 1°C/s). Newly designed artificial sequence variants (1.0 × 10−5, 7.0 × 
10−6, 5.0 × 10−6, 2.0 × 10−6, and 1.0 × 10−6 nM; Table S1) were added to the PCR master mix 
as standard DNA gradients for the calibration of the ITS sequence concentrations in the 
template DNA samples.

The PCR products of the prokaryotic 16S rRNA and fungal ITS1 regions were, 
respectively, subjected to the additional PCR step for linking Illumina sequencing 
adaptors and 8-mer sample identifier indexes with the amplicons. The temperature 
profile in the PCR was eight cycles at 98°C for 10 seconds, 55°C for 5 seconds, and 68°C 
for 5 seconds, and a final extension at 68°C for 2 minutes. The PCR products were then 
pooled for each of the 16S rRNA and fungal ITS1 regions after a purification/equalization 
process with the AMPureXP Kit (Beckman Coulter, Inc., Brea). Primer dimers, which were 
shorter than 200 bp, were removed from the pooled library by supplemental purification 
with AMpureXP: the ratio of AMPureXP reagent to the pooled library was set to 0.8 
(vol/vol) in this process. The sequencing libraries of the two regions were processed in an 
Illumina MiSeq sequencer (10% PhiX spike-in). Because the quality of forward sequences 
is generally higher than that of reverse sequences in Illumina sequencing, we optimized 
the MiSeq run setting in order to use only forward sequences. Specifically, the run length 
was set 271 forward (R1) and 31 reverse (R4) cycles to enhance forward sequencing data: 
the reverse sequences were used only for discriminating between prokaryotic 16S and 
fungal ITS1 sequences in the following bioinformatic pipeline.

Bioinformatics

In total, 23,573,405 sequencing reads were obtained in the Illumina sequencing 
(16S rRNA, 11,647,166 sequencing reads; ITS, 11,926,239 sequencing reads). The raw 
sequencing data were converted into FASTQ files using the program bcl2fastq 1.8.4 
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distributed by Illumina. For each of the 16S rRNA and fungal ITS1 regions, the output 
FASTQ files were demultiplexed using Claident v0.9.2022.01.26 (74). The sequencing data 
were deposited to DNA Data Bank of Japan (DDBJ DRA accession no.: DRA015491 and 
DRA015506). The removal of low-quality sequences and OTU inferences was done using 
DADA2 (75) v1.17.5 of R v3.6.3 (option settings: maxN = 0, maxEE = 2, truncQ = 11, 
minLen = 150). The mean number of filtered sequencing reads obtained per sample 
was 3,949 and 4,075 for the prokaryotic and fungal data sets, respectively. The amplicon 
sequence variants (ASVs) obtained from the DADA2 pipeline were clustered using the 
vsearch v2.21.1 program (76) with the 98% and 97% cutoff sequence similarity for 
prokaryotes and fungi, respectively. Taxonomic annotation of the obtained prokaryotic 
and fungal OTUs was conducted based on the SILVA 138 SSU (77) and the UNITE all_ 
25.07.2023 (78) databases, respectively, with the assignTaxonomy function of DADA2. 
The OTUs that were not assigned to the domain Archaea/Bacteria and the kingdom 
Fungi were removed from the 16S rRNA and ITS1 data sets, respectively. Mitochon
drial and chloroplast sequences were removed as well in this process. For each target 
organismal group (prokaryotes and fungi), we then obtained a sample × OTU matrix, 
in which a cell entry depicted the number of sequencing reads of an OTU in a sample. 
The samples with less than 1,000 reads were discarded from the matrices. The number 
of reads was insufficient for comprehensively profiling rare microbial species, which 
are often targets of soil microbiome studies. However, because data matrices including 
numerous rare OTUs could not be subjected to the computationally intensive ecolog
ical analyses detailed below even if we used supercomputers, we focused on major 
components of soil prokaryotic and fungal biomes. In other words, our purpose here 
was to extract major components of agroecosystem soil microbiomes across the Japan 
Archipelago, thereby finding core microbiome properties associated with disease-sup
pressive and disease-susceptible agroecosystems. For the sample × OTU matrix, centered 
log-ratio (CLR) transformation (79–81) was performed using the ALDEx2 v1.35.0 package 
(82) of R.

In total, prokaryotic and fungal community data were obtained for 2,676 and 
2,477 samples, respectively. For fungal OTUs, putative functional groups (e.g., “plant 
pathogen”) were inferred using the program FungalTraits (83). The estimation of DNA 
concentrations of the prokaryotic 16S rRNA and fungal ITS regions was performed, 
respectively, based on the calibration with the standard DNA gradients (artificial DNA 
variants introduced to the PCR master mix solutions) using the bioinformatic pipeline 
detailed elsewhere (42).

Calculation of prokaryote/fungus ratio

Based on the estimated concentrations of prokaryotic 16S rRNA and fungal ITS 
sequences in template DNA solutions (42, 84), we calculated the ratio of prokaryotic DNA 
concentrations to fungal DNA concentrations in respective samples (prokaryote/fungus 
ratio) as follows:

log prokaryotic 16S rRNA gene concentration DNA copies/μL
fungal ITS gene concentration  DNA copies/μL .

Although potential variation in DNA extraction skills of researchers might affect 
absolute DNA concentrations in the template DNA solutions, the balance between 
prokaryotic and fungal DNA in each template DNA sample could be used as a reli
able measure. The DNA-metabarcoding-based approach of estimating prokaryote/fun
gus ratio has a methodological advantage over quantitative-PCR-based approaches. 
Specifically, the former approach allows us to eliminate effects of nonspecific PCR 
amplification based on DNA sequencing data, while the latter is affected by “contami
nation” of nontarget amplicons (e.g., plastid DNA in 16S rRNA sequencing and plant DNA 
in ITS sequencing).
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Microbiome structure and crop disease prevalence

For each of the prokaryotic and fungal data sets, permutational analysis of var
iance (PERMANOVA) (85) was performed to examine association between family-level 
community compositions and variables in the metadata. Two types of PERMANOVA 
models were constructed based on the Euclidean distance (β-diversity) calculated for 
the CLR-transformed data sets (1,000 iterations). Specifically, one is constituted by 
categorical explanatory variables (crop plant, former crop plant, soil taxonomy, research 
site, and sampling month), while the other included continuous explanatory variables 
(soil pH, electrical conductivity, C/N ratio, and available phosphorous concentration, 
prokaryote/fungus ratio, latitude, and longitude).

To reduce the dimensions of the community compositional data, a principal 
component analysis (PCA) was performed based on the Euclidean distance data 
mentioned above. For each PCA axis (axes 1–5) in each of the prokaryotic and 
fungal analyses, Pearson’s correlation with each chemical environmental factor (soil 
pH, electrical conductivity, C/N ratio, and available phosphorous concentration) was 
calculated.

We then evaluated how community structure of prokaryotes and fungi was associ
ated with crop disease. For each of the prokaryotic and fungal data sets, a generalized 
linear mixed model of crop-disease level was constructed by including the PCoA axes 
1–5 as fixed effects. Given that disease symptoms could differ greatly among crop plant 
species, we simplified the classification of disease severity. Specifically, in the GLMM, we 
set only two categories, i.e., samples showing minimal crop damage (disease level 1) 
and those showing more severe damage (disease levels 2–5). Sampling month and the 
identity of crop plant species and experimental/research purposes in the metadata were 
set as random effects. A logit-link function and binomial errors were assumed in the 
GLMM after converting the response variable into a binary format (disease level 1 [= 1] vs 
disease levels 2–5 [= 0]). The analysis was performed with the “glmer” function of the R 
lme4 package (86).

To confirm the above results based on the Euclidean distance calculated for the 
CLR-transformed sample × OTU matrices, we performed a supplementary analysis with 
ordinary approaches based on Bray-Curtis distance for rarefied sample × ASV matrices. 
Because qualitatively and quantitatively similar statistical results were obtained between 
the two alternative approaches, the results based on the CLR-transformation approach 
are shown in the Results section.

Microbes associated with crop disease/health status

For each microbial OTU constituting the modules, we evaluated the specificity of 
occurrences in samples differing in crop disease levels based on a randomization 
analysis. For the calculation, the original sample × OTU matrices of prokaryotes and 
fungi were, respectively, rarefied to 1,000 reads per sample, being merged into an input 
data matrix. Within the combined sample × OTU matrix, samples were categorized into 
the two crop disease levels (disease level 1 vs disease levels 2–5). Mean read counts 
across samples displaying each of the two disease levels were then calculated for each 
OTU. Meanwhile, mean read counts for respective disease levels were calculated as well 
for randomized matrices, in which disease labels of the samples were shuffled (10,000 
permutations). For ith OTU, standardized specificity to disease level j (sij) was obtained as 
follows:

sij =  Oij −Mean Rij
SD Rij ,

where Oij and Rij are the mean read counts of ith OTU across disease-level j samples 
in the observed and randomized matrices, respectively, and Mean (Rij) and SD (Rij) 
indicate mean and standard deviation across the randomized matrices. The P values 
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obtained based on the randomization analysis were adjusted with the Benjamini-Hoch
berg method (i.e., false discovery rate). The relationship between the standardized 
specificity index and FDR is shown in Fig. S4. This randomization approach was also 
applied to the analyses of each OTU’s specificity to crop plant identity and that to 
experimental/research purpose identity (Fig. S6 to S7).

The specificity of microbial OTUs to crop disease levels was also performed at the 
local scale. Specifically, in each of the six sub-data sets representing unique combina
tions of research sites, crop plant species, and experimental/research purposes, the 
abovementioned randomization analysis was performed: each sub-data set included 
69–198 soil samples (Data S2). For the OTUs showing exceptionally strong specificity 
to the minimal crop disease level (standardized specificity score ≥ 6.0; FDR < 0.0001), 
supplemental analyses of generalized linear models (GLMs) were conducted. In each 
GLM of crop disease/health status (disease level 1 vs disease levels 2–5) with a logit-link 
function with binomial errors, the relative abundance of a target OTU was included as an 
explanatory variable.

Microbe-to-microbe network

To infer potential interactions between microbial OTUs, the algorithm of sparse inverse 
covariance estimation for ecological association inference (SPIEC-EASI) was applied 
based on the Meinshausen-Bühlmann method as implemented in the SpiecEasi package 
(40) of R. In total, 2,305 soil samples from which both prokaryotic and fungal com
munity data were available were subjected to the analysis. Note that CLR-transforma
tion was performed internally with the “spiec.easi” function. The network inference 
based on co-occurrence patterns allowed us to detect pairs of microbial OTUs that 
potentially interact with each other in facilitative ways and/or those that might share 
ecological niches (e.g., preference for edaphic factors). Because estimation of co-occur
rence patterns was not feasible for rare nodes, the prokaryotic and fungal OTUs that 
appeared in more than 10% of the sequenced samples were included in the input 
matrix of the network analysis. Network modules, within which closely associated OTUs 
were interlinked with each other, were identified with the algorithm based on edge 
betweenness (87) using the igraph package (88) of R. For each module in the inferred 
co-occurrence network, mean standardized specificity to disease level 1 was calculated 
across constituent OTUs.

To explore potential keystone microbes within the network, we scored respective 
OTUs on the basis of their topological positions. Among the indices used for evaluat
ing OTUs, betweenness centrality (89), which measures the extent to which a given 
node (OTU) is located within the shortest paths connecting pairs of other nodes in a 
network, is commonly used to find hubs mediating flow of effects in a network. The 
network centrality scores were normalized as implemented in the igraph packages of 
R. In addition, by focusing on the abovementioned network modules, we ranked OTUs 
based on their within-module degree and among-module connectivity (90). The former 
index is obtained as the number of nodes linked with a target node within a target 
network module, suggesting the topological importance of a node within the module it 
belongs to. The latter index represents the extent to which a node is linked with other 
nodes belonging to different network modules. Within-module degree was z-standar
dized (i.e., zero-mean and unit-variance) within each module, while among-module 
connectivity was defined to vary between 0 and 1. In addition to those indices for 
evaluating topological roles within a network, eigenvector centrality (91) was calculated 
for respective nodes.
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