
Research Article

For reprint orders, please contact: info@becaris.com

Augmenting external control arms using
Bayesian borrowing: a case study in
first-line non-small cell lung cancer

Alessandria Struebing*,1 , Chelsea McKibbon2, Haoyao Ruan2, Emma Mackay2,
Natalie Dennis3, Russanthy Velummailum2, Philip He4, Yoko Tanaka4, Yan Xiong4,
Aaron Springford2 & Mats Rosenlund1,5

1Daiichi Sankyo Europe, Munich, 81379, Germany
2Cytel Inc., Toronto, Ontario, M5J, 2P1, Canada
3Daiichi Sankyo Oncology, Rueil-Malmaison, 92500, France
4Daiichi Sankyo, Inc., Basking Ridge, NJ 07920, USA
5Department of Learning, Informatics, Management & Ethics (LIME), Karolinska Institutet, Stockholm, 171 77, Sweden
*Author for correspondence: alessandria.struebing@daiichi-sankyo.eu

Aim: This study aimed to improve comparative effectiveness estimates and discuss challenges encountered
through the application of Bayesian borrowing (BB) methods to augment an external control arm
(ECA) constructed from real-world data (RWD) using historical clinical trial data in first-line non-small-
cell lung cancer (NSCLC). Materials & methods: An ECA for a randomized controlled trial (RCT) in
first-line NSCLC was constructed using ConcertAI Patient360™ to assess chemotherapy with or without
cetuximab, in the bevacizumab-inappropriate subpopulation. Cardinality matching was used to match
patient characteristics between the treatment arm (cetuximab + chemotherapy) and ECA. Overall survival
(OS) was assessed as the primary outcome using Cox proportional hazards (PH). BB was conducted using
a static power prior under a Weibull PH parameterization with borrowing weights from 0.0 to 1.0 and
augmentation of the ECA from a historical control trial. Results: The constructed ECA yielded a higher
overall survival (OS) hazard ratio (HR) (HR = 1.53; 95% CI: 1.21–1.93) than observed in the matched
population of the RCT (HR = 0.91; 95% CI: 0.73–1.13). The OS HR decreased through the incorporation of
BB (HR = 1.30; 95% CI: 1.08–1.54, borrowing weight = 1.0). BB was applied to augment the RCT control arm
via a historical control which improved the precision of the observed HR estimate (1.03; 95% CI: 0.86–1.22,
borrowing weight = 1.0), in comparison to the matched population of the RCT alone. Conclusion: In this
study, the RWD ECA was unable to successfully replicate the OS estimates from the matched population
of the selected RCT. The inability to replicate could be due to unmeasured confounding and variations
in time-periods, follow-up and subsequent therapy. Despite these findings, we demonstrate how BB can
improve precision of comparative effectiveness estimates, potentially aid as a bias assessment tool and
mitigate challenges of traditional methods when appropriate external data sources are available.

Plain language summary: Researchers and health agencies need accurate and reliable estimates of the
relative effectiveness of treatments. In some cases, an ‘external control group’ can be created from pre-
existing healthcare records, eliminating the need for a concurrent control and the associated patient
burden. However, it can be challenging to find comparable patients with similar characteristics, and
comparable information on health outcomes for those patients. Often, there are just not enough patients
available in existing records to make a meaningful comparison. Bayesian borrowing can be used to include
control arm information from historical studies, even if these studies differed somewhat from the present
study.

In this article, we investigate the ability of external controls and Bayesian borrowing to replicate
findings from a randomized controlled trial (RCT – the gold standard). We begin with an RCT and then
remove the control group before constructing an external control group using real-world data from
electronic health record data. We then use Bayesian borrowing to add information from another historical
trial in the same indication to see whether the original RCT results can be replicated, and under what
conditions. Our example illustrates common challenges of working with real-world data and provides
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practical insights for the incorporation of additional data sources when comparing the effectiveness of
treatments that have not been compared directly in an RCT.

Tweetable abstract: In #CancerResearch, #RealWorldData can provide external control arms (ECAs) for
single arm trials. But are ECAs fit-for-purpose when comparing treatments? We show how historical trials
and #BayesianBorrowing might be used to increase confidence in ECAs.
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For regulatory decision making, randomized controlled trials (RCTs) are considered the gold standard for provid-
ing comparative effectiveness evidence, but they are not without limitations. Although well-designed RCTs can
demonstrate the relative efficacy of an intervention, they have challenges for implementation: they can be expensive
to carry out, patients may be difficult to recruit and volunteer trial patients may not generalize to the broader
population of interest [1]. Single-arm trials, particularly in rare diseases and oncology, are well suited to alternative
trial designs – the target patient populations can be small and patients difficult to recruit, the use of placebo raises
ethical concerns in some cases, the trial designs are often complex and patient burden tends to be high [2]. For
these reasons, single-arm trials are being increasingly accepted by regulatory bodies such as the US FDA and the
European Medicines Agency (EMA) [3,4]. External control arms (ECAs) are an alternative to providing comparative
effectiveness estimates and can be constructed using external information from real-world data (RWD) or data
from previous clinical trials. In the absence of randomization, statistical methods such as propensity score matching
(PSM) or weighting are generally used when constructing ECAs for single-arm trials in an attempt to limit the
influence of confounding factors on estimates of relative effectiveness [5,6].

Much has been published on the considerations for conducting externally controlled studies and their perfor-
mance in recent years [5,7–10]. Regulatory and reimbursement agencies are also actively developing recommendations
for the use of external data sources and applications of ECAs [11–13]. A common challenge for ECAs is that the
external data may have been collected for purposes other than comparative effectiveness analyses and may be missing
important covariate information and be subject to an unstandardized evaluation of outcomes. These differences
can result in reduced study power or residual bias – for example due to differences in routine care or data recording
standards, and difficulties implementing eligibility criteria that match the single-arm trial [5,14–16]. Regulatory and
reimbursement agencies most commonly criticize ECAs based on the choice of study populations (e.g., not represen-
tative of standard of care and/or non-generalizability), unmeasured or uncontrolled confounding (selection bias),
immortal time bias, inconsistent definition of outcomes, data missingness and lack of statistical power [16,17]. Thus,
when selecting an external data source, capture and coverage of relevant covariates, comparability of populations
and data provenance all require careful consideration.

Bayesian borrowing (BB) methods use data from external sources such as historical control arms to bolster limited
sample sizes and, if chosen appropriately, can increase the precision of estimates while mitigating type I error [10,18].
Power prior methods are a type of BB in which the amount of borrowing from the external data source is down-
weighted relative to the concurrent data [19]. The amount of borrowing can be fixed, or it can be allowed to vary
based on the compatibility of the internal and external data sources (i.e., if outcomes are consistent or inconsistent
across data sources). If the assessment of comparative effectiveness is sensitive to the amount of borrowing, a tipping
point analysis can determine how much weight on the external data is needed to meet a particular effectiveness
condition [20]. Other BB applications to reduce control group allocation by borrowing information from external
data are advantageous in instances where recruitment may be particularly challenging [21]. A recent example of
this type of approach was the use of robust meta-analytic predictive (MAP) priors to augment a small concurrent
control arm in a trial of the BI 1015550 phosphodiesterase 4 inhibitor for idiopathic pulmonary fibrosis [22]. The
current study focuses on static borrowing via a fixed power prior in conjunction with tipping point analysis to
contextualize the impact of the fixed borrowing choice.

Existing guidance on BB has mostly been limited to the regulatory space, starting with early receptiveness
from the FDA to borrowing of information from historical controls in medical device trials by means of Bayesian
priors [23] and from the EMA by proposing a framework for extrapolation between source and target populations
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including the use of Bayesian methodology in trials with small patient populations [24–26]. Further precedent on
the acceptance of BB methods in a regulatory setting has been established with the FDA approval of belimumab in
pediatric patients with systemic lupus erythematosus, through borrowing of adult effectiveness data [27–29]. The FDA
has since provided additional guidance on the use of Bayesian methods for borrowing information from external
data sources for drugs and biologics, with particular emphasis on the need for selection of appropriate external data
sources and consideration of the operating characteristics of these complex and innovative designs [30,31]. Bayesian
approaches hold a significant degree of promise, but additional work is needed to outline potential applications and
understand their relative advantages and disadvantages, especially within a health technology assessment (HTA)
framework for assessing comparative effectiveness.

In this paper, we augment an ECA using BB to improve estimates of comparative effectiveness in first-line
metastatic non-small-cell lung cancer (NSCLC). The treatment landscape for NSCLC is evolving rapidly since the
discovery of driver mutations and development of targeted therapies and immune checkpoint inhibitors resulting
in a significant change in standard of care for metastatic disease in recent years [32,33], increasing the need to generate
sound comparative effectiveness evidence for regulatory and HTA bodies to use for decision-making. To compare
the effectiveness of active treatment against a control in terms of overall survival (OS), we used the treatment arm
from an open-access two-arm RCT, constructed an ECA using a RWD source and augmented it by borrowing
additional control arm data from a previously conducted RCT using BB. Having a concurrent control arm available
allowed us to compare results from the ECA plus BB against the RCT to evaluate the ability of BB to improve
estimates of comparative effectiveness. In this study, we discuss the practical considerations for implementing ECAs
and Bayesian borrowing analyses based on historical trials and RWD sources.

External control arm analysis
Methods
Our study design required data from an RCT with both the active treatment and control arm available to provide a
benchmark for the estimated treatment effect (we denote the trial treatment arm as ‘TTA’ and the trial control arm
as ‘TCA’), an RWD source for construction of the ECA (ConcertAI Patient360™) and a historical control group
(denoted as ‘HC’). See section ‘Augmentation via Bayesian Borrowing’ for further detail on the construction and
application of the HC. With a focus on metastatic, treatment-naive NSCLC patients, the two clinical trials were
selected based on sample size, availability of overall survival as an end point, and use of the same treatments in the
control arm. The ECA analysis was conducted using the R programming language [34].

Reference RCT

For the TTA and TCA, patients were selected from NCT00946712, a multi-center, randomized, open-label, phase
III study of cetuximab plus carboplatin and paclitaxel with or without bevacizumab versus carboplatin and paclitaxel
with or without bevacizumab in patients with stage IV NSCLC who had not received any prior chemotherapy
treatment [35]. The trial was conducted across multiple sites (US and Mexico), initiated in August 2009, and reached
primary completion in August 2017. For this study, we restricted the sample to the subset of patients who were
bevacizumab ineligible. No restrictions were placed on epidermal growth factor receptor (EGFR) fluorescence in
situ hybridization (FISH) status. The individual patient data (IPD) and accompanying documentation used in our
study was acquired via Project Data Sphere (PDS) (http://www.projectdatasphere.com), an open-source repository
of individual-level patient data from phase IIB/III oncology trials. Additionally, the research project was approved
by the National Cancer Institute for acquisition of the NCT00946712 dataset.

Overview of ECA construction

The ECA (paclitaxel + carboplatin) was constructed using patient-level RWD from the ConcertAI Patient360™
database. The ConcertAI Patient360™ product is a large, representative de-identified oncology database of human-
curated comprehensive RWD, sourced from US academic and community electronic health records (EHR) with
full data provenance. This database was selected as a representative RWD source providing coverage of the NSCLC
population across the US with pre-abstracted clinical and patient characteristics necessary to meet the requirements
of the analysis. Deidentified data were acquired for patients between January 2001 and April 2022, with a data
cut of 30 June 2022 (Q4’22 release). Additionally, updated overall survival (OS) data was provided by ConcertAI
Patient360™, in the Q1’23 release.
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Target trial emulation principles were employed to attempt to replicate the efficacy results of the NCT00946712
RCT and minimize identifiable sources of bias when performing the comparison. Target trial emulation provides a
framework to prespecify a protocol for a hypothetical RCT to emulate as closely as possible using nonrandomized
data by considering patient eligibility, outcome definitions and time periods [36]. The analysis was prespecified in a
statistical analysis plan, unless otherwise noted, and broadly included the following steps to construct the ECA:

� The NCT00946712 trial treatment and control arms were restricted to the subgroup of patients who did not
receive bevacizumab in conjunction with chemotherapy with or without cetuximab, which we refer to as the
TTA and TCA groups, respectively.

� The inclusion/exclusion criteria for the bevacizumab-inappropriate subset of the NCT00946712 trial were
applied to the RWD cohort to mirror the criteria as closely as possible (Supplementary Tables 1–3).

� Matching methods were applied to construct a matched subset of patients with a similar distribution of baseline
characteristics to the trial (the ‘ECA’). This step was blinded to patient outcomes by removing outcomes from
the data table prior to analysis.

OS was compared between the TTA and ECA to estimate the relative effectiveness between the two treatments.

Eligibility criteria

The RWD cohort was constructed by selecting metastatic NSCLC patients from ConcertAI Patient360™ who
initiated carboplatin and paclitaxel between January 2001 and April 2022 and applying the eligibility criteria of
the NCT00946712 for the bevacizumab-ineligible subgroup. An initial feasibility assessment was performed on
the RWD dataset to assess the ability to implement key eligibility criteria, data coverage (i.e., missingness), and
ensure sufficient patient counts. Full eligibility criteria were applied to the extent feasible based on structured and
pre-abstracted variables available at the time of analysis (Supplementary Tables 4 & 5). No restriction on time
period was applied to maximize the RWD cohort available for consideration.

Matching

Matching covariates of interest were considered based on demographics and characteristics of the RCT publica-
tion [35], and potential prognostic factors identified in the literature in metastatic NSCLC, such as cancer stage,
performance status, histology, biomarkers, previous therapy, health related quality of life and smoking history [37,38].
Based on availability in both data sources, the following baseline covariates were considered for matching between
the TTA and RWD cohort: age, sex (male, female), race (Asian, Black, White, Native American and other), smok-
ing status (former, current or never), Eastern Cooperative Oncology Group (ECOG) (0, 1), histology (squamous,
nonsquamous) and disease stage (M1A, M1B).

After application of the eligibility criteria, patient baseline characteristics were balanced between TTA and RWD
cohort using matching methods. The analysis plan originally proposed the use of PSM to construct an ECA using
an average treatment effect on the treated (ATT) estimand [39]. However, due to the small sample size of the RWD
cohort and baseline differences in patient characteristics, the approach was amended to use cardinality matching
(CM) to better preserve sample size [40,41]. The CM approach yields estimates of the treatment effect in the largest
matched subsets of the TTA and ECA that satisfy the specified balance criteria and may differ from the treatment
effect in the overall trial population depending on the degree of overlap in patient characteristics between the TTA
and post-inclusion/exclusion RWD cohorts.

A two-step CM approach was applied to obtain well-balanced subgroups in the post-inclusion/exclusion RWD
(i.e., the ECA), TTA and TCA. Covariates were considered in balance between treatment groups if the absolute
standardized mean difference (ASMD) was within 0.1. ASMDs are a measure of imbalance in patient characteristics
which are insensitive to sample size [42]. The TTA and ECA were matched first by the CM algorithm to meet the
balance constraint so that all the ASMDs of the baseline characteristics in the matched sample fell within 0.1. The
resulting matched TTA subgroup was then used in the second CM step at the same ASMD tolerance level to pair
up with subjects in the TCA to construct the benchmark RCT effectiveness estimate for the CM subpopulation.
Matching the TCA to the TTA subgroup is required in case the treatment effect differs in the selected subpopulation
of TTA/TCA patients.

Effectiveness estimates from the ECA analysis were compared against the determined gold standard RCT
effectiveness estimates obtained by comparing the treatment and control arms in the CM subpopulation of the
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TTA/TCA. Kaplan–Meier (KM) survival curves were generated, and Cox proportional hazard (PH) models were
used to estimate hazard ratios (HR) with 95% confidence intervals (CIs) for the matched populations. Robust
standard errors were used for the CM subpopulations.

Evaluation of performance

We assessed whether the ECA analysis was able to replicate the intention-to-treat (ITT) effect estimates from the
TTA versus TCA in the matched subpopulation (the ‘RCT estimates’). HR estimates with 95% CI were produced
for the unadjusted comparison of TTA versus post-inclusion/exclusion RWD (prior to matching), the comparison
of the post-matching TTA versus ECA and TTA versus TCA estimates in the matched subpopulation. KM curves
were also reported to provide a visual comparison.

Augmentation via Bayesian borrowing
As a next step, we implemented BB to augment the ECA using information borrowed from another trial with a
similar ‘historical’ control arm – the HC.

Historical control data
NCT00540514 is a multi-center, randomized, open-label, phase III study of albumin-bound paclitaxel plus
carboplatin versus paclitaxel plus carboplatin in patients with treatment-naive stage IIIB or IV NSCLC [43]. The
international trial initiated in November 2007 and completed follow-up in February 2013. The paclitaxel plus
carboplatin control arm was used as the HC for BB. OS data was reconstructed from the primary publication [43] by
digitizing the published KM survival curves using an established algorithm [44]. This allowed for the construction
of pseudo-IPD in the absence of available IPD (IPD was initially obtained from PDS but was found to be missing
key variables needed to implement the analysis, necessitating an amendment to the protocol and SAP to instead
use pseudo-IPD derived from published information). The NCT00540514 trial was selected as a candidate HC
alongside the NCT00946712 when screening for available open-access clinical trial datasets.

Methods
BB methods can augment an existing trial arm or ECA using an external data source. Power priors provide a
convenient approach to borrowing of external information in which the external data can be down-weighted to
account for differences between the external arm and the concurrent arm [19]. Discounting is done using a weighting
parameter which can be fixed a priori or can be assigned a prior distribution and updated dynamically, allowing
for the external data to be more heavily down-weighted when outcomes are inconsistent between data sources. We
opted to use a fixed power prior where the discount parameter was varied to assess the stability of estimates and
to identify whether a tipping point exists. If very little weight on the external data is needed to reach a decision
threshold (e.g., reject the null hypothesis of no difference in efficacy) then our conclusions are less sensitive to
the contributions and suitability of the external data. Tipping point analysis in conjunction with BB has some
precedent [20,29]. An overview of the BB application is presented in Supplementary Figure 3 and Appendix 1. The
BB analysis was conducted using the R statistical programming language [34] and Stan probabilistic programming
language [45].

Borrowing into the ECA
Data from the HC was used as the borrowing source to augment the ECA described above. No sample restrictions
were placed on the HC prior to borrowing. Consequently, appropriate selection of the external data source is
crucial as notable differences in inclusion/exclusion criteria and patient baseline characteristics could confound
the comparison and introduce bias into the treatment effect estimates, which would only partially be mitigated
through down-weighting of the external data.

BB via a power prior was implemented using the following steps:

1. A joint likelihood was specified for the matched ECA and TTA under a Weibull PH parameterization (i.e., both
arms share a common Weibull shape parameter but differ in their scale parameters, yielding a constant hazard
ratio).

2. A power prior for the Weibull shape and scale parameters was specified by forming a likelihood for the HC data
under a Weibull parameterization with common scale parameter to the ECA and common shape parameter to
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both the ECA and matched TTA. This likelihood was then raised to the power of a discount/weight parameter
between 0 and 1 to down-weight the external data, where a weight of 0 yields no borrowing of information
from the HC and a weight of 1 yields complete pooling.

We amended our analysis to include additional borrowing scenarios to mimic a ‘ideal ECA’ scenario as well as
two small sample size ECA scenarios. The scenarios tested included:

• Scenario 1: Borrow into the previously constructed ECA (see ‘External Control Arm Analysis’ section)
• Scenario 2: Borrow into the matched TCA (mimics a hypothetic ‘ideal ECA’ scenario)
• Scenario 3a: Borrow into an n = 60 subset of the ECA
• Scenario 3b: Borrow into an n = 60 subset of the matched TCA

For scenarios 3a and 3b, we opted to draw random samples of n = 60 without replacement based on our
experience with prior ECA analyses. These sample sizes are roughly one-third of the size of the ECA we constructed
and are intended to inform the application of BB as a practical means to augment ECAs with limited sample sizes.
These scenarios also allow us to examine how BB via a fixed power prior may allow us to mitigate or assess risk
of bias under an unrepresentative ECA scenario and improve precision under an ‘ideal ECA’ scenario (albeit at a
potential cost of increased bias if the external data source is not suitable as a stand-in for a concurrent control).

Posterior inference was performed using Markov chain Monte Carlo (MCMC) implemented using Stan. We
considered 11 values (increments of 0.1 from 0 to 1) for the power prior weight parameter and, for each value,
ran the MCMC algorithm with four chains of 10,000 iterations each with a burn-in length of 2000 MCMC
iterations. Convergence was assessed via trace plots and R-hat statistics and the number of independent draws from
the posterior for the log-HR was estimated to be at least 10,000 for all scenarios.

HR estimates were summarized using posterior medians and 95% credible intervals (CrI). The fit of the Weibull
PH model was assessed visually and was determined to be a sufficiently good approximation to the data for all four
scenarios.

Results
Patient characteristics
Prior to matching, 365, 374 and 181 patients fulfilling all inclusion and exclusion criteria were available in the
TTA, TCA and post-inclusion/exclusion RWD cohort respectively (Supplementary Table 6). Post-CM, a total of
178 patients were present within each cohort. Patient and disease characteristics for all cohorts of interest are shown
in Table 1. Prior to matching, differences were observed between the TTA and RWD cohort, particularly in terms
of ECOG score. For the HC, 531 patients were available and used in the analyses. In contrast to the matched
TTA and TCA, and ECA cohort, the HC included more patients with an ECOG score of 2 (0.4%) and stage
IIIB disease (21%). Within the randomly sampled TCA subset, patients’ characteristics were similar to the TCA,
with the exception of histology, which had a higher proportion of nonsquamous patients. Similarly, the randomly
sampled ECA subset demonstrated similar patient characteristics except for ECOG score and smoking history,
which demonstrated a higher proportion of patients with an ECOG score of 1, and a slightly larger proportion of
patients who never smoked, in comparison to the original ECA.

ECA results
Following CM, the ASMD showed substantial reduction in the magnitude of differences between step 1 and step
2 for most baseline characteristics (Supplementary Figure 2). All variables considered fell within 0.1 ASMD.

The primary result of the ECA analysis was to compare the OS between the matched TTA and the ECA group.
The observed median survival time in the TTA was shorter both before (9.17 months; 95% CI: 8.18–10.94 months),
and after CM adjustment (10.91 months; 95% CI: 8.38–13.27 months) than in the ECA (before-matching median:
13.68 months (95% CI: 10.65–18.12); after-matching median: 13.97 months (95% CI: 10.75–18.05). Although,
the CM adjustment did narrow the gap in median OS between the two arms.

The Cox PH regression model was used to estimate and assess the treatment effect size based on the primary
outcome (OS). The model results before and after CM adjustment, were both in favor of the ECA. Before matching,
the naive HR for TTA versus ECA was 1.59 (95% CI: 1.30–1.95; p < 0.001), favoring the chemotherapy control
treatment (Figure 1A). Similarly, the CM-adjusted HR for the TTA compared with ECA was 1.53 (95% CI:
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Table 1. Baseline characteristics for relevant cohorts: matched trial treatment arm, matched trial control arm, external
control arm, historical control, matched trial control arm subset and matched external control arm subset.
n (%) Matched TTA Matched TCA ECA HC† Matched TCA subset Matched ECA subset

(n = 178) (n = 178) (n = 178) (n = 531) (n = 60) (n = 60)

Median age (range) 66.5 64.6 66 60.8 65 63.5

(29.5–83) (34.6–82.6) (24–86) (24.9–84.7) (34.6–80) (40–84)

Sex

Male 112 (62.9) 104 (58.4) 107 (60.1) 397 (74.8) 34 (56.7) 37 (61.7)

Female 66 (37.1) 74 (41.6) 71 (39.9) 134 (25.2) 26 (43.3) 23 (38.3)

ECOG

0 59 (33.1) 54 (30.3) 51 (28.7) 113 (21.3) 20 (33.3) 25 (41.7)

1 119 (66.9) 124 (69.7) 127 (71.3) 416 (78.3) 40 (66.7) 35 (58.3)

2 0 0 0 2 (0.4) 0 0

Stage

IIIB 0 0 0 110 (20.7) 0 0

IV 178 (100) 178 (100) 178 (100) 421 (79.3) 60 (100) 60 (100)

Histology

Squamous 97 (54.5) 93 (52.2) 89 (50.0) 221 (41.6) 26 (43.3) 27 (45.0)

Nonsquamous 81 (45.5) 85 (47.8) 89 (50.0) 310 (58.4) 34 (56.7) 33 (55.0)

Smoking history

Former 82 (46.1) 80 (44.9) 84 (47.2) 148 (27.9) 25 (41.7) 28 (46.7)

Current 70 (39.3) 78 (43.8) 64 (36.0) 234 (44.1) 27 (45.0) 20 (33.3)

Never 26 (14.6) 20 (11.2) 30 (16.9) 144 (27.1) 8 (13.3) 12 (20.0)

Summaries presented for matched TTA, matched TCA and ECA are based on the two-step CM approach.
†5 patients were missing smoking history in the HC.
ECA: External control arm; HC: Historical control; TCA: Trial control arm; TTA: Trial treatment arm.

1.21–1.93; p < 0.001), which again suggested that the investigational treatment yielded poorer survival outcomes
(Figure 1B).

The Cox HR estimates for the TTA versus ECA are consistently higher than the gold standard RCT HR estimate
of 0.91 (95% CI: 0.73–1.13; p = 0.39) (Supplementary Figure 1B) in the CM subpopulation, indicating that the
ECA analysis was unsuccessful at replicating the results of the RCT. It should be noted that the HR estimates did
not substantially change before versus after applying CM. For comparison, in the original trial publication, the HR
for the non-bevacizumab population was reported as 0.90 (95% CI: 0.78–1.05; p = 0.19) [35].

Sensitivity analyses were conducted to assess the robustness of the ECA analysis results. These analyses included
limiting the time period for eligibility in the RWD cohort, exploring the number and type of subsequent lines of
therapy received by patients in the RWD cohort, an assessment of the potential impacts of EGFR FISH status, and
nonrandom missingness in ECOG score. These analyses did not provide evidence of a specific key driver explaining
the discrepancy between ECA analysis and RCT results.

Bayesian borrowing results
Results showed that the ECA had the longest time to event, particularly beyond 12 months, followed by the HC,
the matched TTA and the matched TCA (Figure 2). OS in the HC was only slightly longer than the matched TTA
and TCA, which were comparable.

Forest plots summarizing the results of the four BB scenarios show that as borrowing weights increase from 0 to
1, the HR decreases from 1.669 (95% CrI: 1.328–2.103) to 1.295 (95% CrI: 1.082–1.537) (Figure 3A). When
borrowing more heavily from the HC, the point estimate and CrI are pulled closer to the RCT estimate. The shift
in estimates with increased borrowing illustrates the sensitivity of the HR estimates to the relative weight put on
both the ECA and HC and highlights the discordance between external data sources.

As the amount of borrowing from the HC into the ‘ideal ECA’ (matched TCA) increases, the HR estimates
increase from 0.908 (95% CrI: 0.728–1.130) to 1.027 (95% CrI: 0.858–1.223) and the width of the 95% CrIs
decreases slightly from 0.402 to 0.365 (Figure 3B). Due to the similarity of outcomes between the matched TCA
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Figure 1. Kaplan–Meier curves of
overall survival of trial treatment arm
and external control arm. (A)
Pre-matching and (B) Cardinality
matching adjusted.
CI: Confidence interval; ECA: External
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and HC, the impact on the HR estimate is modest, however, with a sizeable 178 patients in the TCA, we do not
see much impact of borrowing on the precision of the estimates.

When borrowing from the HC into a reduced n = 60 subset of the ECA, the HR decreases more noticeably –
from 1.730 (95% CrI: 1.267–2.398) to 1.188 (95% CrI: 0.988–1.416) – as the amount of borrowing is increased
(Figure 3C). Due to the very limited sample size in the ECA subset, borrowing from the HC aggressively pulls the
HR estimates to a value closer to 1 and the width of the 95% CrI shrinks substantially from 1.131 to 0.428.

A similar n = 60 subset of the ‘ideal ECA’ (matched TCA) shows a more modest change in the HR from 0.978
(95% CrI: 0.722–1.350) to 1.066 (95% CrI: 0.888–1.275) as the amount of borrowing is increased (Figure 3D).
However, the width of the 95% CrI substantially narrows from 0.628 to 0.387, demonstrating the potential of BB
to improve precision when the external control arm is well constructed.
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Discussion
In this paper, we proposed a combined ECA and BB approach which would incorporate information from HCs
to improve estimates from comparison against an ECA alone. We suggest that through the incorporation of HCs,
BB could be applied more routinely to both contextualize heterogeneity across external data sources and improve
the accuracy of comparisons made against ECAs alone. BB can provide an additional tool for sensitivity analysis to
address challenges with the availability and comparability of key patient demographic and clinical characteristics
encountered when conducting an ECA. Although we were unable to successfully replicate the treatment effect
estimate observed in the RCT using an ECA, the incorporation of BB provided insight into the heterogeneity
in outcomes between the ECA and historical trial data. When an additional reliable external data source exists,
BB can help gauge the degree of agreement between external data sources – bolstering confidence and improving
precision when outcomes are similar and helping to contextualize risk of bias when outcomes differ materially
between external data sources (as was the case in this study). BB into both the TCA and the ECA resulted
in improved precision, and we recommend the approach when appropriate external/historical data sources are
available – especially in instances where sample sizes in the ECA are very small. In this study, we demonstrated with
each BB scenario how researchers might employ BB methods to improve precision, improve confidence in results,
or act as a sensitivity analysis to assess risk of bias in future applications, including HTA scenarios. These scenarios
also illustrate the various strengths and limitations of the method.

Single-arm trials are increasingly being used for HTA assessment in rare oncology indications [3,16], but trying to
estimate effectiveness relative to standard of care is challenging, as demonstrated by this study. However, because
the patients in the trial and the patients in the ECA are not from the same population and were not assigned to
treatment using any known mechanism, it is impossible to know whether differences in outcome between patients
in the trial and the ECA are due to the active treatment or other factors. Restricting the patients included in the
ECA to those who would be trial-eligible, and applying weighting or matching techniques can help to limit the
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influence of nontreatment factors when making comparisons, but may need to trade off sample size and precision
for reduced bias in the estimate [5,46].

Contributing to the understanding and applicability of these approaches remains necessary as regulatory agencies
continue to demonstrate an openness for the use of non-RCT data in submissions. In practice, selection of an
appropriate external data source is crucial. Recent guidelines and case studies present an openness to the use of
external controls and advanced methods, but noted in many situations the likelihood of successfully demonstrating
the effectiveness against an external control arm remains low [11,47]. Although the intention of this study was
to assess the feasibility and use of BB for ECA analysis, many learnings can still be ascertained regarding data
selection and challenges of conducting an ECA to help inform future application of these methods in regulatory
and HTA settings. In practice, we cannot be sure that a constructed ECA is a reliable stand-in for a concurrent
control arm. Scenarios 1 and 3a illustrate how the use of BB with an HC can provide an independent check on the
ECA by gauging the potential impact of heterogeneity in outcomes between external standard of care data sources.
In scenarios 2 and 3b where the ECA is an appropriate stand-in for a concurrent control arm, BB can improve
precision of estimates by augmenting limited ECA sample sizes and can bolster confidence if external data sources
are reasonably homogenous.

BB methods provide an established approach to incorporate external data using a cohesive framework which
allows for appropriate down-weighting of its influence [18,21,48]. A particular strength of the current study is the
ability to down-weight the external data, to allow for borrowing to be limited when outcomes in the external data
are inconsistent with the data that is being augmented (often a concurrent control arm but, in our case, an ECA).
In our study we also illustrate how, in the absence of a concurrent control arm, BB with a sliding scale of borrowing
weights can be informative for either bolstering our ECA analysis (when outcomes in the ECA and external data
source are homogenous) or as a sensitivity analysis when outcomes are inconsistent between the ECA and external
data source. We also show how BB can improve precision of estimates by augmenting a small ECA – a frequent
challenge for ECAs in rare oncology indications when patient counts in RWD sources may be very limited [49].
The ability to downweight the external data used in BB is also advantageous due to the ability to partially discount
the contributions of external data sources that suffer from specific limitations. This can be beneficial when limited
data are available or when it is impractical or infeasible to conduct a full ECA with imposed eligibility criteria using
matching or other methods – for example, in the present study we were unable to exclude all stage IIIB patients in
the HC data.

The applications and challenges of working with RWD for ECA analyses are well understood and have been
discussed extensively in the literature [9,49–51] – including many of the limitations encountered in this study.
However, previous evaluations of the performance of ECA analyses at replicating RCTs in metastatic NSCLC have
shown the method to be viable [14,49,51,52]. Although a notable limitation to the current study, the decision to
refrain from the incorporation of a time restriction for the RWD cohort was necessary to ensure enough eligible
patients remained for analysis. As such, changes in the standard of care for metastatic NSCLC since the end of the
enrollment window of the NCT00946712 and NCT00540514 may have contributed to better OS observed in the
RWD-derived ECA. Another potential limitation to the current study was the lack of consideration of laboratory
values in the CM approach. In the DUPLICATE study, a large-scale project dedicated to replicating RCTs using
RWD, assessing laboratory values was noted as a part of the methodology post-matching [14]. Another limitation
regarding matching, was the inability to consider disease characteristics such as biomarkers, comorbidity disease
burden or disease stage at diagnosis which are often useful markers of aggressiveness of disease as these were not
available within both datasets. Similarly, additional unobserved characteristics of trial participants, such as social
determinants of health, may differ from the average real-world patient, further contributing to the inability to
replicate the trial findings. Although a general limitation of CM is that it provides treatment effect estimates in a
subset of trial patients (and therefore provides treatment effect estimates for a matched subpopulation rather than
the overall trial population), the method was able to achieve good covariate balance while preserving the limited
sample size in the RWD. The ability of CM to achieve covariate balance without excessive sample size losses in the
RWD cohort demonstrates the usefulness of this method for challenging ECA settings where preservation of limited
sample sizes needs to be prioritized – albeit at the cost of rendering the target patient population less interpretable.
Even in instances of well-established target trial emulation plans, successful emulation is not guaranteed, and
performing sensitivity and quantitative bias analyses to assess the reliability of ECA approaches will be relevant to
regulatory and HTA personnel when evaluating submissions.
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Implementation of BB can be challenging. It can be difficult to determine an appropriate weight to place on
the external data or, in the case of dynamic borrowing methods, how to formulate appropriate priors. Additionally,
while down-weighting of external data sources can be used to mitigate bias introduced by incorporation of the
external data, this does not alleviate the need for careful selection and evaluation of the appropriateness of the
external data source, including historical RCT data.

While BB methods provide a potential approach to augmenting an ECA, frequentist alternatives also exist and
may also be extended to augmentation of an ECA [53]. Additionally, while this study considered the application of
static borrowing via a power prior, other BB methods such as dynamic borrowing via a power prior [19], MAP or
robust MAP priors [54,55] would be worth exploring – especially where multiple external data sources are available
from which to borrow. Last, it would be worth expanding on the potential for use of BB with tipping point analysis
as a means of quantifying bias as a future research direction.

When implementing ECAs in practice, the ground truth is rarely known. The reliability of the ECA analysis
hinges on the suitability of the data source used to construct the ECA, the credibility of the methods used to mitigate
bias in the comparison, and careful consideration of the limitations and remaining risk of bias. We demonstrate
how BB can be used in comparative effectiveness research for decision making to improve the precision of estimates,
mitigate challenges of traditional methods and as a bias assessment tool in cases where appropriate external data
sources are available.

Summary points

• Randomized controlled trials are the gold standard for comparative effectiveness evidence but are not always
practical or feasible.

• External control arms (ECAs) are assembled from historical controls or real-world data (RWD) and can be used to
assess comparative effectiveness in absence of a concurrent control arm.

• Regulatory and reimbursement agency critiques regarding ECAs have centered on unmeasured or uncontrolled
confounding, missing data, choice of study population, outcome definitions and lack of statistical power.

• Bayesian borrowing (BB) methods incorporate external data sources and can improve precision of ECA outcome
estimates when used appropriately.

• This study employs BB from a historical clinical trial to augment an ECA constructed from RWD to improve
comparative effectiveness estimates in non-small-cell lung cancer.

• Despite challenges in replicating overall survival estimates through the ECA, BB was effective in identifying
heterogeneity between the trials and improving the precision of overall survival estimates.

• Through this study, we demonstrate how BB can be used to mitigate bias and challenges of traditional methods
and function as a bias assessment tool which can be valuable for future regulatory and reimbursement agency
submissions.

Supplementary data

To view the supplementary data that accompany this paper please visit the journal website at: https://bpl-prod.literatumonline.

com/doi/10.57264/cer-2023-0175

Author contributions

A Struebing, E Mackay and M Rosenlund were responsible for the study conception, study design and revision of the manuscript;

authors C McKibbon and R Velummailum were responsible for evaluation and acquisition of data and drafting and revision of

the manuscript; authors H Ruan, E Mackay and A Springford were responsible for the data analysis and drafting and revision of

the manuscript; authors N Dennis, P He, Y Tanaka and Y Xiong were responsible for providing feedback on the study design and

revision of the manuscript.

Financial disclosure

This study was funded by Daiichi Sankyo Europe. The authors have received no other financial and/or material support for this

research or the creation of this work apart from that disclosed.

Competing interests disclosure

A Struebing and M Rosenlund sare employed by and reported stock ownership in Daiichi Sankyo Europe. N Dennis is employed

by Daiichi Sankyo Oncology France. P He, Y Tanaka and Y Xiong are employed by and reported stockownership in Daiichi Sankyo

10.57264/cer-2023-0175 J. Comp. Eff. Res. (2024) e230175

https://bpl-prod.literatumonline.com/doi/10.57264/cer-2023-0175


Augmenting external control arms using Bayesian borrowing Research Article

Inc. C McKibbon, H Ruan, E Mackay, R Velummailum and A Springford are employees of Cytel which has received funding from

Daiichi Sankyo Europe to conduct the study analyses, and consulting fees from various manufacturers unrelated to this research.

The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in

or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Writing disclosure

No writing assistance was utilized in the production of this manuscript.

Data sharing statement

The authors certify that this manuscript reports the secondary analysis of clinical trial data, and the use of this shared data is in

accordance with the agreed upon data sharing policies, including review by the trial Sponsor and data provider. This manuscript

was prepared using data from Dataset nci-data-470 NCT00946712 from the NCTN/NCORP Data Archive of the National Cancer

Institute’s (NCI’s) National Clinical Trials Network (NCTN) obtained from www.projectdatasphere.org, which is maintained by Project

Data Sphere. Data were originally collected from clinical trial NCT no. NCT00946712, S0819: Carboplatin and Paclitaxel with or

Without Bevacizumab and/or Cetuximab in Treating Patients with Stage IV or Recurrent non-small-cell Lung Cancer. All analyses

and conclusions in this manuscript are the sole responsibility of the authors and do not necessarily reflect the opinions or views of

the clinical trial investigators, the NCTN, the NCORP, the NCI or Project Data Sphere. The de-identified RWD supporting this study

was acquired from ConcertAI and may be available by request and subject to a license agreement with ConcertAI. The data for

the historical clinical trial was acquired from the publicly available publication.

Open access

This work is licensed under the Attribution-NonCommercial-NoDerivatives 4.0 Unported License. To view a copy of this license,

visit https://creativecommons.org/licenses/by-nc-nd/4.0/

References
Papers of special note have been highlighted as: • of interest; •• of considerable interest

1. Hariton E, Locascio JJ. Randomised controlled trials - the gold standard for effectiveness research: study design: randomised controlled
trials. BJOG 125(13), 1716 (2018).

2. Kempf L, Goldsmith JC, Temple R. Challenges of developing and conducting clinical trials in rare disorders. Am. J. Med. Genet.
A 176(4), 773–783 (2018).

3. Agrawal S, Arora S, Amiri-Kordestani L et al. Use of single-arm trials for US Food and Frug Administration drug approval in oncology,
2002–2021. JAMA Oncol. 9(2), 266–272 (2023).

4. Mulder J, Teerenstra S, Van Hennik PB et al. Single-arm trials supporting the approval of anticancer medicinal products in the European
Union: contextualization of trial results and observed clinical benefit. ESMO Open 8(2), 101209 (2023).

5. Mack C, Christian J, Brinkley E et al. When context is hard to come by: external comparators and how to use them. Therap. Innovat.
Regul. Sci. 54, 2168479019878672 (2019).

6. Gagne JJ, Thompson L, O’keefe K, Kesselheim AS. Innovative research methods for studying treatments for rare diseases:
methodological review. BMJ 349, g6802 (2014).

7. Ghadessi M, Tang R, Zhou J et al. A roadmap to using historical controls in clinical trials – by drug information association adaptive
design scientific working group (dia-adswg). Orphanet J. Rare Dis. 15(1), 69 (2020).

8. Thorlund K, Dron L, Park JJH, Mills EJ. Synthetic and external controls in clinical trials - a primer for researchers. Clin. Epidemiol. 12,
457–467 (2020).

•• This primer highlights the current landscape of the use of SCAs and provides an appraisal framework to assess future
publications regarding the use of SCAs.

9. Velummailum RR, Mckibbon C, Brenner DR et al. Data challenges for externally controlled trials: viewpoint. J. Med. Internet Res. 25,
e43484 (2023).

10. Gray CM, Grimson F, Layton D, Pocock S, Kim J. A framework for methodological choice and evidence assessment for studies using
external comparators from real-world data. Drug Saf. 43(7), 623–633 (2020).

•• Provides an overview and evaluation framework for the appropriate selection of external data and design for use in regulatory
settings.

11. Food and Drug Administration. Considerations for the design and conduct of externally controlled trials for drug and biological
products (2023). https://www.fda.gov/media/164960/download

10.57264/cer-2023-0175

http://www.projectdatasphere.org
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.fda.gov/media/164960/download


Research Article Struebing, McKibbon, Ruan et al.

12. Food and Drug Administration. Considerations for the use of real-world data and real-world evidence to support regulatory
decision-making for drug and biological products, draft guidance for industry (2021). https://www.fda.gov/regulatory-information/searc
h-fda-guidance-documents/considerations-use-real-world-data-and-real-world-evidence-support-regulatory-decision-making-drug

13. National Institute for Health and Care Excellence. NICE real-world evidence framework (2022).
https://www.nice.org.uk/corporate/ecd9/chapter/overview

14. Franklin JM, Patorno E, Desai RJ et al. Emulating randomized clinical trials with nonrandomized real-world evidence studies: first
results from the RCT duplicate initiative. Circulation 143(10), 1002–1013 (2021).

15. Ramagopalan SV, Hernán MA, Pinilla P, Thorlund K, Kent S. in ISPOR Europe 2022. (2022).

16. Jaksa A, Louder A, Maksymiuk C et al. A comparison of seven oncology external control arm case studies: critiques from regulatory and
health technology assessment agencies. Value Health 25, 1967–1976 (2022).

• This research article highlights the common critiques from regulatory and health technology assessment agencies from oncology
submissions which have incorporated the use of external control arms.

17. Seeger JD, Davis KJ, Iannacone MR et al. Methods for external control groups for single arm trials or long-term uncontrolled extensions
to randomized clinical trials. Pharmacoepidemiol. Drug Saf. 29(11), 1382–1392 (2020).

18. Viele K, Berry S, Neuenschwander B et al. Use of historical control data for assessing treatment effects in clinical trials. Pharm.
Stat. 13(1), 41–54 (2014).

19. Ming-Hui C, Joseph GI. Power prior distributions for regression models. Statis. Sci. 15(1), 46–60 (2000).

20. Best N, Price RG, Pouliquen IJ, Keene ON. Assessing efficacy in important subgroups in confirmatory trials: an example using Bayesian
dynamic borrowing. Pharm. Stat. 20(3), 551–562 (2021).

21. Dron L, Golchi S, Hsu G, Thorlund K. Minimizing control group allocation in randomized trials using dynamic borrowing of external
control data – an application to second line therapy for non-small-cell lung cancer. Contemp. Clin. Trials Commun. 16, 100446 (2019).

22. Richeldi L, Azuma A, Cottin V et al. Trial of a preferential phosphodiesterase 4b inhibitor for idiopathic pulmonary fibrosis. N. Engl. J.
Med. 386(23), 2178–2187 (2022).

23. Food and Drug Administration. Guidance for the use of Bayesian statistics in medical device clinical trials
(2010). https://www.fda.gov/media/71512/download

• This guidance document highlights the early precedent for the use of advanced methods such as Bayesian borrowing in medical
device trials.

24. Lim J, Walley R, Yuan J et al. Minimizing patient burden through the use of historical subject-level data in innovative confirmatory
clinical trials: review of methods and opportunities. Therap. Innov. Regul. Sci. 52(5), 546–559 (2018).

25. European Medicines Agencies. Concept paper on extrapolation of efficacy and safety in medicine development (2013). https://www.ema.
europa.eu/en/documents/scientific-guideline/concept-paper-extrapolation-eff icacy-and-safety-medicine-development en.pdf

26. European Medicines Agencies. Guideline on clinical trials in small populations
(2006). https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-clinical-trials-small-populations en.pdf

27. Brunner HI, Abud-Mendoza C, Viola DO et al. Safety and efficacy of intravenous belimumab in children with systemic lupus
erythematosus: results from a randomised, placebo-controlled trial. Ann. Rheum. Dis. 79(10), 1340–1348 (2020).

28. Food and Drug Administration. Bla 125370/s-064 and bla 761043/s-007 multi-disciplinary review and evalaution
Benlysta R©(belimumab) for intravenous infusion in children 5 to 17 years of age with sle (2021).
https://www.fda.gov/media/127912/download

• This FDA acceptance demonstrates the acceptability and use of Bayesian borrowing in a regulatory setting.

29. Food and Drug Administration. Pediatric postmarketing pharmacovigilance review - Belimumab
(2022). https://www.fda.gov/media/161020/download

30. Food and Drug Administration. Adaptive designs for clinical trials of drugs and biologics (2018). https://www.fda.gov/regulatory-infor
mation/search-fda-guidance-documents/adaptive-design-clinical-trials-drugs-and-biologics-guidance-industry

31. Food and Drug Administration. Interacting with the FDA on complex innovative trial designs for drugs and biological products (2020).
https://www.fda.gov/media/130897/download

32. Singh N, Temin S, Baker S et al. Therapy for stage IV non–small-cell lung cancer with driver alterations: ASCO living guideline. J. Clin.
Oncol. 40(28), 3310–3322 (2022).

33. Daly ME, Singh N, Ismaila N et al. Management of stage III non–small-cell lung cancer: ASCO guideline. J. Clin. Oncol. 40(12),
1356–1384 (2021).

34. R Core Team. R Foundation for Statistical Computing (2022). https://www.R-project.org

35. Herbst RS, Redman MW, Kim ES et al. Cetuximab plus carboplatin and paclitaxel with or without bevacizumab versus carboplatin and
paclitaxel with or without bevacizumab in advanced nsclc (SWOG S0819): a randomised, Phase III study. Lancet Oncol. 19(1), 101–114
(2018).

10.57264/cer-2023-0175 J. Comp. Eff. Res. (2024) e230175

https://www.fda.gov/regulatory-information/search-fda-guidance-documents/considerations-use-real-world-data-and-real-world-evidence-support-regulatory-decision-making-drug
https://www.nice.org.uk/corporate/ecd9/chapter/overview
https://www.fda.gov/media/71512/download
https://www.ema.europa.eu/en/documents/scientific-guideline/concept-paper-extrapolation-efficacy-and-safety-medicine-development_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-clinical-trials-small-populations_en.pdf
https://www.fda.gov/media/127912/download
https://www.fda.gov/media/161020/download
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/adaptive-design-clinical-trials-drugs-and-biologics-guidance-industry
https://www.fda.gov/media/130897/download
https://www.R-project.org


Augmenting external control arms using Bayesian borrowing Research Article

36. Hernán MA, Robins JM. Using big data to emulate a target trial when a randomized trial is not available. Am. J. Epidemiol. 183(8),
758–764 (2016).

• Highlights the best practices for emulating a target trial using real-world data to perform SCA analyses.

37. Cuyún Carter G, Barrett AM, Kaye JA et al. A comprehensive review of nongenetic prognostic and predictive factors influencing the
heterogeneity of outcomes in advanced non-small-cell lung cancer. Cancer Manag. Res. 6, 437–449 (2014).

38. Berghmans T, Paesmans M, Sculier JP. Prognostic factors in stage III non-small-cell lung cancer: a review of conventional, metabolic and
new biological variables. Ther. Adv. Med. Oncol. 3(3), 127–138 (2011).

39. Williamson E, Morley R, Lucas A, Carpenter J. Propensity scores: from naive enthusiasm to intuitive understanding. Stat. Methods Med.
Res. 21(3), 273–293 (2012).

40. Zubizarreta JR, Paredes RD, Rosenbaum PR. Matching for balance, pairing for heterogeneity in an observational study of the
effectiveness of for-profit and not-for-profit high schools in Chile. Annals Appl. Stat. 8(1), 204–231 (2014).

• Details the cardinality-matching method used in the current study to construct the SCA from real-world data.

41. Fortin SP, Johnston SS, Schuemie MJ. Applied comparison of large-scale propensity score matching and cardinality matching for causal
inference in observational research. BMC Med. Res. Methodol. 21(1), 109 (2021).

42. Austin PC. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score
matched samples. Stat. Med. 28(25), 3083–3107 (2009).

43. Socinski MA, Bondarenko I, Karaseva NA et al. Weekly nab-paclitaxel in combination with carboplatin versus solvent-based paclitaxel
plus carboplatin as first-line therapy in patients with advanced non-small-cell lung cancer: final results of a Phase III trial. J. Clin.
Oncol. 30(17), 2055–2062 (2012).

44. Guyot P, Ades AE, Ouwens MJ, Welton NJ. Enhanced secondary analysis of survival data: reconstructing the data from published
Kaplan–Meier survival curves. BMC Med. Res. Methodol. 12, 9 (2012).

45. Carpenter B, Gelman A, Hoffman MD et al. Stan: a probabilistic programming language. J. Statis. Softw. 76(1), 1–32 (2017).

46. Stuart EA, Lee BK, Leacy FP. Prognostic score-based balance measures can be a useful diagnostic for propensity score methods in
comparative effectiveness research. J. Clin. Epidemiol. 66(Suppl. 8), S84–S90.e81 (2013).

47. Food and Drug Administration. Cid case study: external control in diffuse b-cell lymphoma.
https://www.fda.gov/media/155405/download

48. Ibrahim JG, Chen MH, Gwon Y, Chen F. The power prior: theory and applications. Stat. Med. 34(28), 3724–3749 (2015).

49. Popat S, Liu SV, Scheuer N et al. Addressing challenges with real-world synthetic control arms to demonstrate the comparative
effectiveness of Pralsetinib in non-small-cell lung cancer. Nat. Commun. 13(1), 3500 (2022).

50. Hsu GG, Mackay E, Scheuer N, Ramagopalan SV. Keeping it real: implications of real-world treatment outcomes for first-line
immunotherapy in metastatic non-small-cell lung cancer. Immunotherapy 13(18), 1453–1456 (2021).

51. Sengupta S, Ntambwe I, Tan K et al. Emulating randomized controlled trials with hybrid control arms in oncology: a case study. Clin.
Pharmacol. Ther. 113(4), 867–877 (2023).

•• Demonstrates the application of Bayesian borrowing methods in a hybrid control arm setting.

52. Ali MS, Prieto-Alhambra D, Lopes LC et al. Propensity score methods in health technology assessment: principles, extended
applications, and recent advances. Front. Pharmacol. 10, 973 (2019).

53. Majumdar A, Davi R, Bexon M et al. Building an external control arm for development of a new molecular entity: an application in a
recurrent glioblastoma trial for mdna55. Stat. Biosci. 14(2), 285–303 (2022).

54. Neuenschwander B, Capkun-Niggli G, Branson M, Spiegelhalter DJ. Summarizing historical information on controls in clinical trials.
Clin. Trials 7(1), 5–18 (2010).

55. Schmidli H, Gsteiger S, Roychoudhury S et al. Robust meta-analytic-predictive priors in clinical trials with historical control
information. Biometrics 70(4), 1023–1032 (2014).

10.57264/cer-2023-0175

https://www.fda.gov/media/155405/download


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 400
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 400
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ([Based on 'PPG Indesign CS4_5_5.5'] [Based on 'PPG Indesign CS3 PDF Export'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo false
      /AddRegMarks true
      /BleedOffset [
        8.503940
        8.503940
        8.503940
        8.503940
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions false
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 600
        /LineArtTextResolution 2400
        /PresetName (Pureprint flattener)
        /PresetSelector /UseName
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 8.835590
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


