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Abstract We introduced the interleukin-12 (IL-12) gene
into the mouse bladder cancer cell line (MBT2) to es-
tablish sublines that secrete bioactive IL-12. IL-12-se-
creting MBT2 (MBT2/IL-12) sublines were completely
rejected when subcutaneously implanted into immuno-
competent syngeneic C3H mice. Although this antitu-
mor e�ect did not change when IL-12-secreting cells
were injected into immunode®cient mice whose CD8+ T
or CD4+ T cells had been depleted by the corresponding
antibody, it was abrogated when natural killer cells were
depleted by anti-asialoGM1 antibody. In addition, when
parental MBT2 cells mixed with MBT2/IL-12 cells were
subcutaneously injected into mice, admixed MBT2/IL-
12 inhibited the growth of the parental tumor. Further-
more, this antitumor e�ect was enhanced by systemic
IL-18 administration. This synergism was abrogated
when the mice were treated with interferon-c-neutraliz-
ing antibody in vivo. In conclusion, local secretion of IL-
12 led to e�ective antitumor activity that was enhanced
by systemic administration of IL-18. Interferon-c plays
an important role in the synergism of IL-12 gene trans-
duction and systemic administration of IL-18.
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Introduction

Interleukin-12 (IL-12), a bimolecular glycoprotein
consisting of a 35- and 40-kDa subunit, was originally

identi®ed as a factor that stimulates natural killer cells
(NK cells) and promotes maturation of cytotoxic T
lymphocytes (CTL) [7, 8, 15, 16, 18]. This is the ®rst
cytokine to eradicate the established tumor by itself
[2]. However, adverse e�ects turned out to be the main
hindrance to the clinical use of IL-12, since a huge
amount of IL-12 must be administered to maintain an
e�ective concentration at the tumor site [4]. Thus, the
introduction of an IL-12 gene into the tumor cells
is one way to avoid severe adverse e�ects. We intro-
duced the IL-12 gene into the mouse bladder cancer
cell line (MBT2) and investigated the mechanism of
tumor rejection by locally secreted IL-12, using im-
munode®cient mice treated with various kinds of an-
tibodies. We also investigated whether IL-12-secreting
MBT2 could inhibit the tumor growth of parental
MBT2 cells.

Interleukin-18 (IL-18), previously called interferon
c (IFNc)-inducing factor, is an 18.3-kDa cytokine
produced by mature macrophages and related cells [12].
IL-18 augments NK cell activity and promotes the
proliferation of stimulated T cells in the presence of
concanavalin A, anti-CD3 mAb or IL-2 [13]. Although
the function of IL-18 seems to be similar to that of IL-
12, the mechanism of activation is di�erent. Kohno
et al. showed that IL-18 could augment IFNc produc-
tion, proliferation and IL-2 receptor a-chain expression
of the Th1 clones even in the presence of saturating
amounts of IL-12 [9]. With respect to the antitumor
activity, IL-18 and IL-12 may have synergistic e�ects. In
this study, we investigated whether systemic adminis-
tration of IL-18 could enhance the antitumor e�ect of
IL-12-secreting cells against parental MBT2.

Materials and methods

Tumor cell lines

MBT2, a mouse bladder carcinoma of C3H origin, was maintained
in RPMI-1640 medium supplemented with 10% fetal bovine
serum.
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Expression plasmid and transfection to tumor cells

The expression plasmid used in this study was previously described
[14]. The cDNA of the p35 and p40 subunits of mouse IL-12 were
kindly provided by Dr. Maurice K.Gately (Ho�mann-La Roche,
Nutley, N. J.) and were subcloned in the proper reading frame and
in the appropriate orientation into the plasmid expression vector
pCEXV3 [14]. DNA fragments encoding the p35 and p40 subunits
were cloned into the SmaI site of pCEXV3 and named pCEXV3/
p35 and pCEXV3/p40. In pCEXV3/p35 and pCEXV3/p40, stan-
dard calcium-phosphate-mediated transfection was performed to
introduce the gene into the cell line. For drug selection, pSV2neo
was co-transfected. Brie¯y, 1.8 ´ 105 MBT2 cells were plated in a
6-cm dish 1 day before transfection. A 9-lg sample of pCEXV3 (as
a control) or 7 lg pCEXV3/p35 and 7 lg pCEXV3/p40 were co-
transfected with 1 lg pSV2neo by the calcium phosphate method
[17]. The concentration of gentamicin (Geneticin; Sigma, St. Louis,
Mo.) was 0.25 mg/ml. After 2 weeks of drug selection, colonies
were picked up with cloning cylinders and expanded to cell lines.

IL-12 assays

Parental or IL-12-gene-transfected MBT2 cells (3 ´ 105) were
plated in six-well plates (9.6 cm2/well) with 1.5 ml medium, and
supernatants were collected 24 h later. IL-12 activity was measured
by a lymphoblast proliferation assay, as previously described [14].
Brie¯y, human peripheral blood mononuclear cells were isolated by
Ficoll-Hypaque gradient centrifugation, incubated with phyto-
hemagglutinin (PHA) to a ®nal concentration of 10 lg/ml for 48 h
and subsequently incubated with human recombinant IL-2 to a
®nal concentration of 50 U/ml for 24 h. In a 96-well plate, 50 ll
PHA-activated human lymphoblast (2 ´ 104 cells) suspension was
incubated with 50 ll sample supernatants or recombinant mouse
IL-12 reference standard for 24 h. Then the cells were pulsed with
1 lCi [H3] thymidine and cultured for 6 h. IL-12 activity of the
sample supernatants was calculated by measuring [H3] thymidine
incorporation. An IL-12 enzyme-linked immunosorbent assay (Bio
Source International Inc., Carmarillo, Calif.) was also performed
to con®rm the results.

Animal studies

C3H/He mice (female, 6±8 weeks old) and athymic nude mice
(Balb/c nu/nu, female, 6±8 weeks old ) were purchased from CLEA
Japan Inc. (Tokyo). In all animal experiments for tumor growth
measurement, each group consisted of ®ve mice. Tumor cells were
trypsinized and washed twice with phosphate-bu�ered saline (PBS)
and cells were injected subcutaneously into the ¯ank of each mouse.
The growth of subcutaneous tumor was measured in millimeters,
using a caliper. The longest surface length (a) and the perpendicular
width (b) were measured, and tumor size was reported as the
product of a ´ b. Tumor growth was checked at least twice per
week. To determine the metastatic potential, 5 ´ 105 cells of each
subline were injected intravenously via the tail vein. Two weeks
later, mice were sacri®ced and the number of surface metastatic
nodules in the lung was counted under a dissecting microscope.

All animal experiments were conducted according to the
Guidelines for animal experimentation at Kobe University School
of Medicine.

Antibody treatments in vivo

Depletion of T cells in vivo was accomplished by intraperitoneal
administration of rat monoclonal antibody (mAb) GK1.5 (anti-
CD4; IgG2b) or mAb 2.43 (anti-CD8; IgG2b) (both hybridomas
were acquired from the ATCC). These mAb were used as ascites
¯uids (titer > 1:10 000 by staining mouse thymocytes by ¯ow cy-
tometry). These ascites ¯uids (0.2 ml) were injected i.p. on day )3
and every 7 days thereafter. For depletion of NK cells, 50 ll anti-
asialoGM1 antiserum (Wako Fine Chemicals, Osaka, Japan)

diluted to 200 ll in PBS was injected intraperitoneally on day )1
and this was repeated every 5 days. To neutralize IFNc activity
in vivo, the ascites ¯uid (0.2 ml) of the R4-6A2 (purchased from
the ATCC) rat mAb against mouse IFNc was injected i.p. on days
)1, 0, 1 and repeated every 7 days.

IL-18 treatment in vivo

Recombinant murine interleukin-18 (IL-18) was a product of
Hayashibara Biochemical Laboratories Inc. (Okayama, Japan) and
was obtained by expressing murine IL-18 cDNA in Escherichia coli
and puri®ed by chromatographic methods [12]. A 1-lg sample of
IL-18 diluted to 0.2 ml in PBS was injected intraperitoneally on day
)1 and this was repeated every 3 days.

Results

In vitro studies of MBT2 sublines

The mouse bladder cancer cell line, MBT2, was co-
transfected with pCEXV3/p35, pCEXV3/p40 and
pSV2neo. After G418 selection, clones were picked up
and the IL-12 activities of their culture supernatants
were measured. Clones with high IL-12 secretion,
MBT2/IL-121 and MBT2/IL-122, secreted approxi-
mately 500 pg/ml IL-12/106 cells in 24 h. Neither
parental MBT2 cells nor MBT2 cells transfected with
pCEXV3 (MBT2/Con) produced detectable amounts of
IL-12. There was no signi®cant di�erence in cell prolif-
eration In vitro among parental and transfected MBT2
cells (data not shown).

IL-12 secretion by MBT2 inhibits tumor growth in vivo

To examine the e�ect of IL-12 secretion on tumor
growth, 106 cells of MBT2/IL-121, MBT2/IL-122,
MBT2/Con or parental MBT2 were injected into the
right ¯ank of syngeneic C3H mice. In each experiment,
parental MBT2 appeared in most mice 10±15 days after
tumor inoculation and grew quickly. MBT2/Con ex-
hibited almost the same degree of tumor growth. On the
other hand, in mice injected with clones transduced with
the IL-12 gene MBT2, tumor did not grow; that is, it
was completely rejected (Fig. 1). When the cells were
injected intravenously, parental MBT2 or MBT2/Con
made numerous metastatic nodules in the lung. By
contrast, MBT2/IL-121 and MBT2/IL-122 made few
metastatic nodules (Table 1).

Depletion of potential e�ector cells

To investigate the type of e�ector cells participating in
rejection of MBT2 tumors with in situ IL-12 secretion,
tumor-bearing hosts were depleted in vivo with selected
e�ector cell populations. Depletion of CD8+ T and
CD4+ T cells did not signi®cantly in¯uence tumor re-
jection (Fig. 2A, B). However, IL-12-secreting tumors
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grew faster in NK-cell-depleted mice than in immuno-
competent mice, although the tumor did not grow as fast
as parental MBT2 cells (Fig. 2C). This showed that NK
cells partially participate in the antitumor e�ect of
MBT2/IL-12.

Antitumor e�ect of MBT2/IL-12 for parental MBT2
and the synergistic e�ect with IL-18

Parental MBT2 (105 cells) mixed with 106 MBT2/IL-121
were injected subcutaneously. Admixed MBT2/IL-12
cells inhibited the tumor growth of 105 parental MBT2
cells (Fig. 3j, h). Moreover, this antitumor e�ect was
enhanced by systemic administration of IL-18 (Fig. 3h,
s), although IL-18 alone did not a�ect the tumor
growth of parental MBT2 (Fig. 3j, d).

Neutralization of IFNc partially abrogates the antitumor
e�ect of MBT2/IL-12 for parental MBT2 and
the synergistic e�ect with IL-18

To examine the role of IFNc in the antitumor e�ects
of MBT2/IL-12 and the synergism with IL-18, IFNc-

Fig. 1 Tumor growth in C3H mice of parental MBT2 (j MBT2),
control-vector-transfected MBT2 (h MBT2/Con), or clones of
MBT2 transfected with interleukin-12 (IL-12) cDNA (d MBT2/IL-
121, s MBT2/IL-122). Mice were subcutaneously injected with 106

cells in the right ¯ank on day 0. Tumor growth was measured as the
product (a ´ b) of the maximal diameter (a) and the perpendicular
diameter (b). Bars standard deviations of tumor size with ®ve mice
per group

Table 1 Production of metastases by MBT2 sublines injected into
the tail vein of mice. Production of lung metastasis by the MBT2
parental cell line, MBT2 transfected with interleukin-12 (MBT2/IL-
121) and MBT2/IL-122 injected into the tail vein of mice. Cells
(5 ´ 105) were injected, and the mice were killed 2 weeks after
injection. We counted the number of surface metastatic nodules
in the lung

Cells No. of lung metastases

MBT2/P 246.7 � 83.3*
MBT2/Con 281.7 � 95.1
MBT2/IL-121 1.0 � 2.2*
MBT2/IL-122 1.4 � 2.6

*The mean number of metastases produced by MBT2 transfected
with IL-12 was signi®cantly lower than that produced by parental
MBT2. P < 0.001 (Student's t-test)

Fig. 2A±C Tumor growth in immunode®cient C3H mice of
parental MBT2 (j MBT2) and MBT2 transfected with IL-12
cDNA (m MBT2/IL-121). Mice were depleted of potential e�ector
cell populations by mAb against CD4, CD8 and natural killer
(NK) antigens, as described in Materials and methods. A C3H mice
depleted of CD8+T cells. B C3H mice depleted of CD4+T cells. C
C3H mice depleted of NK cells. Tumor measurements were
performed as described in the legend to Fig. 1
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speci®c neutralizing Ab was administered. As shown in
Fig. 3, admixed 106 MBT2/IL-121 inhibited the tumor
growth of 105 parental MBT2 cells, and this antitumor
e�ect was enhanced by systemic administration of IL-
18 (Fig. 4j, h, s). When IFNc activity was inacti-
vated in vivo, the antitumor e�ect of MBT2/IL-121
was partially inhibited and additional IL-18 adminis-
tration did not a�ect the tumor growth of MBT2/IL-
12 (Fig. 4d, m). This means that INFc production is
one of the mechanisms of the antitumor e�ect due to
in situ secretion of IL-12, and that the synergistic
antitumor e�ect with IL-18 mainly depends on IFNc
production.

Discussion

Recent studies have shown that cytokine-gene-modi®ed
tumor cells are capable of immunizing mice against pa-
rental tumor and many researchers have studied the
antitumor e�ect of cytokine gene transfer to cancer cells.
Transfer of cytokine genes into tumor cells more closely
approximates the physiological mode of cytokine se-
cretion. IL-12 exerts a variety of biological e�ects on T
and NK cells in vitro and demonstrates potent antitu-
mor e�ects when injected systemically [2, 6, 7, 15, 16].
IL-12 acts as a growth factor for NK cell and T cells,
enhances NK/LAK cell cytolytic activity, augments cy-
tolytic T cell responses, induces secretion of cytokines
and particularly acts as the most potent inducer of IFNc

production by T and NK cells [3]. This cytokine consists
of a disul®de-linked 35-kDa light chain (p35) and 40-
kDa heavy chain (p40). Simultaneous transfection with
the expression-vector-inserted cDNA fragment encoding
p35 and p40 is thus necessary for production of bio-
logically active IL-12. We introduced the IL-12 gene into
the mouse bladder cancer cell line and IL-12-gene-
transduced cells secreted bioactive IL-12.

In the present study, we demonstrated that intro-
duction of the IL-12 gene into MBT2 inhibited tumor
growth in mice, leading to complete rejection. This e�ect
was observed not only after subcutaneous but also after
intravenous injection. With respect to the mechanism of
this antitumor e�ect, we showed that in vivo depletion
of NK cells could partially abrogate the antitumor ef-
fect, whereas depletion of CD8+ T cells or CD4+ T cells
did not change the antitumor e�ect. This suggested that
NK cells play an important role in the antitumor e�ect
of locally secreted IL-12. Brunda et al. demonstrated
that, in RenCa renal cell carcinoma, the antitumor e�ect
of exogenous IL-12 mainly involved CD8+ T cells [2].
Tahara et al. suggested that NK cells play a role in the
antitumor e�ects of IL-12-gene-transduced cells, prin-
cipally during the early phase of antitumor reactivity,
and T cells play a major role in the later stage, ®nally
resulting in complete eradication [9]. Although it is not
clear why there was a di�erence between these models, it
might be attributable to di�erences in cell lines. The

Fig. 3 Tumor growth of parental MBT2 mixed with or without
MBT2/IL-12. The e�ect of systemic administration of IL-18 was
also studied. Tumor growth of 105 parental MBT2 cells (j), 105

parental MBT2 cells mixed with 106 MBT2/IL-12 (h), 105 parental
MBT2 cells with IL-18 (d) or 105 parental MBT2 cells mixed with
106 MBT2/IL-12 treated with IL-18 (s) in C3H mice. Mice were
subcutaneously injected with 105 parental MBT2 cells or 105

parental MBT2 cells mixed with 106 MBT2/IL-12 in the right ¯ank
on day 0. For IL-18 treatment, 1 lg IL-18 diluted with 0.2 ml
phosphate-bu�ered saline (PBS) was injected intraperitoneally on
day)1 and this was repeated every 3 days. Tumor measurements
were performed as described in the legend to Fig. 1

Fig. 4 Tumor growth of 105 parental MBT2 cells (j), 105 parental
MBT2 cells mixed with 106 MBT2/IL-12 (h), 105 parental MBT2
cells mixed with 106 MBT2/IL-12 treated with IL-18 (s) in
C3H mice and tumor growth in IFNc-neutralizing mice of 105

parental MBT2 cells mixed with 106 MBT2/IL-12 (m), 105 parental
MBT2 cells mixed with 106 MBT2/IL-12 treated with IL-18 (d).
Mice were subcutaneously injected with 105 parental MBT2 cells or
105 parental MBT2 cells mixed with 106 MBT2/IL-12 in the right
¯ank on day 0. For IL-18 treatment, 1 lg IL-18 diluted with 0.2 ml
PBS was injected intraperitoneally on day )1 and this was repeated
every 3 days. IFNc-speci®c neutralizing Ab, as described in
Materials and methods, were administered. Tumor measurements
were performed as described in the legend to Fig. 1
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immunogenicity and tumorigenicity of each cell line
di�ers and such di�erences can result in di�erent
mechanisms of antitumor e�ect.

We also showed that MBT2/IL-12 mixed with pa-
rental MBT2 could inhibit the tumor growth of parental
MBT2. However, MBT2/IL-12 injected into the left
¯ank of the mice did not inhibit the tumor growth of
parental MBT2 injected into the right ¯ank (data not
shown). This suggested that the injection of IL-12-pro-
ducing cells did not lead to the acquisition of a systemic
antitumor immunoresponse, but e�ector cells activated
by locally secreted IL-12 e�ectively inhibited tumor
growth of parental MBT2.

Since IL-12 is a strong inducer of IFNc, we studied
the in¯uence of IFNc on the antitumor e�ect using
neutralizing antibody. When IFNc was inactivated in
vivo, the antitumor e�ect of MBT2/IL-12 was partially
abrogated. This means that IFNc participates in the
antitumor e�ect to some extent.

IL-18 augments NK cell activity and IFNc produc-
tion by T cells and NK cells and enhances the Fas-
ligand-mediated cytotoxicity of Th1 cells [5, 12]. IL-18
also has an antitumor e�ect in vivo [11]. These bioac-
tivities were similar to those of IL-12. However, the
mechanism of their action is thought to be di�erent and
they have a synergistic e�ect with respect to IFNc pro-
duction [9, 10, 12]. Even in the presence of saturating
amounts of IL-12, IL-18 still augments IFNc production
and proliferation [9]. One of the mechanisms for the
synergism is reported to be up-regulation of the IFNc-
inducing factor receptor by IL-12 [1]. In the present
study, we showed that systemic administration of IL-18
enhanced the antitumor e�ect of IL-12-secreting cancer
cells. Since systemic administration of IL-18 alone did
not a�ect the tumor growth of parental MBT2, the
synergistic antitumor e�ect of IL-18 is observed only
when there is in situ secretion of IL-12. We also showed
that the synergistic antitumor e�ect was totally abro-
gated by inactivation of IFNc in vivo. We therefore
assume that the synergistic antitumor e�ect of IL-12 and
IL-18 is mediated mainly through synergistic IFNc
production.

As a result, we showed that local secretion of IL-12
could lead to e�ective antitumor activity that was en-
hanced by systemic administration of IL-18. Such a
synergism was mainly related to the synergism of IFNc
induction. For the future clinical use of IL-12, IL-18
may play a critical role in enhancing the antitumor e�ect
of IL-12 and may reduce the adverse e�ects by dimin-
ishing the required dosage of IL-12.
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