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Abstract

As the world emerges from the COVID-19 pandemic, there is an urgent need to understand

patient factors that may be used to predict the occurrence of severe cases and patient mor-

tality. Approximately 20% of SARS-CoV-2 infections lead to acute respiratory distress syn-

drome caused by the harmful actions of inflammatory mediators. Patients with severe

COVID-19 are often afflicted with neurologic symptoms, and individuals with pre-existing

neurodegenerative disease have an increased risk of severe COVID-19. Although collec-

tively, these observations point to a bidirectional relationship between severe COVID-19

and neurologic disorders, little is known about the underlying mechanisms. Here, we ana-

lyzed the electronic health records of 471 patients with severe COVID-19 to identify clinical

characteristics most predictive of mortality. Feature discovery was conducted by training a

regularized logistic regression classifier that serves as a machine-learning model with an

embedded feature selection capability. SHAP analysis using the trained classifier revealed

that a small ensemble of readily observable clinical features, including characteristics asso-

ciated with cognitive impairment, could predict in-hospital mortality with an accuracy greater

than 0.85 (expressed as the area under the ROC curve of the classifier). These findings

have important implications for the prioritization of clinical measures used to identify patients

with COVID-19 (and, potentially, other forms of acute respiratory distress syndrome) having

an elevated risk of death.

Author summary

Gaining insight into the patient attributes that are indicative of poor outcomes resulting

from infections caused by highly lethal viruses such as SARS-CoV-2 is of paramount

importance for hospitals and healthcare systems in order to adequately anticipate and
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address forthcoming outbreaks. Approximately 20% of the infections in the initial phase

of the COVID-19 pandemic resulted in severe respiratory complications triggered by

inflammatory responses. Moreover, individuals with severe COVID-19, particularly those

with pre-existing neurodegenerative conditions, who were at a heightened risk, frequently

displayed neurologic symptoms. Although there is a documented association between

severe COVID-19 and neurologic issues, the underlying causes remain elusive. In this

study, we examined the electronic health records of 471 patients with severe COVID-19 to

identify clinical indicators that could predict mortality. Through machine learning mod-

els, we discovered a series of clinical features, notably those associated with cognitive dys-

function, that accurately predict mortality (area under the ROC curve > 0.85). These

results underscore the significance of specific clinical indicators in recognizing patients at

increased risk of mortality from COVID-19, thus enabling more focused and effective

healthcare strategies.

1 Introduction

1.1 COVID-19 and neurologic symptoms

Patients with severe COVID-19 warranting hospital admission present with a variety of symp-

toms that are carefully evaluated by admitting physicians. These patient evaluations have led to

the identification of specific comorbidities linked to severe forms of COVID-19 or fatal out-

comes [1–3], including neurodegenerative disorders and dementia [4–6]. Although SARS-

CoV-2 infection can cause neurologic symptoms by directly affecting the central nervous sys-

tem (CNS), this phenomenon has only been shown in a very small subset of patients [7].

Instead, neurologic symptoms are more likely to occur due to indirect effects involving the

strong innate immune response and cytokine storm caused by SARS-CoV-2 infection.

A cytokine storm is a hyperinflammatory response to an infection caused by a sudden spike

in levels of pro-inflammatory cytokines and chemokines, including IL-1, IL-2, IL-4, IL-6, IL-7,

IL-8, IL9, IL-10, IL-18, granulocyte stimulating factor (G-CSF), IP-10, monocyte chemoattrac-

tant protein (MCP)-1, MCP-3, macrophage inflammatory protein 1 (MIP-1A), cutaneous T-

cell attracting chemokine (CTACK), IFN-γ, and TNF-α. In turn, this phenomenon can result

in overwhelming systemic inflammation, acute respiratory distress syndrome (ARDS), and

multi-organ failure [8]. Evidence suggests that a cytokine storm can trigger various neurologic

symptoms, ranging from headaches, dizziness, and disorientation to convulsions or seizures

[8].

1.2 Approach to prediction and feature selection

In this report, we present the results of a study aimed at establishing a link between COVID-19

symptoms observed upon patient admission (within the first 24 h of hospitalization) and the

risk of patient death. We were particularly interested in the predictive value of easily observ-

able neuropsychiatric symptoms such as disorientation, cognitive impairment, and delirium.

Our strategy involved a data-driven discovery of predictors. Instead of postulating a priori a

feasible set of clinical features likely to be associated with mortality and then testing the result-

ing hypotheses using a standard generalized linear model (GLM) approach, we retained all

possible clinical features for the analysis. We used the disease outcome to train a supervised

classifier with feature ranking and selection capability. When an explainable classifier achieved

high accuracy, we queried it to determine which feature combination was responsible for its
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strong performance. The final output was a set of hypotheses (that could be addressed in future

intervention studies) positing that the identified predictive combinations of clinical features

were causally linked to mortality or that common latent factors influenced both the mortality

as well as the detected clinical characteristics.

We utilized two independent approaches to quantify the predictive power of the observa-

tions collected at the time of patient admission, or within the first 24 h of hospitalization: elas-

tic-net regularized logistic regression (LR-ENET) and XGBoost classification [9, 10]. The use

of both methods was followed by an analysis of the relative contributions of the selected fea-

tures (“explanatory variables”) to the prediction via the SHapley Additive exPlanations

(SHAP) approach. The SHAP factors provide a valuable tool for interpreting the significance

of each clinical feature in a model. By assigning a value to each variable based on its average

contribution to the outcome across all possible combinations, this method offers a comprehen-

sive way to understand the relative importance of each feature [11–13]. This is particularly use-

ful in complex scenarios where the features interact in intricate ways.

The described analyses led to the identification of several important predictive features,

including neurologic symptoms.

1.3 Related research

Data-driven investigation of COVID-19 mortality employing machine learning tools (such as

XGBoost) and feature explanation methods (SHAP values) has been demonstrated before for

the processing of clinical laboratory results [14–16], for predicting death outcomes [17–19],

demonstrating links between socioeconomic disparities and COVID-19 spread [20], and

showing the impact of COVID-19 on mental health in self-identified Asian Indians in the

USA [21]. Several other articles using SHAP were reviewed recently by Bottino et al. [22].

2 Methods and datasets

2.1 Ethics statement

This study, identified by IRB protocol #2004316653, was approved by the Indiana University

Institutional Review Board. As the study procedures involved the use of a deidentified elec-

tronic medical record database, consent was not required.

2.2 Dataset description

Electronic health record (EHR) data were obtained from 471 patients with severe SARS-CoV-

2 infection. The patients were admitted to the intensive care units (ICUs) of IU Health Meth-

odist Hospital and Sidney & Lois Eskenazi Hospital, both in Indianapolis, Indiana, between

March 2020, and August 2020. 399 patients were eventually discharged, whereas 72 patients

died. The demographic characteristics of the cohort are shown in Table 1. 246 patients self-

identified as Black or African American, and 196 patients identified as white. 245 of the patients

were females, and 226 were males. There was no statistically significant difference in age

between the African-American and white patients. However, patients who identified as His-

panic or Latino were significantly younger than other patients (p<0.001).

2.3 Preprocessing

The original dataset consisted of data collected at multiple time points during the patients’

treatment. We used only the data from the first time point (i.e., the initial evaluation and the

subsequent measures up to 24 h), consisting of the earliest available diagnostic characteristics.

We retained the minimal and maximal values if multiple measurements and/or laboratory
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results were provided. Because many features describe the patient’s status as very detailed and

granular, some binary factors were observed for only a few (one or two) patients. These vari-

ance-deficient features were removed to prevent the model from outfitting, even though they

might have been informative. Another step of feature engineering (not pursued in this study)

is likely needed to construct virtual features that summarize these descriptors.

The presence of multiple correlated features related to delirium is an example of the

described problem. We found that the large number of delirium-related descriptors would

lead to the emergence of 29 distinct categories. However, because over 300 cases showed no

evidence of delirium, an alternative approach would be to combine all of the positive categories

into one (e.g., “some evidence of delirium”). In our LR-NET and XGBoost models, this engi-

neered feature was not included. Nonetheless, a distinct analysis was carried out to assess the

predictive value of the “delirium” secondary feature, with its findings detailed in the “Results”

section.

2.4 Logistic regression with elastic-net regularization model

We established a set of relevant diagnostic features by implementing an ante-hoc explainable,

predictable statistical model with embedded feature selection capability. We utilized utilize a

logistic regression model regularized with a ridge (ℓ2), LASSO (ℓ1), or a combination of both

penalties (elastic net) [9, 23, 24]. This approach allowed us to (1) create a simple model captur-

ing all the significant sources of variability, incorporating all of the diverse clinical descriptors/

features, and (2) perform simultaneous feature selection and feature ranking, allowing identifi-

cation of the major drivers of correct prediction. It is worth highlighting that the inclusion of

ℓ1 regularization may generate instability within the feature selection process [25]. However,

this challenge can be addressed by re-executing the feature selection multiple times. Please

refer to the S1 Appendix for details.

2.5 XGBoost model

We utilize the extreme gradient boosting decision tree (XGBoost). This method developed by

Chen and Guestrin, is a highly effective, portable, and scalable machine learning system for

tree boosting that is optimized under the Gradient Boosting framework [10]. It combines a

series of low-accuracy weak classifiers using the gradient descent architecture to produce a

strong classifier with higher classification performance.

2.6 SHapley Additive exPlanations (SHAP) values

The subsequent analysis of features identified by LR-ENET and XGBoost is performed using

approach based on cooperative game theory concept known as SHAP (or Shapley) values. The

Table 1. General demographic characteristics of the investigated cohort.

Race Female Male

Alive Alive % Died Died % Total Alive Alive % Died Died % Total
Asian 3 100.0% 0 0.0% 3 5 83.3% 1 16.7% 6

Black or Afr. Amer. 123 87.9% 17 12.1% 140 85 80.2% 21 19.8% 106

Refused to identify 1 33.3% 2 66.7% 3 2 100.0% 0 0.0% 2

Unknown 10 100.0% 0 0.0% 10 5 100.0% 0 0.0% 5

White 77 86.5% 12 13.5% 89 88 82.2% 19 17.8% 107

Total 214 87.3% 31 12.70% 245 185 81.9% 41 18.1% 226

https://doi.org/10.1371/journal.pdig.0000327.t001
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subsequent analysis of the features identified by LR-ENET and XGBoost was performed using

an approach based on the cooperative game theory concept known as SHAP (or Shapley) val-

ues [11–13, 26]. The SHAP values can determine the importance of a feature and its direction-

ality influence by comparing what a model predicts with and without that feature for each

observation in the training data and calculating the marginal contribution [12].

In simple terms, the Shapley analysis is a method that allocates “credit” or “blame” fairly

among a set of contributing factors or variables in a model. This is particularly useful in clinical

research where numerous variables can influence an outcome, and it can be challenging to

determine the importance or contribution of each variable, especially when they interact in

complex ways.

The Shapley factor analysis addresses this challenge by considering all possible combina-

tions of variables and their contributions to the accuracy of a model or multiple complemen-

tary models. Essentially, it answers the question: “What is the average contribution of each

variable to the outcome when all possible combinations of variables are taken into account?”

Therefore, each variable’s SHAP can be interpreted as its average marginal contribution across

all possible combinations of variables. Even with non-linear and complex interactions between

features, SHAP values remain meaningful and interpretable.

3 Results

3.1 Patients characteristics

Patients who died of COVID-19 were significantly older than patients who survived (p<0.001)

in both the female and male groups. The average Braden score was slightly lower among

patients who died (females: p=0.035, males: p=0.021). There was no observable difference

between the mean Glasgow Coma scores of patients who died or survived (females p=0.14,

males: p=0.15). Patients who presented with clear speech and, therefore, presumably had intact

cognitive ability were significantly over-represented among those who survived (odds ratio of

being admitted with clear speech for surviving patients: 5.65 (p<0.001) for females, 3.6

(p<0.001) for males). See Table 2 for a summary of the findings.

Delirium-related symptoms were noted across all patient age groups, but were particularly

prevalent among the elderly. Interestingly, when the cohort was stratified by gender, older

female patients were found to be at a significantly higher risk of developing delirium, whereas

no statistically significant increase in risk was observed among their male counterparts. See

Table 3 and Table A in the S1 Appendix. When adjusting for age, there was no difference in

delirium occurrence between patients in the white and African American subcohorts (p=0.52).

The composite feature that describes the presence of any delirium-related symptoms has

been identified as an excellent univariate predictor of patient outcomes. Patients presenting

delirium symptoms have a significantly higher probability of death, a relationship that has

been observed in both female and male cohorts. See Table 4.

To compare the formulated feature selection models to a benchmark, we created a simple

GLM (non-regularized regression) employing the composite delirium feature, sex, race,

Table 2. Mean ages, Braden scores, Glasgow coma scores, and probabilities of demonstrating a clear speech pattern for patients in the investigated cohort.

Sex Status Age, mean Age, IQR Braden score, mean Coma score, mean P(Clear speech) (95% CI)

Female alive 55.08 25.61 16.92 13.80 0.84 (0.79, 0.88)

died 80.27 19.35 13.90 12.84 0.48 (0.32, 0.65)

Male alive 56.70 20.18 17.11 14.14 0.82 (0.76, 0.87)

died 75.31 12.85 14.15 13.29 0.56 (0.41, 0.7)

https://doi.org/10.1371/journal.pdig.0000327.t002
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Braden score, and age category discretized into three tertiles: young [<55.7], middle [51.7,

66.8] and older [>66.9]. The mathematical specification of the model is provided in the S1

Appendix (Equation G).

Inspection of the model demonstrates that age is the most important predictive factor, fol-

lowed by delirium symptoms and the Braden score. There is no significant difference between

patients of different races. Table B in the S1 Appendix shows the detailed results of the statistical

analysis, and Table C presents the average marginal effects (AME) computed from the model.

After fitting, the model has an AUC of 0.87, a sensitivity of 0.94, and a specificity of 0.3. Post-

hoc analysis demonstrated that after controlling for race, sex, age group, and the Braden score,

the odds of death for patients exhibiting delirium symptoms increased by 5.23 (p<0.001).

3.2 Regularized logistic regression model results

LR-ENET model training was performed using a grid search through the space of parameters

λ and α. An example of a training grid is illustrated in Fig 1.

The performance of the trained LR models is demonstrated in Fig 2. The classifier per-

formed well and was consistently able to reach an AUC of approximately 0.9.

Each regularized logistic regression model in the ensemble was trained with the objective of

limiting the feature count to around twenty. To address data imbalance, the training and fea-

ture selection process included an augmentation step where synthetic data points were gener-

ated. This was achieved by applying the ROSE algorithm [27] directly to each set of

bootstrapped data during the 0.632 bootstrap cross-validation training. This approach not

only addressed the imbalance in the data but also introduced additional variability, presenting

a robust challenge to the classifier.

After each run, absolute values of the different LR-ENET models were collected and scaled

to [0, 1] intervals. These measures were considered reflective of the predictors’ importance.

Due to instability, several lower-performing predictors were observed with non-zero coeffi-

cients, though only in a few runs. On the other hand, consistent predictors emerged in most or

all of the runs. All of the scaled predictive importance values were subsequently analyzed, and

the top 20 were picked for the final selection.

The results illustrating the identified predictive EHR features are summarized in Fig 3. As

mentioned previously, due to the inherent instability of sparse classifiers, each run may result

Table 3. Occurrence of delirium in different age groups of male and female patients in the study.

Age Female Male

No delirium No delirium % Delirium Delirium % Total No delirium No delirium % Delirium Delirium % Total
[17.1, 51.8) 84 92.30% 7 7.70% 91 59 89.40% 7 10.60% 66

[51.8, 66.9) 66 91.70% 6 8.30% 72 72 84.70% 13 15.30% 85

[66.9,101.5] 57 69.50% 25 30.50% 82 60 80.00% 15 20.00% 75

Total 207 84.50% 38 15.50% 245 191 84.50% 35 15.50% 226

https://doi.org/10.1371/journal.pdig.0000327.t003

Table 4. Probability of death given signs of delirium at the hospital admittance and accompanying lower (LCL)

and upper (UCL) 95-percentile confidence limits.

Sex Status P(Death) LCL UCL

Female No delirium 0.08 0.05 0.12

Delirium 0.39 0.25 0.56

Male No delirium 0.13 0.09 0.19

Delirium 0.46 0.30 0.62

https://doi.org/10.1371/journal.pdig.0000327.t004
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Fig 1. Changes in the performance of the elastic-net regularized model in the classification of COVID-19 patients,

expressed as AUC, given different values of α and λ parameters.

https://doi.org/10.1371/journal.pdig.0000327.g001

Fig 2. Performance of the elastic-net regularized regression model in the classification of COVID-19 patients. Ten

independent rounds of model training are shown.

https://doi.org/10.1371/journal.pdig.0000327.g002
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in a slightly different order of selected features. This is expected since informative feature sets

may have multiple subsets that lead to the same classification success. Therefore, formally, the

SHAP analysis should be performed for every separate feature selection run. However, to

obtain some preliminary insight into the explanatory power of the selected features, we con-

ducted the SHAP analysis for only one of the ten LR-ENET-trained classifiers, which well rep-

resented the mean feature importance. The results are demonstrated in Fig 4.

3.3 XGBoost model results

XGBoost performed comparably to the LR-ENET algorithm, although it is noted that the

acquired specificities were often lower. We optimized the XGBoost hyperparameters to maxi-

mize the AUC as opposed to explicitly minimizing the number of utilized features. Therefore,

the algorithm was allowed to employ as few or as many features as were required to optimize

its performance.

The XGBoost model can be used as a feature selection wrapper. In the process of training

the features are selected in ignored in the created trees. On the basis of that, the XGBoost

method ranks the most significant characteristics according to “Gain,” “Cover,” and “Fre-

quency.” The gain reflects how crucial a characteristic is for making a branch of a decision tree

pure. Coverage measures the proportion of observations affected by a feature. A feature’s fre-

quency is the number of times it is used in all created trees (See Fig 5).

The XGBoost algorithm was not directly constrained by the number of used features. The

performance of the XGBoost classifier is shown in Fig 6. The XGBoost-discovered features

were exposed to the SHAP analysis, the results of which are demonstrated in Fig 7.

Fig 3. Importance of elastic-net selected features shown as the normalized absolute value of the regression

coefficients. Multiple runs of the feature selection were executed to alleviate the inherent instability of the sparse

models.

https://doi.org/10.1371/journal.pdig.0000327.g003
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3.4 Discovered predictive features

Both feature-selection strategies identified a number of clinical characteristics that reflect over-

all patient health, cognitive status, and hospitalization risks associated with the patient’s condi-

tion. Here, we list some of the identified features, with a particular focus on those discovered

Fig 4. Example of the SHAP value distribution for all of the tested patients and the augmented dataset. The

visualization was created based on one of the trained LR-ENET classifiers.

https://doi.org/10.1371/journal.pdig.0000327.g004

Fig 5. Importance of features employed by XGBoost algorithm expressed as the frequency at which each feature

was used in the created classification trees.

https://doi.org/10.1371/journal.pdig.0000327.g005
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by the LR-ENET model, which demonstrated superior AUC, sensitivity, and specificity com-

pared to the XGBoost approach.

CNS and cognition-related features. A set of features related to the patient’s neurologic

status was selected. The LR-ENET approach generated a model richer in these features than

the XGBoost model.

• Inability to assess the patient’s speech may be caused by neurologic symptoms (such as loss

of consciousness or the presence of delirium), but it may also be related to intubation. This

Fig 6. Performance of the XGBoost model in repeated independent cross-validation rounds classifying the

COVID-19 patients.

https://doi.org/10.1371/journal.pdig.0000327.g006

Fig 7. Example of SHAP value distribution for all of the tested patients. The visualization was created based on one

of the trained XGBoost classifiers.

https://doi.org/10.1371/journal.pdig.0000327.g007
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EHR observation represents a surrogate measurement of the patient state in both instances,

and its existence significantly suggests an elevated mortality risk.

• Unclear and slurred speech observed by nurses or physicians could be a key indicator of

delirium [28]. Delirium is related to adverse outcomes during hospitalization (e.g., increased

risk of complications) in post-acute care settings, and long-term follow-up (e.g., prolonged

cognitive and functional impairment). The lack of speech clarity is only a surrogate measure

for delirium that might be considered low value given that the presence of delirium is

another explicitly defined feature in the analyzed dataset. However, it should be noted that

there is a significant rate of under-recognition and lack of documentation of delirium in

admitted patients, with less than 3% of cases documented by International Classification of

Diseases-9 (ICD-9) codes in patients’ medical records [28, 29]

• Any evidence of delirium. Among the delirium-related characteristics included in the data-

set is the expressly stated “Presence of delirium.” However, the feature selected as predictive

was “Inability to assess delirium,” which may appear odd and counterintuitive. Examining

the explicit delirium feature reveals a biserial correlation between the feature and the

patient’s registered death of only 0.13, whereas the inability to assess delirium scores -0.25.

This curious selection may be partially explained by the procedure required to assess delir-

ium, which also explains the under-recognition of delirium in general.

The Confusion Evaluation Method, the most used delirium assessment tool, requires an in-

person, bedside discussion with the patient [30]. Because delirium fluctuates, interview-

based approaches may overlook delirium that occurs beyond bedside interviews. It has been

reported that manual searches of all records (e.g., nursing and physician notes, discharge

summaries) may allow the determination of signs of delirium despite the lack of explicit

notes in the records [28]

• “Awake and able to response” is another important neurologic assessment feature. A

patient is scored positively if considered “awake,” “able to respond” (i.e., responding appro-

priately), and “oriented” (aware of self, place, and time) [31]. However, the patient’s situation

may change on the first day after admission. Therefore, patients who were sedated and

unable to be subjected to the neurologic examination may demonstrate full-strength cogni-

tive abilities later. Thus, yet again, this feature provides value in combination with other fea-

tures and cannot be considered in isolation. Interestingly, the Glasgow coma scale (GCS),

which a measure used to determine the level of consciousness in trauma or critically ill indi-

viduals with impaired consciousness and which was also available in the dataset, has not

been utilized by the models.

Patient frailty-related features. Several identified features described the patient’s overall

condition and frailty upon hospital admission.

• Braden score describes the frailty of the patients. The Braden scale was created to identify

early pressure, sore-prone patients. Six sub-scales of the score measure sensory perception,

skin wetness, activity, mobility, friction and shear, and nutrition [32]. Although ample evi-

dence exists for the usefulness and applicability of the Braden scale in predicting patients’

conditions during hospitalization [33], the scale has been criticized for lacking explainability

and detail from the machine learning perspective [34]. On the other hand, a retrospective

study of 146 COVID-19 patients demonstrated that the Braden score is indeed helpful for

risk stratification at hospital admission, as the mortality among patients with BS�15 was sig-

nificantly higher than in patients with BS>15 [35].
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In our research context, Braden score features also appear to identify particularly vulnerable

patients. Interestingly, only two sub-scales (moisture and nutrition) have been included by

the LR-ENET classifier in the final model. On the other hand, the XGBoost model did not

rely on Braden scores.

• Number of lumens Multiple studies have demonstrated a substantial correlation between

the number of PICC lumens and the risk of complications, including central-line associated

bloodstream infection (CLABSI), venous thrombosis, and catheter occlusion [36, 37].

• The requirement for a respiratory technician to be present during the transportation of

the patient is yet another predictive EHR feature that communicates the severity of the

patient’s condition.

• The urine voiding count feature is connected with the lower urinary tract symptoms. The

medical literature describes an association between LUTS and COVID [38–40]. According to

these reports, there was a high prevalence of abnormal urinary storage symptoms, urine fre-

quency, urgency, and urinary incontinence among the SARS-CoV-2-infected patients. The

data indicate that the majority of COVID-19 patients may experience increased urination fre-

quency, nocturia, and urgency during the infection. Also, patients with urine storage symp-

toms were found to have considerably higher COVID-19 severity levels than those without

urine storage symptoms [40]. The urinary symptoms might be caused directly by inflammation

or indirectly by COVID-19-related general dysfunction in the autonomic nervous system [41].

Clinical laboratory test results. Report on the patient’s physiological status. Specifically,

two test results were identified by our feature selection methods.

• The measurement of urea nitrogen in serum or plasma (BUN SerPl test) assesses the kid-

ney’s function. High urea nitrogen levels in the BUN test indicate problems with renal func-

tion or a reduction in blood supply to the kidneys. A reduction in urea nitrogen, as

measured by the BUN test, indicates serious liver illness or malnutrition. The outcomes of

the BUN test were put into the XGBoost model’s identified collection of features. However,

they were not among the top 20 features identified by LR-ENET. In the analyzed cohort,

there was a significant difference in test findings between patients who died and those who

survived (p<0.001). These observations are consistent with literature reports [42, 43].

• Brain natriuretic peptide (BNP) is an active fragment (1–32) of the cardiac cell-produced

ProBNP. It is elevated in right-sided and left-sided heart failure, as well as systolic and diastolic

heart failure. It is, therefore, used to identify and treat heart failure. The BNP test was recog-

nized as an important feature by the XGBoost-feature selection, but not the LR-ENET. In the

tested cohort, the values of the BNP test were substantially higher for male patients who died

(p<0.001) but not for females (p=0.23). Others have recently postulated that BNP should be

considered an early predictor of clinical severity in patients with COVID-19 pneumonia [44].

4 Discussion

4.1 Clinical feature selection

When analyzing disease mortality causes, the search for predictive factors typically begins with

the formulation of a hypothesis based on domain knowledge of the underlying diseases and

initial preliminary evidence, such as case studies and anecdotal reports. This hypothesis-driven

process is philosophically well-established and operationally widely accepted. Despite the fact
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that this conventional path of hypothesis-driven research has been challenged numerous times

in recent years, particularly by the rise of genomics, for many researchers it is virtually synony-

mous with the scientific method itself [45]. The alternative paradigm, often referred to as data-

driven research, begins with an agnostic stance that does not involve a preconceived hypothe-

sis and instead employs either a data reduction process that results in the emergence of a

model or a supervised model-building process that reveals predictive features that explain

observed outcomes.

Here, we examined three methods for identifying factors predictive of mortality among

COVID-19 patients with severe disease necessitating hospitalization. As a baseline, we utilized

a standard statistical technique for formulating a hypothesis and generating or selecting

hypothesized predictive factors through a non-regularized GLM framework. In carrying out

this method, we used a composite delirium factor, which is a combination of multiple EHR

characteristics/symptoms associated with delirium occurrence. We also accounted for age,

race, and sex, which we recognized as notable confounding variables plausibly related to the

outcome. The developed model revealed a significant increase in the likelihood of death for

hospitalized patients exhibiting any symptom of delirium.

Subsequently, we developed two feature discovery models using two well-established

machine learning techniques. The first model utilized regularized elastic-net logistic regres-

sion. A sparse collection of predictors was generated using the model’s inbuilt feature selection

capability. However, as previously established, the sparse models are inherently unstable, and

the selection of reliably predictive features necessitated many model runs and a compilation of

the findings [25]. The most consistently predicted variables across numerous runs were evalu-

ated using the SHAP method to obtain insight into their local significance for patient

classification.

The second machine learning model utilized the XGBoost tree learning technique. Unlike

the LR-ENET approach which enforced sparsity, this method freely utilized all available clini-

cal features. After multiple rounds of independent training and cross-validation, the algorithm

demonstrated high stability, ultimately producing very similar results. To represent feature

importance, data from the internals of trained classifiers (gain and frequency) were extracted.

A secondary XGBoost model was then trained using the top features, and its SHAP values

were assessed.

Our findings demonstrate that the two distinct classifiers relied on very different sets of pre-

dictive features during optimization and training. Age, surrogate measures for the patients’

cognitive status (neurologic observations), features broadly describing the patients’ overall

condition upon admission (such as the Braden score), and features associated with a risk of

serious complications requiring hospitalization (such as the number of catheter lumens) were

the descriptors that the LR-ENET model selected. It is interesting to note that common clinical

laboratory test results were not chosen during the feature selection process by LR-ENET.

XGBoost, on the other hand, placed considerable emphasis on laboratory test results,

including values obtained from the BUN and BNP tests. XGBoost captured the patient’s overall

condition by analyzing variables such as oral fluid consumption, oxygen saturation, ventilator

use, etc. Despite the fact that the features chosen by XGBoost are frequently more quantitative

and objective, the overall performance of the XGBoost model was marginally inferior in terms

of specificity (such as in the case of the laboratory test results).

4.2 Limitations

It is important to acknowledge that the study presented here has certain critical limitations

that require a thorough understanding.
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The study lacks consideration of the patients’ comorbidity status, which is a complex and

multifaceted area. It is widely acknowledged that patients with severe and potentially fatal

cases of SARS-CoV-2 infection typically have multiple comorbidities [46–52]. This is also true

for our specific cohort, and has been demonstrated by the data continuously collected by the

Regenstrief Institute on patients from Indiana [53, 54]. However, due to the limited sample

size and diverse range of comorbidities present, we would not be able to draw any conclusive

inferences about which specific comorbidities may impact the likelihood of mortality.

The other limitation stems directly from the question of the extent to which the deaths

among the patients in the study cohort can be directly associated with COVID-19, rather than

other unrelated factors. The patients were admitted to the hospital’s ICU due to the onset of

symptoms, not because of results of a screening test. As the admission occurred before the

availability of rapid testing, it was assumed that the severity of symptoms was at least correlated

with their later confirmed COVID status. It is important to bear in mind that in the early

phase of the pandemic, the admission of patients without severe respiratory distress symptoms

was minimized across hospital systems in the US and elsewhere [55, 56]. It would be impossi-

ble to ascertain whether every individual patient in the cohort who died indeed died “from”

COVID or rather “with” COVID unless an autopsy followed by a detailed inquest were per-

formed in every case. However, the studies on overall mortality in the US indicate an underes-

timation, rather than an overestimation, of COVID mortality [57, 58].

Fillmore et al. showed that the number of hospitalized patients testing positive for COVID-

19 without exhibiting related symptoms rose in tandem with greater virus exposure and

advancements in vaccination programs [59]. Consequently, it is now more crucial to differen-

tiate between patients who died “with” COVID-19 and those who died “due to” COVID-19,

especially when analyzing recent data, as opposed to the historical data from the early and

mid-2020s, which we used.

The described limitation is related to the wider issue of clinical coding, as possible errors in

coding for mortality and morbidity significantly impact any use of machine learning in clinical

decision support. We recognize that potential inaccuracies in ICD code assignment, and

resulting data inconsistencies, may lead to flawed machine learning models, yielding unreliable

predictions.

Lastly, it is important to note that our research utilizes a specifically narrow understanding

of causal links. While feature importance scores as well as Shapley factors are valuable tools for

attributing potentially causal effects to individual variables or factors within a presupposed

causal model—particularly in cases where multiple variables are involved—we do not claim

that a high Shapley value (or another metric of statistical association) is, on its own, proof of a

causal relationship [60].

However, the measures of feature importance can indicate to which extent changing the

variable (intervention) may contribute to changes in the outcome. This aligns with the causal

inference goal of understanding the effect of interventions. They also help to decompose these

interactions between variables. This is crucial in causal inference, as it aids in understanding

how combined interventions might affect an outcome.

The measures of clinical feature importance do inspire counterfactual reasoning, as they

allow us to consider the contributions of variables under different intervention scenarios. For

instance, the significant impact of delirium suggests that preventing its onset could be a com-

pelling strategy for intervention. Such variables can then be further investigated for causal rela-

tionships using a randomized clinical trial setting.

In essence, the clinical features (surrogate measures) identified as important indicators for

certain underlying conditions, as detailed in the “Results” section, highlight noteworthy statis-

tical associations. It’s important to note that the presence of these associations alone does not
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establish causality. For that, interventions are necessary, and our model offers recommended

intervention strategies that show the greatest potential.

5 Conclusions

Risk stratification of hospitalized COVID-19 patients is crucial for informing individual treat-

ment decisions that also account for resource allocation. Multiple risk models proposed so far

have been based on mechanistic hypotheses regarding the SARS-CoV-2 mode of action, the

association between comorbidities and observed outcomes, as well as hypothesized models of

disease progression. In this report, we demonstrated the use of a machine learning-based,

hypothesis-agnostic methodology for the discovery of predictive risk factors, which produces

an easily understandable, observable, explainable, and actionable set of clinical features that

may cause or be closely associated with in-hospital COVID-19 mortality.

This work sets the stage for future intervention-based studies aimed at addressing hypothe-

ses that the clinical features identified here are causally linked to COVID-19 mortality. Even in

the absence of established causal relationships, our findings suggest that analyses of these fea-

tures should be prioritized to identify patients with COVID-19 (and, potentially, other forms

of acute respiratory distress syndrome) having an elevated risk of mortality.

Supporting information

S1 Appendix. Table A. Summary of differences in the occurrence of delirium among the

three age groups of patients. Table B. Statistical summary of the regression model shown in S1
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variable on the predicted outcome, averaged across all observations in the dataset. It provides a
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