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Abstract

The automatic recognition of gene names and their corresponding database identifiers in 

biomedical text is an important first step for many downstream text-mining applications. While 

current methods for tagging gene entities have been developed for biomedical literature, their 

performance on species other than human is sub-stantially lower due to the lack of annotation 

data. We therefore present the NLM-Gene corpus, a high-quality manually annotated corpus 

for genes developed at the US National Library of Medicine (NLM), covering ambiguous gene 

names, with an average of 29 gene mentions (10 unique identifiers) per document, and a broader 

representation of different species (including Homo sapiens, Mus musculus, Rattus norvegicus, 
Drosophila melanogaster, Arabidopsis thaliana, Danio rerio, etc.) when compared to previous 

gene annotation corpora. NLM-Gene consists of 550 PubMed abstracts from 156 biomedical 

journals, doubly annotated by six experienced NLM indexers, randomly paired for each document 

to control for bias. The annotators worked in three annotation rounds until they reached complete 
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agreement. This gold-standard corpus can serve as a benchmark to develop & test new gene text 

mining algorithms. Using this new resource, we have developed a new gene finding algorithm 

based on deep learning which improved both on precision and recall from existing tools. The 

NLM-Gene annotated corpus is freely available at ftp://ftp.ncbi.nlm.nih.gov/pub/lu/NLMGene. We 

have also applied this tool to the entire PubMed/PMC with their results freely accessible through 

our web-based tool PubTator (www.ncbi.nlm.nih.gov/research/pubtator).
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1. Introduction

Automated biomedical natural language processing (BioNLP) is increasingly important for 

today’s biomedical research [1–3]. PubMed® (pubmed.gov), built and maintained by the 

US National Library of Medicine (NLM), provides free access to more than 32 million 

biomedical literature articles, and PubMed Central® (PMC), the free full-text archive of 

biomedical and life sciences journal literature at the NLM currently comprises almost 7 

million articles.

Text mining and BioNLP tools make it possible to automatically peruse this vast literature 

and extract key knowledge on specific biomedical topics, such as protein–protein/drug-drug 

interactions [4–9], protein functions [10,11], and genetic mutations and their associations 

with disease [12–15]. The first, crucial step in the pipeline of BioNLP tasks is the named 

entity recognition (NER) task: to automatically identify the names of biological entities 

(e.g., gene/protein) from unstructured texts [16].

Automatic identification of genes (note that we use gene and protein interchangeably in 

this paper) [17–19], in addition to diseases [20,21] and chemicals [22,23], has received 

much attention from the BioNLP research community [24–28] due to their central role 

in biomedical research. Their correct automatic recognition, however, remains challenging 

due to both language variation and ambiguity. For example, in the biomedical literature, 

the same gene can be referred to in multiple different ways by different authors in 

different articles. Such linguistic differences could include orthographical variations (e.g., 

“ESR1” and “ESR-1”), morphological variations (e.g., “GHF-1 transcriptional factor” and 

“GHF-1 transcription factor”), abbreviated terms (e.g., “estrogen receptor alpha (ERα)”), 

or composite mentions (e.g., “BRCA1/2” and “SMADs 1, 5, and 8”). In addition, a 

given gene mention in biomedical literature can also refer to different entities written by 

different authors in different articles. These types of ambiguity could include: multispecies 

(orthologous) ambiguity (e.g., erbb2 can be either a human gene or mouse gene name); same 

species, different gene ambiguity (e.g., “AP1” can refer to either “jun proto-oncogene”, 

Entrez Gene: 3725, or “FBJ murine osteosarcoma viral oncogene homolog”, Entrez 

Gene: 2353, both human); different biomedical entity ambiguity (e.g., “Dtd” can refer 

to “D-aminoacyl-tRNA deacylase (Drosophila melanogaster)”, Entrez Gene: 41371, or 
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“Diastrophic dysplasia” disease MeSH ID: C536170); or English language ambiguity (e.g., 

FOX).

At the National Library of Medicine (NLM), our interest in developing NLM-Gene arose 

from the fact that, despite the previous work in BioNLP research to automatically identify 

genes in biomedical text, gene recognition tools have difficulty with: (1) articles that contain 

a large number of gene mentions, (2) articles that discuss genes in the context of multiple 

species, or (3) articles that contain mentions of other biomedical entities such as diseases, 

chemicals and mutations. Such articles are of great interest to biocurators because they 

discuss molecular interactions, and/or gene-disease relationships; however, they exceed the 

capabilities of current state-of-the-art automatic gene annotation tools.

In developing this work, we were inspired and encouraged by the significant progress made 

by the community-wide shared tasks on gene recognition [19,29–31]. In particular, our 

current success has a strong foundation on the previously developed gene entity annotated 

corpora that included both gene mentions and concept identifiers for the same set of articles 

[17,32].

Taken together, this work makes the following significant contributions:

First, we present a new high-quality, manually annotated corpus of genes from biomedical 

literature. The NLM-Gene corpus contains 550 PubMed abstracts, and it differs from 

previous corpora because it was selected to be rich in gene mentions, rich in other 

biomedical entities, and representative for multiple species. Also, these articles were 

published in many different journals to represent a wide range of language variation. These 

characteristics make this corpus invaluable for the advancement and improvement of text 

mining tools for accurate gene entity identification.

Second, we build a new end-to-end system that includes both name entity recognition and 

gene entity recognition modules, for improved performance. This system is the upgraded 

GNormPlus tool [17], which has been improved with a deep learning component for named 

entity recognition, and several other features to improve on accurate species identification, 

gene entity recognition, and false positive detection.

Finally, our new resource and upgraded tool are publicly available at ftp://

ftp.ncbi.nlm.nih.gov/pub/lu/NLMGene and the gene finding results have been 

streamlined to process all PubMed and PMC articles (in daily updates 

via API: https://www.ncbi.nlm.nih.gov/research/bionlp/APIs/ and/or Pubtator: https://

www.ncbi.nlm.nih.gov/research/pubtator/.

This manuscript is organized as follows: In Methods, we describe our corpus development, 

annotation process, annotation guidelines, annotation tool, and the details of the automatic 

gene recognition method. In Results, we detail the corpus characteristics, we compare it with 

previous gene annotation corpora, and detail the new advantages. Finally, our evaluation 

shows that the new corpus significantly improves the gene prediction results, not only on 

the NLM-Gene corpus when used as a benchmark, but also when validated on a previously 

unseen dataset.
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2. Materials and methods

2.1. Corpus development

The development of the NLM-Gene corpus followed a systematic approach, which is 

schematically detailed in Fig. 1.

Six National Library of Medicine (NLM) indexers, professional gene curators for the 

GENERIF project (https://www.ncbi.nlm.nih.gov/gene/about-generif/), with an average 

work experience of 20 years in biomedical data curation, participated in this project. 

GENERIF is a program at the NLM where the expert indexers create functional annotations 

for genes in the NCBI Gene database (https://www.ncbi.nlm.nih.gov/gene/), by linking 

PubMed articles describing a function or functions of that gene.

Based on our previous experience in corpora annotation [6,20,33], the NLM-Gene corpus 

annotation followed these steps, also detailed in Fig. 1:

1. Pilot phase: Initially 40 PubMed documents were randomly selected, following 

the criteria that they contained at least one predicted gene, and that the set 

contained genes from organisms other than human. The annotators reviewed 

the automatic gene identification in the sample articles, reviewed and corrected 

mention-level annotation, reviewed and corrected gene-ID normalization, and 

discussed how to annotate different cases, and categorize different possible cases. 

The initial draft of the annotation guidelines (supplementary file) was written.

2. Data Selection: Our goal was to identify documents where manual curation 

is useful for tool improvement, and automated tools do not produce accurate 

results. These articles have the following characteristics: they contain more gene 

mentions than average, they mention genes from a variety of organisms, and 

often more than one organism, they contain ambiguous gene mentions, and they 

discuss genes in relation to other biomedical topics such as diseases, chemicals, 

and mutations.

In order to optimize for the constraints listed above, we designed the following procedure:

• We began with all articles in PubMed, with publicly available full text in the 

PubMed Central Open Access dataset and considered their titles and abstracts.

• We ran our suite of biomedical named entity recognition tools (PubTator) and 

gave a higher weight to documents containing at least one non-gene biomedical 

entity in the abstract (either disease, chemical, mutation or species).

• We gave a higher weight to documents containing genes from these organisms: 

human, mouse, rat, frog, zebrafish, thale cress, fruit fly, roundworm, yeast, 

fission yeast, and E. coli.

• We gave a higher weight to documents containing multiple predicted genes.

• We gave a higher weight to documents containing an ambiguous gene term.
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• We ran two different gene entity recognition models and gave a higher weight 

to documents with a high level of disagreement between the two different gene 

recognition tools.

The gene name entity recognition models were:

1. The gene annotations provided by PubTator, created using GNormPlus.

2. The gene annotations provided by the bluebert model trained using the 

GNormPlus corpus.

Fundamentally, our goal was to create a dataset that could train Gene NER algorithms to 

produce high-quality results in biomedical text, but also create a suitable dataset that could 

be used for other downstream biomedical text mining tasks.

3. Annotation process: Annotation was performed in four data batches. The first 

batch consisted of 100 PubMed documents, and the following three contained 

150 each. Each batch was annotated in three annotation rounds using the newly 

developed annotation tool TeamTat (https://www.teamtat.org/) [34] (this corpus 

annotation project was instrumental in the development of TeamTat, because it 

gave real-time input on useful annotation features.)

Here is how we performed multi-user annotation for a batch of documents in the NLM-Gene 

corpus:

4. Round 0. Documents were pre-annotated with the GNormPlus [17] gene finding 

tool, and they were uploaded to TeamTat.

5. Round 1. Annotators were blindly paired per article, and they individually 

reviewed pre-annotations for each article in their set. Regular meetings brought 

up aspects of annotation that were not considered in the pilot, and annotation 

guidelines were updated accordingly.

Once all documents in the current batch were annotated, annotations and corrections from 

the individual annotators were merged into one copy of the document. TeamTat allows for 

visual cues to mark annotations where annotators disagree with each other. The project 

manager computed inter-annotator agreement (IAA) statistics. The IAA for round 1 of 

annotations in the NLM-Gene corpus, averaged over the four annotation batches, was 74%.

6. Round 2. Annotators worked individually, and still unaware of their annotation 

partner’s identities. They reviewed and revised all annotations. Because the tool 

facilitates the revision of disagreements, the work was naturally more focused, 

and therefore more efficient for the annotators.

Once all the documents in the batch were reviewed, all revised annotations were again 

merged to produce one copy, and the project leader produced the inter-annotator agreement. 

The IAA for round 2 of annotations in the NLM-Gene corpus, averaged over the four 

annotation batches, was 86%.

Regular annotator meetings provided opportunity for discussion of annotation issues 

discovered during annotation of new articles and annotation guidelines were updated 

accordingly.
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7. Round 3. Annotators learned the identities of their annotation partners for each 

article, and they collaboratively revised and discussed the differences, reaching 

complete consensus in the articles that they annotated.

8. The 550 annotated PubMed documents constitute the NLM-Gene corpus.

This process may be generalized for generation of other gold-standard benchmark 

annotation corpora. We recommend the use of the TeamTat annotation tool, as it provides 

great flexibility on adapting to different annotation projects and provides an efficient and 

intuitive user interface.

2.2. TeamTat annotation tool

The development of the TeamTat annotation tool [34] was a byproduct of our NLM-Gene 

development work, aiming to ensure the high quality of the corpus and ease the burden 

of annotators, so that their time was used efficiently and productively. Collaborative text 

annotation is a complex process, and requires domain experts, project managers and a wide 

range of automatic pre-processing, user interface, and evaluation tools. Teamtat provided 

an interactive, intuitive user interface for project management and document annotation, 

supporting full text articles and figure display, highlighted pre-annotation to help achieve 

time and cost savings, corpus quality assessment, and the ability to organize annotation 

process until the desired corpus quality is achieved. A screenshot of the TeamTat annotation 

tool can be seen in Fig. 2.

The TeamTat annotation tool automates all the steps listed in the Corpus Development 

section above, allows the user to define a benchmark corpus annotation project with ease, 

and coordinate a team of human experts to label the data with efficiency.

2.3. Annotation guidelines

This manuscript is accompanied with a detailed description of the NLM-Gene corpus 

annotation guidelines, given in a supplementary file. The following is a summary of the 

most salient points:

1. The NLM-Gene annotators annotated the title and abstract of a journal article, 

however they had access to the full text, and referred to the full text as needed to 

fully annotate each entity mentioned in the title/abstract.

2. The NLM-Gene annotators distinguished between genes being the focus of an 

article, and other gene mentions, and marked them accordingly:

a. GENERIF – the annotated gene meets the criteria for creating a 

GeneRIF - the basic biology or clinical significance of a gene/gene 

product is the primary point of the article.

b. STARGENE – the annotated gene is a main point of the article but does 

not meet the criteria for creating a GeneRIF. (It is implied that a gene 

mention tagged as GENERIF is automatically the STARGENE of the 

article)

c. GENE – the annotated gene is mentioned, but is not a main point.
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d. DOMAIN – the word denotes a protein domain

e. OTHER – the gene mentioned is either a gene product used as 

therapeutic or pharmacological agent, or a gene used as a tool (e. g. 

marker gene, gene used in techniques, etc.)

3. A composite gene mention, e.g., Smad 1, 2, and 8, was annotated as one string, 

linked to three identifiers, that correspond to the order of appearance for Smad 1, 
Smad 2 and Smad 8. These identifiers are separated by a semi-colon.

4. A gene mention that refers to two genes (e.g., gene mention referring to both 

human and mouse organisms) is linked to both corresponding gene identifiers, 

separated by a comma. The annotation tool automatically sorts the identifiers in 

numerical order.

5. The NLM-Gene annotators distinguished between gene mentions discussing a 

general characteristic of a gene, versus a specific gene of a specific organism 

which is linked to experimental evidence.

6. The NLM-Gene annotators distinguished between individual gene mentions and 

family (class, group, complex) gene mentions. Since there exists no standardized 

vocabulary for gene families, gene families in the NLM-Gene corpus were 

annotated with all gene identifiers of their respective members mentioned in the 

title and abstract. For specific details and examples, see annotation guidelines.

7. NLM-Gene corpus does not contain annotations for non-standard gene 

references within articles. Gene references that do not use a standard name, 

synonym, or abbreviation (e.g. gene a, compound x) are not annotated.

8. The NLM-Gene corpus annotates the genes for the organism that is the source 

of the gene, in the articles describing experimental organisms (e.g., mouse gene 

transfected into human cells is annotated to record for mouse gene).

9. The NLM-Gene corpus does not annotate gene products used as therapeutic or 

pharmacological agents, or genes used as tools (e.g. marker genes, genes used in 

techniques). If identified, these mentions are given the annotation type “Other”.

2.4. Gene recognition method overview

Gene name entity recognition is the process in natural language processing that helps 

identify which words or phrases mentioned in the text are gene names. Gene name 

normalization, on the other hand, requires that the entity of interest is mapped from the 

word or phrase in the text to a corresponding known entity catalogued in a target knowledge 

base, in our case, the NCBI GENE database (https://www.ncbi.nlm.nih.gov/gene/).

We use GNormPlus [17] as our gene NER tool. GNormPlus is an end-to-end system that 

handles both gene/protein name and identifier detection in biomedical literature, including 

gene/protein mentions, family names and domain names. GNormPlus has compared 

favorably with previously reported gene finding systems and is the system of choice for 

PubTator [35]. The GNormPlus system consists of two major components: the Name Entity 

Recognition component, which recognizes the gene mentions in the text, and the Gene 
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Entity Normalization component, which recognizes which gene is mentioned in the text and 

pairs the mention with a database identifier.

GNormPlus uses a Conditional Random Fields (CRF) [36] model to recognize the boundary 

of the gene names and combines SR4GN [37] with a lexicon of gene/protein family names 

and the domain information to disambiguate the corresponding species and normalize 

the gene identifiers. GNormPlus further integrates Ab3P [38], an abbreviation resolution 

and composite mention simplification tool, and SimConcept [39], a composite name 

entity resolution tool (BRCA1/2 entity refers to two separate concepts) to optimize the 

performance.

We first used the annotated NLM-Gene corpus batches to enrich the GNormPlus corpus and 

obtain a larger training corpus for gene name recognition. Next, upon analyzing the testing 

errors, we decided to incorporate several improvements and upgrades to the GNormPlus 

system to better improve its accuracy. These upgrades are shown in Fig. 3 and detailed 

below.

Our analysis showed that there is room to improve both the Name Entity Recognition, as 

well as the Gene Entity Normalization. Regarding the Name Entity Recognition component, 

we made two important updates in the GNormPlus system:

1. BlueBERT [40]: This component allows the GNormPlus system to switch 

between a conditional random field named entity recognition training model and 

the BlueBERT deep learning model. The tradeoff is the required time available 

for training.

2. SR4GN: This GNormPlus component identifies a species for each gene mention 

in the text given the clues in the surrounding text. This component has been 

upgraded to account for a new feature that recognizes a prefix term in a species 

mention (i.e. Ae. aegypti stands for Aedes aegypti) and a species prefix term in 

a gene mention (i.e. NtHAK1 stands for Nicotiana tabacum HAK1, and TgCPL 
stands for Toxoplazma gondii cathepsin L). Better species recognition improves 

gene entity normalization. Our analysis of PubMed/PMC revealed that there 

were more than 300 thousand articles containing mentions of species expressed 

in this form, and more that 27 thousand articles containing mentions of genes 

with a species prefix of this form.

For the Gene Entity Normalization component, we added these refinement steps that 

improved accuracy:

1. Recognition of abbreviations defined in the article to filter false 

positives. For example, in an article where we find the text “… 

the associations between public stigma, desire for social 

distance, familiarity with mental illness and CSE in 

community members. The CSE of those with MHCs correlated 

positively with their personal recovery…”, given that CSE is the 

official symbol for the human gene 1433, coding for episodic choreoathetosis/
spasticity, the gene finding program will confidently label it as such. However, 
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upon further inspection, the abbreviation finding algorithm identifies that the 

term CSE is else-where in the article defined as short term notation for creative 
self-efficacy. This information allows the Gene Entity Normalization component 

to review its decision and remove the labelling. Our analysis of PubMed/PMC 

revealed that there were more than 5 million articles containing such ambiguous 

abbreviated term mentions, and the NLM-Gene corpus contains 47 documents 

with such examples.

2. Gene mention needs to be modified based on a prefix/suffix. For example, 

the term HSD1KO is used as a notation for HSD1 knockout gene. Being able 

to recognize what the -KO suffix stands for knockout, allows the program 

to re-adjust the boundaries of the gene mention and map it to the correct 

gene identifier. Our analysis of PubMed/PMC revealed that there were more 

than 60 thousand articles containing such prefix/suffix terms embedded in the 

gene mentions, and the NLM-Gene corpus contains 25 documents with such 

examples.

3. Results

3.1. NLM-Gene corpus characteristics

The NLM-Gene corpus is currently the most refined gene annotation corpus (Table 1), 

covering a variety of gene names, with an average of 29 gene mentions (10 unique 

identifiers) per document, and a broader representation of different species (28 different 

species, including human, mouse, rat, fruit fly, thale cress, zebrafish, worm, frog, yeast, 
etc.). Annotators annotated the title and abstract of a PubMed document. These articles were 

published in 156 different journals.

NLM-Gene was annotated so that it could work in complement with other previously 

annotated gene corpora, such as GNormPlus. In addition to the GNormPlus corpus, NLM-

gene contributes valuable annotations increasing both the diversity of the gene mentions 

and identifiers, as well as the number of species. Table 1 compares the number of articles, 

number of journals, number of unique gene mentions and identifiers in both corpora, and 

clearly displays that NLM-Gene documents are significantly denser in gene mention/entity 

content. When comparing the gene annotations per document by their respective species, 

we notice that a typical document in the NLM-Gene corpus contains gene annotations from 

a number of species ranging from 1 to 4, with an average of 1.38. In comparison, the 

GNormPlus corpus contains a maximum of two species, and the average number is 0.96. 

Fig. 4 shows the rate of common occurrences for the gene mentions and gene identifiers 

that appear in both corpora. The NLM-Gene corpus brings a 247% increase in new gene 

identifiers, and a significantly broader representation of different species.

Table 2 shows the top ten species in the NLM-Gene corpus, compared with the 

corresponding distribution in the GNormPlus corpus. Here we count the number of (PMID-

Gene ID) pairs for each species for both corpora, which means that for each normalized 

gene, we count its occurrence once for each document it appears in. While both corpora 

have a similar number of species, the NLM-Gene has more than triple the number of PMID-
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Gene ID pairs. GNormPlus is mostly concentrated on human genes, with only 6 species 

having more than ten genes in the corpus. NLM-Gene, on the other hand, has balanced 

representation between human and mouse, and contains sufficient examples for many more 

organisms.

3.2. Improved performance of automatic gene identification

An important step in corpus development is identifying a good split between the set of 

documents to be designated as the train set and test set. An optimal split is useful for the 

development of new algorithms, meaning that the data needs to be similar and not have 

unexpected biases. For the NLM-Gene corpus, we prepared a split of 450/100 articles.

To ensure a similar distribution of documents in all the sets, we sampled proportionally 

from each annotation batch, selecting the articles so that the gene mention and gene 

ID distribution approximated those of the full corpus. This step ensured that we did not 

inadvertently split the dataset into defined clusters.

Table 3 summarizes our evaluations for automatic gene recognition. The first evaluation 

shows the performance of our previous system GNormPlus, for joint named entity 

recognition and normalization of genes, when trained on the original corpus (the GNormPlus 

corpus) and evaluated on the NLM-Gene test dataset. The second evaluation shows the 

performance of the GNormPlus system trained on the GNormPlus corpus and the NLM-

Gene train dataset and evaluated on the NLM-Gene test dataset. The difference between 

these two evaluations clearly shows an improvement in performance, due to the much richer 

training data including many more organisms contributed by the NLM-Gene corpus.

The third evaluation shows the BlueBERT model upgrade of the GNormPlus system, when 

trained on PubMed and fine-tuned on the new training data, tested on the NLM-Gene 

test dataset. For this experiment we use all other components of original GNormPlus but 

substitute the Conditional Random Fields component for BlueBERT. We see a further 

improvement in the precision of gene name entity recognition, which translates into an 

improvement in the precision of correctly identifying genes. This evaluation shows the 

contribution of the deep learning component to the performance improvement.

The fourth row shows the performance when all upgrades of the GNormPlus are included in 

addition to the deep learning component. It is noticeable that we gain both in name entity 

recognition, as well as in the gene entity recognition. Note that the inter-annotator agreement 

(after the first round) for the gene annotation task was 74%, so this evaluation result is on 
par with human assessment.

The last row shows a relaxed normalization evaluation, that accepts an incorrect species 

assignment for a given gene, so long as the prediction is a known homologue of the correct 

gene. Most information retrieval tasks as well as database curation tasks are likely to prefer 

this mode of operation.
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3.3. Improved performance of automatic gene recognition for different species

We applied the new gene finding model trained on the NLM-Gene/GNormPlus corpus to a 

previously unseen set of 30,000 articles from the GENERIF curated articles. The GENERIF 

curated articles, constitute a gold-standard dataset of more than 800,000 articles that have 

been manually annotated over the years. The articles we used for this experiment were 

randomly selected from this larger set.

Table 4 shows the top 15 organisms (from 618) comprising nearly 95% of all curated gene 

links (in the 30,000 articles) and the number of PMID-Gene ID pairs for each organism in 

this dataset. In Table 4, we also list the recall accuracy score that our new and improved gene 

recognition tool achieves for each species. This score is computed by giving full credit to the 

algorithm when the manually annotated gene ID is correctly predicted, and a weighted credit 

when an ortholog gene is reported instead (For this experiment, the algorithm reported an 

ortholog when not able to identify the correct species in 6% of the cases). The highlighted 

values note the organisms for which the improvement in score compared to the original 

GNormPlus is statistically significant. Furthermore, if we considered the prediction scores 

for all the genes from all 618 species, the majority of which was not seen in the training 

data, the improvement is statistically significant with p-value = 3.44E-05. The algorithm has 

high confidence for a variety of organisms with the exception of bacteria, which are poorly 

represented in the NLM-Gene corpus. We recommend that future manual gene annotation 

efforts be applied on the bacterial genomes to further improve automatic gene recognition.

3.4. The practical use of automatic gene prediction in biomedical literature

To measure the utility of the gene tool for a real-life application we tested the actual 

gene recognition in PubMed. We ran our upgraded GNormPlus tool over all the articles 

with PubMed publication dates between Feb 11 and 25, 2020. Since this set consisted of 

more than 200 thousand PubMed abstracts, 200 documents were randomly selected, and 

the gene prediction results were given to six NLM indexers to review. This set contained a 

random distribution of organisms, including some not seen in the training set. The indexers 

reported: (1) ease of indexing for gene terms, due to the highlighting of gene terms and 

accurate identification of gene identifiers, and (2) significant drop in the review time, due 

to the automatic annotations. In response, our team has incorporated the new and upgraded 

GNormPlus to the PubTator system, and all articles received in PubMed daily are tagged for 

genes, species and other bio-entities. The data are available to the public the next day.

4. Discussion

In this manuscript we presented NLM-Gene, a new benchmark resource for gene entity 

recognition in biomedical literature. NLM-Gene is a high-quality corpus, doubly annotated 

by six NLM indexers, in three rounds of annotation, and all annotator disagreements have 

been resolved. NLM-Gene consists of 550 PubMed documents, from 156 journals, and 

contains more than 15 thousand unique gene names, corresponding to more than five 

thousand gene identifiers (NCBI Gene taxonomy). This corpus contains gene annotation 

data from 28 organisms.
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The annotated documents were selected so that they were rich in gene mentions and 

other biomedical entities, such as chemicals, diseases and/or mutations, and as such the 

collection contains on average 29 gene names, and 10 gene identifiers per document. These 

characteristics demonstrate that this dataset is an important benchmark to test the accuracy 

of gene recognition algorithms both on multi-species and ambiguous data. We believe 

the NLM-Gene corpus will be invaluable for advancing text-mining techniques for gene 

identification tasks in biomedical text.

In order to achieve a robust result of gene entity recognition that could translate to real 

life applications, we upgraded the GNormPlus system with deep learning for the name 

entity recognition component and several features that ensured better accuracy for species 

recognition, and false positive prediction detection. The new results are superior and identify 

genes in the NLM-Gene test dataset close to the performance of human inter-annotator 

agreement.

Because the goal of our NLM research is to provide practical benefits, NLM-Gene is 

available at Dryad [41] and at ftp://ftp.ncbi.nlm.nih.gov/pub/lu/NLMGene, the gene entity 

recognition results have been streamlined to process all PubMed articles in daily updates: 

https://www.ncbi.nlm.nih.gov/research/bionlp/APIs/, and the corpus development process 

can be adapted to create other gold-standard annotation corpora via our team annotation tool 

TeamTat (www.teamtat.org).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The NLM-Gene corpus annotation process.
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Fig. 2. 
The Teamtat annotation tool. Shown, a document from the NLM-Gene annotation project. 

The interface allows easy access to the PubMed and PMC records, highlights all 

annotations, and distinguishes between different annotation types.
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Fig. 3. 
Upgraded functions of GNormPlus, to improve gene name recognition in biomedical 

literature.
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Fig. 4. 
Comparison of the gene names, and gene identifiers between the GNormPlus and NLM-

Gene corpora.
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Table 1

NLM-Gene corpus characteristics, compared with GNormPlus corpus.

Corpus GNormPlus NLM-Gene

Number of PubMed abstracts 694 550

Number of journals 117 156

Number of total gene mentions (unique) 9,986 (3,861) 15,553 (5,298)

Number of unique PMID – GENE ids 2,025 6,366

Number of species 30 28

Min gene mentions (ID) per document 1 (0) 2(1)

Max gene mentions (ID) per document 56 (11) 86 (40)

Ave gene mentions (ID) per document 14.4 (5.6) 28.3 (9.6)

Median gene mentions (ID) per document 9(2) 26 (10)
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Table 2

Distribution of annotations for genes of different species in GNormPlus and NLM-Gene. First column lists the 

Species name and ID from the Taxonomy database (https://www.ncbi.nlm.nih.gov/taxonomy), second and 

third column show the percentage and raw numbers of genes for each species in the GNormPlus and NLM-

Gene corpora.

TaxID – Taxonomy name GNormPLUS NLM-GENE

9606 (H. sapiens – human) 85.35% (1,724) 47.84% (3,141)

10090 (M. musculus – mouse) 5.10% (1033) 31.08% (2,041)

10116 (R. norvegicus – rat) 2.72% (55) 8.35% (548)

559292 (S. cerevisiae – yeast) 2.37% (48) 1.80% (118)

7227 (D. melanogaster – fly) 1.04% (21) 1.52% (100)

3702 (A. thaliana – thale cress) 0.05% (1) 1.20% (79)

6239 (C. elegans – worm) 0.40% (8) 0.99% (65)

7955 (D. rerio – zebrafish) 0.10% (2) 0.84% (55)

8355 (X. laevis – frog) 0.54% (11) 0.82% (54)

9940 (Ovis aries – sheep) 0% (0) 0.44% (29)
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Table 4

Gene recognition recall of the GENERIF genes, on a randomly selected set of 30,000 articles, with a total of 

49,221 manually curated links between the GENE and PubMed databases. We list the recall for different 

species, ranked by their number of curated genes, and mark as bold the cases when our results are statistically 

significantly better than what we could achieve before the improvements listed in this paper.

Species Taxonomy ID Number of Genes Ratio Recall

Homo sapiens (human) 9606 30,760 0.625 0.764

Mus musculus (mouse) 10090 9,319 0.189 0.835

Rattus norvegicus (rat) 10116 2,962 0.060 0.760

Saccharomyces cerevisiae (budding yeast) 559292 593 0.012 0.762

Arabidopsis thaliana (thale cress) 3702 682 0.014 0.774

Drosophila melanogaster (fruit fly) 7227 643 0.013 0.745

Danio rerio (zebrafish) 7955 309 0.006 0.790

Caenorhabditis elegans (roundworm) 6239 258 0.005 0.713

Bos taurus (cattle) 9913 242 0.005 0.727

Gallus gallus (chicken) 9031 199 0.004 0.653

Sus scrofa (pig) 9823 176 0.004 0.358

Xenopus laevis (African clawed frog) 8355 114 0.002 0.465

Escherichia coli str. K-12 substr. MG1655 511,145 248 0.005 0.016

Canis lupus familiaris (dog) 9615 99 0.002 0.798

Human immunodeficiency virus 1 11,676 92 0.002 0.489
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