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Abstract. Liposome-encapsulated muramyl tripeptide 
phosphatidylethanolamine (L-MTP-PE) is a novel immune 
modulator that is now under investigation against meta- 
static melanoma and osteosarcoma. We have already re- 
ported that L-MTP-PE induced monocyte-mediated tu- 
moricidal activity and up-regulation of the tumor necrosis 
factor and interleukin-1 (IL-1) in vivo and in vitro. We now 
demonstrate that L-MTP-PE also induces monocyte che- 
motactic and activating factor (MCAF) mRNA expression 
at both the transcriptional and post-transcriptional levels. 
Monocyte chemotactic activity was also present in the su- 
peruatants of L-MTP-PE-stimulated cells. In monocytes, 
the increased expression of MCAF was induced rapidly (by 
2 h) but was short-lived. By 4 h, MCAF mRNA had de- 
creased to background level. We found no change in MCAF 
mRNA levels in lymphocytes exposed to L-MTP-PE. We 
therefore conclude that L-MTP-PE selectively up-regulates 
MCAF expression in monocytes and that MCAF may play 
a role in the tumoricidal and immune-stimulating activity 
of L-MTP-PE. 
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Introduction 

Muramyl tripeptide phosphatidylethanolamine (MTP-PE) 
is a synthesized lipophilic analog of muramyl dipeptide, the 
smallest component of the mycobacterium capable of sti- 
mulating the immune system [34]. MTP-PE has potent 
monocyte/macrophae-activating properties [17]. Liposome- 
encapsulated MTP-PE (L-MTP-PE) was specifically de- 
signed for in vivo targeting of macrophages by intravenous 
infusion [34] and is the only form of the drug available for 
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clinical trials (CGP 19835A lipid) [19]. When administered 
intravenously to cancer patients, L-MTP-PE uptake was 
demonstrated in liver, spleen, lung, and nasopharynx [30]. 

The administration of L-MTP-PE to mice with B16 
melanoma results in activation of alveolar macrophages to 
the tumoricidal state, with regression of lung and lymph 
node metastases [11, 12]. L-MTP-PE has also been shown 
to be effective in preventing lung metastases in dogs with 
osteosarcoma [24]. More recently, a phase II study in re- 
lapsed osteosarcoma patients with lung metastases de- 
monstrated that a 24-week course of L-MTP-PE therapy 
doubled the disease-free interval compared to that experi- 
enced by historical controls who received salvage che- 
motherapy [21]. L-MTP-E is also being investigated for its 
efficacy in metastatic melanoma [14, 23]. Thus, all in- 
dications are that L-MTP-PE is a promising new agent for 
the treatment of at least osteosarcoma, and possibly other 
malignancies that metastasize to the lung. 

We have previously reported histological changes in 
pulmonary lesions excised from osteosarcoma patients 
following therapy with L-MTP-PE [20]. These changes are 
unlike any observed following chemotherapy or surgery 
and consist of peripheral fibrosis surrounding the tumor, 
with inflammatory macrophage infiltration throughout the 
tumor. Lymphocyte infiltration was not significant. In an 
effort to understand the mechanisms by which L-MTP-PE 
induced such changes, we investigated the effect of 
L-MTP-PE on the expression of various cytokine genes in 
human monocytes. We demonstrated that L-MTP-PE up- 
regulates the expression of the genes for tumor necrosis 
factor (TNF) [25], interleukin-1 (IL-1) [25], interleukin-6 
(IL-6) and interleukin-8 (IL-8) (T. Asano, A. McWatters, 
2". An, K. Matsushima, and E.S. Kleinerman, unpublished), 
the subsequent production of their proteins, and the acti- 
vation of monocytes to the tumoricidal state [17-20, 25]. 
Plasma levels of all four cytokines have been demonstrated 
in cancer patients following the intravenous infusion of 
L-MTP-PE [19, 23, 30, 35]. The fibrosis seen surrounding 
the pulmonary tumors may be the consequence of the in- 
duction of TNF and IL-1 by L-MTP-PE, and the release of 
these cytokines from activated macrophages in and around 
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the tumor nodules. The mechanism of monocyte/macro- 
phage recruitment into the tumor area, however, is not 
explained by the induction of these cytokines. 

Recently, a novel superfamily of inflammatory media- 
tors that regulate leukocyte motility has been identified. 
Monocyte chemotactic and activating factor (MCAF), a 
member  of this family, is a specific chemoattractant for 
human monocytes, and a potent monocyte activator as well 
[22, 28]. MCAF is produced by human mononuclear  pha- 
gocytes [8], and has been shown to play a role in monocyte 
recruitment into tumor tissue [6]. Thus, monocytes can 
autonomously regulate the extravasation and activation of 
cells from the same lineage. MCAF may contribute to in- 
hibiting tumor growth by attracting monocytes/macro- 
phages to the tumor site and subsequently increasing their 
cytostatic activity. 

We therefore hypothesized that, in addition to up-reg- 
ulating the TNF, IL-1, IL-6 and IL-8 genes, L-MTP-PE 
may also up-regulate the MCAF gene in monocytes. We 
studied the kinetics of MCAF mRNA expression in re- 
sponses to L-MTP-PE, as well as the effects of L-MTP-PE 
on MCAF nuclear transcription, on the post-transcriptional 
stability of MCAF mRNA and on the production of che- 
motactic activity. The present study demonstrates that 
L-MTP-PE induces MCAF expression at both the tran- 
scriptional and post-transcriptional levels. 

Materials and methods  

Reagents and drugs. Macrophage serum-free medium (SFM) was 
purchased from Gibco Laboratories (Grand Island, N,Y.). Hank's ba- 
lanced salt solution (HBSS) without Ca 2§ or Mg 2+, and Earle's ba- 
lanced salt solution (EBSS) were purchased from Whittaker Biopro- 
ducts (Walkersville, Md.). Lymphocyte separation medium was pur- 
chased from Organon Teknika Corp. (Durham, N.C.). All agents were 
free of endotoxin, as determined by the Limulus amebocyte lysate 
assay (sensitivity limit, 0.025 ng/ml). L-MTP-PE (Ciba Division, Ciba- 
Giegy Corp., Summit, N.J,), was prepared as previously described 
[25]. 

by the acid guanidine isothiocyanate/phenol/chloroform extraction 
method, and size-fractionated, blotted and hybridized by a standard 
procedure [25]. The specific activity of the hybridization probes was 
between 1 x 109 and 2 x 109 cprrdgg DNA. Autoradiography was done 
by exposing Kodak XAR-5 film (Eastman Kodak Corp., Rochester, 
N.Y.) to the blotted and hybridized membranes at -70 ~ C. The auto- 
radiograph was scanned with a Personal Densit0meller (Molecular 
Dynamics, Sunnyvale, Calif.) and values were normalized for differ- 
ences in GAPDH scanning densities. The values for the percentage 
maximum expression were then calculated as follows: maximum ex- 
pression (%) = (calculated density at each time point/peak den- 
sity) x 100. 

Nuclear run-on transcription assay. After various stimulations, 
(5-7) • 107 monocytes were washed with cold phosphate-buffered 
saline and with EBSS (Whittaker), and suspended on ice in hypotonic 
buffer (20 mM TRIS/HC1 at pH 7.5, 5 mM MgCI2, 10 mM NaC1, 
0.5 mM dithiothreitol, 0.3 M sucrose, 0.25% Nonidet P40) for 5 rain. 
The detergent-treated monocytes were then layered onto an equal 
volume of isolation buffer (20 mM TRIS/HC1 at pH 7.5, 5 mM MgC12, 
10 mM NaC1, 0.5 mM dithiothreitol, 0.6 M sucrose) and centrifuged at 
500 g for 10 rain. The supematant was aspirated, and the pelletted 
nuclei were gently resuspended in 125 gl transcription buffer (10% 
glycerol, 20 mM HEPES, pH 7.8, 1 mM MgC12, 2 mM MnCI;, 142 mM 
KC1), 0.25 gM CTR 0.25 gM ATE 0.25 gM GTE 1.25 gM ditbio- 
threitol; 0.75 gM spermidine, 1 gl RNasin (Promega Biotec, Madison, 
Wis.) and 100 gCi [c~-32p]UTP (Amersham Corp., Arlington Heights, 
Ill.), and incubated at 30 ~ C for 30 rain with gentle shaking. The re- 
action mixture was treated with 12.5 gg RQ1 RNase-free DNase 
(Promega Biotec) and incubated at 30 ~ C for 5 rain, and then 100 gg 
proteinase K, 4 gl 0.2 M EDTA, 17.5 gl 10% SDS, and 20 gg yeast 
tRNA were added. The mixture was incubated at 40 ~ C for 45 rain, 
extracted, purified and hybridized. The filters were exposed at -70 o C 
for 7-10 days. The autoradiograph was scanned and values were 
normalized for differences in GAPDH scanning densities. (Relative 
transcriptional activity was calculated as follows: relative transcrip- 
tional activity = density of the specific probe/GAPDH density on the 
same filter.) 

Analysis ofmRNA half-life. Elutriated normal human monocytes were 
incubated with or without 2 gg/ml L-MTP-PE for 2 h. The monocytes 
were then washed, and actinomycin D (Sigma Chemical Co., St. Louis, 
Mo.) at 10 p.g/ml in culture medium was added. At 0, 30, 60, and 
120 min, total RNA was extracted, subjected to northern blot analysis, 
and quantified by densitometric scanning as described above. 

Molecular probes. The cDNA probe for human MCAF was the 
350-base-pair (350-bp) PstIlPstI fragment [15], for human IL-8 it was 
the 500-bp EcoRI/EcoRI fragment [27], the chicken ~-actin cDNA was 
the 1800-bp PstI/PstI fragment [7]; and the rat glyceraldehyde phos- 
phate dehydrogenase cDNA (GAPDH) was the 1285-bp PstI/PstI 
fragment [13]. 

Purification of normal human mononuclear leukocytes, monocytes, 
and lymphocytes. Mononuclear leukocytes were separated from normal 
human buffy coats by density gradient centrifugation using lympho- 
cyte separation medium as previously described [25]. The mono- 
nuclear leukocytes were then fractionated by elutriation in a Beckman 
J 6M (Beckman Instruments Inc., Fullerton, Calif.) to purify the 
monocyte and lymphocyte fractions. The purity of the elutriated 
monocyte and lymphocyte fractions was more than 95%, as confirmed 
by Diff-Quik staining (Baxter Healthcare Corp., Scientific Division, 
Megaw Park, Ill.) and nonspecific esterase staining. The purified 
monocytes and lymphocytes were cultured in SFM. 

RNA extraction and northern blot analysis. The purified monocytes 
and lymphocytes were incubated in SFM at 37 ~ C in Falcon 2006 
polypropylene tubes (Becton Dickinson Labware, Lincoln Park, N.J.) 
at 5 x 106 cells/ml. A total of 2.5 x 107 cells were incubated in SFM 
with or without L-MTP-PE for various times. Total RNA was prepared 

Fig. 1. Dose response of liposome-encapsulated muramyl tripeptide 
phosphatidylethanolamine (L-MTP-PE). Human mononuclear leuko- 
cytes were incubated with various concentrations of L-MTP-PE for 2 h. 
RNA was extracted and analyzed by northern blot using 32p-labeled 
monocyte chemotactic and activating factor (MCAF) and ~-actin 
probes 
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Fig. 2. a Expression of MCAF mRNA in human monocytes following 
incubation with or without L-MTP-PE. Monocytes were isolated from 
a single donor by elutriation and incubated with 2.0 gg/ml L-MTP-PE 
for 0-24 h, RNA was extracted and analyzed as described in Materials 
and methods, b MCAF mRNA expression kinetics in monocytes 
stimulated by L-MTP-PE. The density at each time point was normal- 
ized by glyceraldehyde-phosphate dehydrogenase (GAPDH) density. 
One representative experiment of seven. The values of percentage 
maximum expression were then calculated as described in Materials 
and methods. CM, control medium 

Chemotaxis assay. Leukocyte chemotaxis was assayed by the blind- 
well chamber method [10]. Briefly, 200 ILl test supernatant was placed 
in the bottom well of the chamber. The top well was filled with 0.3 ml 
Gey's balanced salt solution (Gibco) containing 2% bovine serum al- 
bumin (Sigma) and 8 x 1(14 monocytes. The two wells were separated 
by a polycarbonate filter with 5-gm holes (Nuclepore; Coaster Corp., 
Cambridge, Mass.). The chambers were incubated for 90 min at 37 ~ C 
in humidified air with 5% CO2; the filters were removed, stained by 
Diff-Quik stain and ten oil-immersion fields (high-power fields) were 
counted. Conditioned medium from unstimulated monocytes served as 
an additional control and was subtracted from the activity generated by 
the L-MTP-PE/monoeyte-conditioned supernatant. Each experiment 
used N-formyl-l-methionyl-l-leucyl-l-phenylalanine (Sigma) as a 
reference chemoattractant at the optimal concentration of 150 nM. The 
statistical significance of migration toward stimulus versus medium 
control was assessed by Student's t-test. 
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Fig. 3. a Effect of L-MTP-PE on MCAF transcription in human 
monocytes. Nuclei were isolated from monocytes incubated with or 
without L-MTP-PE for 2 h and run-on transcription assays were 
performed, b Summary of transcription assay. Relative transcriptional 
activity was calculated by normalization for GAPDH density. One of 
three experiments 

Leukocytes  treated with 20 ng/ml and 200 ng/ml L-MTP-  
PE had no greater M C A F  m R N A  expression than did 
control  cells not treated with L-MTP-PE;  however,  cells 
treated with 2.0 ~tg/ml and 20 gg/ml  had s imilar ly  in- 
creased levels  of  M C A F  m R N A  at 2 h. We, therefore, 
employed 2.0 gg/ml  L-MTP-PE in all subsequent experi-  
ments. 

Kinetics of MCAF induction by L-MTP-PE 

To determine how rapidly L-MTP-PE up-regulated M C A F  
m R N A  levels, we incubated monocytes  with L-MTP-PE 
for 0 -72  h. After  2 h, monocytes  incubated with L-MTP-PE 
had higher levels of  M C A F  m R N A  than control cells 
(Fig. 2, one representat ive exer iment  of  seven). However,  
the increased expression of  M C A F  decreased after 4 h. 

We were unable to detect  any change in M C A F  m R N A  
expression when purif ied lymphocytes  were incubated with 
or without  L-MTP-PE for up to 72 h (data not shown). 

Results 

Dose response of  L-MTP-PE 

To determine the ideal  amount  of  L-MTP-PE to employ  in 
our experiments,  we treated human mononuclear  leuko- 
cytes with various concentrations of  L-MTP-PE (Fig. 1). 

Effect of L-MTP-PE on MCAF nuclear transcription 

To determine whether the increased levels of M C A F  
m R N A  described above were related to an increase in the 
transcriptional activity of  the M C A F  gene, we compared 
the transcription rate of  nuclei  isolated from L-MTP-PE-  
treated and untreated monocyts.  As shown in Fig. 3, the 
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Fig. 4. Effect of L-MTF-PE on MCAF 
(a) and interleuldn-8 (IL-8) (b) mRNA 
stability in human monocytes. Mono- 
cytes were isolated by elutriation and 
incubated for 2 h with 2 gg/ml L-MTP- 
PE, or without L-MTP-PE. Actinomy- 
cin D (10 gg/ml) was then added. Total 
RNA was extracted at various times and 
analyzed by northern blot, and autora- 
diographs were scanned. The mRNA 
level is expressed as a percentage of the 
mRNA level at time 0, after L-MTP-PE 
incubation but immediately before ac- 
tinomycin D was added. One of three 
experiments 
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obtained from control supernatants was subtracted 
from that obtained with the L-MTP-PE-stimulated 
supernatants, b Human monocytes were incubated 
with L-MTP-PE for 4 h. Supernatants were undiluted 
or diluted with serum-free medium and assayed for 
chemotactic activity as described in a. FMLP, 
N-formyl-l-methionyl- 1-1eucyl-l-phenylalanine 
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transcription rate of MCAF was greater in monocytes in- 
cubated with L-MTP-PE for 2 h than in control monocytes 
incubated with medium for 2 h. We therefore concluded 
that the up-regulation of MCAF expression stimulated by 
L-MTP-PE involved increased transcription of the MCAF 
gene. The transcription of GAPDH did not change when 
monocytes were incubated with L-MTP-PE. 

Effect of L-MTP-PE on MCAF mRNA and IL-8 stability 

To determine if the increase in MCAF mRNA accumula- 
tion seen following L-MTP-PE stimulation was in part also 
due to an increase in the stability of MCAF mRNA, we 
performed mRNA stability assays. Purified monocytes 
were first incubated with or wthout L-MTP-PE for 2 h, and 
then 10 gg/ml actinomycin D was added. Total RNA was 
extracted at different times following actinomycin D 
treatment, subjected to northern blot analysis, and quanti- 
fied by densitometric scanning (Fig. 4). L-MTP-PE treat- 
ment increased the half-life of MCAF mRNA at the 2-h 
time point compared with the control (Fig. 4a). As de- 
monstrated in Fig. 4b, the stability IL-8 mRNA was un- 
altered by L-MTP-PE. The stability of ~3-actin mRNA was 
also not modified by L-MTP-PE treatment (data not 
shown). 

Effect of L-MTP-PE on monocyte chemotaxis 

To determine if L-MTP-PE was inducing production of 
MCAF protein, conditioned supernatants from L-MTP-PE- 
stimulated monocytes were assayed for chemotactic activ- 
ity. As demonstrated in Fig. 5, conditioned supernatants 
from L-MTP-PE-treated monocytes contained significant 
chemotactic activity as compared to medium alone or su- 
pernatants from unstimulated monocytes. 

Discussion 

The present study demonstrated that L-MTP-PE increased 
human monocyte expression of MCAE MCAF mRNA 
expression was rapidly up-regulated (Fig. 2), but this sti- 
mulation persisted for only a short time. By 4 h, MCAF 
mRNA was at background levels in L-MTP-PE-treated 
monocytes and no additional changes were observed over 
72 h. The up-regulation of this gene appears to be at the 
transcriptional and post-transcriptional levels since both the 
transcription rate of the gene, as measured by nuclear run- 
on assays (Fig. 3), and MCAF mRNA half-life (Fig. 4) 
were elevated following the monocytes' exposure to 
L-MTP-PE. We were unable to detect any MCAF mRNA in 
lymphocytes incubated with or without L-MTP-PE. We, 
therefore, conclude that L-MTP-PE selectively induces 
MCAF expression in monocytes. 

The kinetics of MCAF induction by L-MTP-PE were 
different from those previously observed for IL-1, IL-6 and 
IL-8 [25]. While MCAF expression increased at 2 h for 
only a short period, IL-1, IL-6 and IL-8 mRNA expression 
increased for up to 72 h with L-MTP-PE stimulation. It is 

particularly intriguing that IL-8, a cytokine that belongs to 
the same proinflammatory supergene family and has some 
homology to MCAF [31], shows such different expression 
kinetics. In addition, while both MCAF and IL-8 expres- 
sion are regulated at the transcriptional level (Fig. 3, and T. 
Asano, A. McWatters, T. An, K. Matsushima, E. S. Klei- 
nerman, unpublished data), IL-8 post-transcriptional 
mRNA stability was not regulated as it was for MCAF 
(Fig. 4). Other investigators have also shown different 
regulation of these two genes [8]. 

Monocytes/macrophages play an important role in host 
defense, and they have been identified as a part of the 
cellular infiltrate in tumors [9, 26, 29]. The presence of 
inflammatory macrophages in tumors results from the mi- 
gration of monocytes from the peripheral circulation into 
the tumor tissue. MCAF is a cytokine that stimulates the 
chemotaxis of peripheral blood monocytes, activates their 
oxidative burst, and increases their cytostatic capacity [28, 
33, 36]. MCAF has also been shown to regulate the ex- 
pression of cell-surface adhesion molecules in the [3-2 in- 
tegrin subfamily [16], proteins intimately involved in the 
movement of leukocytes through tissue and in the binding 
of monocytes to target cells. Several investigators have 
demonstrated a correlation between the number of macro- 
phages in a tumor and the production of chemotactic factor 
by the tumor [2-5]. Transfecting the MCAF gene into 
melanoma tumor cells has resulted in an increase in tumor- 
associated macrophages and a slower growth rate of the 
tumor following inoculation into either syngeneic or nude 
mice [6]. MCAF-producing Chinese hamster ovary cells 
are less tumorigenic in vivo and also showed an increase in 
leukocyte infiltration [32]. Thus, MCAF may contribute to 
the control of tumor growth both by attracting monocytes to 
the tumor site and by enhancing their tumoricidal capacity 
once they arrive. 

We have observed peripheral fibrosis with inflammatory 
macrophages in lung lesions removed from osteosarcoma 
patients following L-MTP-PE therapy [20]. These findings 
were unique to L-MTP-PE-treated patients [20]. Since 
L-MTP-PE is taken up by lung macrophages [30] and can 
induce MCAF expression, this cytokine may be responsible 
for the increased macrophage infiltration seen in and 
around the tumors after L-MTP-PE therapy. MCAF may 
also have contributed to the fibrosis formation seen in these 
excised tumors. Both MCAF mRNA and protein are pro- 
minent in lung epithelial cells of patients with idiopathic 
pulmonary fibrosis [1]. One mechanism for this fibrosis is 
thought to be the persistent monocyte/macrophage in- 
filtration in the lung. Therefore, in addition to the induction 
of IL-1 and TNF, the up-regulation of MCAF may con- 
tribute to the ability of L-MTP-PE to control tumor growth, 
through the recruitment of monocytes into the tumor area. 

In summary, we have demonstrated that liposome-en- 
capsulated muramyl tripeptide phosphatidylethanolamine 
(L-MTP-PE) up-regulated the expression of the monocyte 
chemotactic and activating factor (MCAF) gene by in- 
creasing both its transcription rate and its post-transcrip- 
tional mRNA stability in human monocytes. By attracting 
and activating monocytes/macrophages, the cytokine 
MCAF may be an important mediator in the ability of 
L-MTP-PE to treat metastatic tumors of the lung. 
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