Skip to main content
Cancer Immunology, Immunotherapy : CII logoLink to Cancer Immunology, Immunotherapy : CII
. 1989 Feb;28(2):107–115. doi: 10.1007/BF00199110

Endogeneous interferon α/β produced by murine Kupffer cells augments liver-associated natural killing activity

Maria Werner-Wasik 1, Wittiches von Muenchhausen 2, James P Nolan 1, Stefan A Cohen 1,
PMCID: PMC11038895  PMID: 2917363

Abstract

Nonparenchymal liver cells from untreated C3HeB/FeJ mice, when incubated in medium containing-10% fetal bovine serum or portal serum, produced significant amounts of interferon alpha/beta (IFNα/β). In contrast, other cell populations (spleen, mononuclear blood cells and peritoneal cells) from C3HeB/FeJ mice or nonparenchymal liver cells from other strains of mice (C3H/HeJ, germ-free C3H/HeN and C57Bl/6J) produced little or no detectable IFN in fetal bovine serum under the same culture conditions. The cells in the nonparenchymal liver cell population responsible for IFNα/β production were adherent, phagocytic, silica-sensitive, carbonyl-iron-sensitive, and Thy1.2, presumably Kupffer cells or resident liver macrophages. IFNα/β production by cultured Kupffer cells was not observed if medium containing fetal bovine serum or portal serum was treated with polymyxin B or if Kupffer cells were cultured in serum-free medium. This suggested that small amounts of endotoxin in fetal bovine or portal serum stimulated Kupffer cells to produce IFNα/β. Possibly, Kupffer cells are in a different state of activation/maturation than peritoneal and splenic macrophages since the sensitivity of resident Kupffer cells from C3HeB/FeJ mice to the stimulatory effects of endotoxin. The endogenous production of IFNα/β by Kupffer cells from C3HeB/FeJ mice can augment liver-associated natural killer (NK) activity against YAC-1 cells (4 h) and induce liver-associated cytotoxic activity, not restricted by the major histocompatibility complex, against NK resistant P815 mastocytoma cells (18 h).

Keywords: Natural Killer, Kupffer Cell, Polymyxin, Natural Killing Activity, Portal Serum

Footnotes

This work was supported by National Institutes of Health grant CA28835, VA Merit Grant and by the Margaret Duffy and Robert Cameron Troup Fund

Abbreviations used: NPC, nonparenchymal liver cells; FBS, fetal bovine serum; IFN, interferon; α-AsGm-1, anti-asialo-GM1; α-Thy1.2, anti-Thy1.2; Hepes, 4-(2-hydroxyethyl)1-piperazineethanesulfonic acid; HBSS, Hanks' balanced salt solution; GBSS, Gey's balanced salt solution; SRBC, sheep red blood cells; Ab, mouse anti-SRBC; NK, natural killer; MHC, major histocompatibility complex; polyI·polyC, polyinosinec·polycytidylic acid

References

  • 1.Buckler C, DuBuy H, Johnson M, Baron S. Kinetics of serum interferon response in mice after single and multiple injections of polyI:polyC. Proc Soc Exp Biol Med. 1971;136:394. doi: 10.3181/00379727-136-35272. [DOI] [PubMed] [Google Scholar]
  • 2.Cohen SA, von Muenchhausen W, Salazar D, Werner-Wasik M, Ghezzi P. Role of murine nonparenchymal liver cells in natural cytotoxicity, interferon production and depression of cytochrome P450. In: Kirchner H, editor. Proceedings of the biology of the interferon system. Amsterdam, Netherlands: Elsevier Biomedical; 1985. p. 243. [Google Scholar]
  • 3.Cohen SA, Salazar D, von Muenchhausen W, Werner-Wasik M, Nolan JP. Natural antitumor defense system of the murine liver. J Leukocyte Biol. 1985;37:559. doi: 10.1002/jlb.37.5.559. [DOI] [PubMed] [Google Scholar]
  • 4.Cohen SA, Ehrke MJ, Mihich E. Mouse effector functions involved in the antibody dependent cellular cytotoxicity to xenogeneic erythrocytes. J Immunol. 1975;115:1007. [PubMed] [Google Scholar]
  • 5.Decker T, Baccarini M, Lothman-Mathes M. Liver-associated macrophage precursors as natural cytotoxic effectors against Candida albicans and YAC-1 cells. Eur J Immunol. 1986;16:693. doi: 10.1002/eji.1830160618. [DOI] [PubMed] [Google Scholar]
  • 6.De Maeyer-Guignard J, De Maeyer E. Natural antibodies to interferon-alpha and inferferon-beta are a common feature of inbred mouse strains. J Immunol. 1986;136:1708. [PubMed] [Google Scholar]
  • 7.Dempsey R, Dinarello C, Meir J, Rosenwasser L, Allegrata M, Brown T, Parkinson D. The differential effect of human leukocytic pyrogen/lymphocyte activating factor, T cell growth factor and interferon on human natural killer activity. J Immunol. 1982;129:2504. [PubMed] [Google Scholar]
  • 8.Finter NB. Standardization of assay of interferons. Methods Enzymol. 1978;78:14. doi: 10.1016/0076-6879(81)78092-3. [DOI] [PubMed] [Google Scholar]
  • 9.Fleit HB, Rabinovitch M. Production of interferon by in vitro derived bone marrow macrophages. Cell Immunol. 1981;57:495. doi: 10.1016/0008-8749(81)90107-6. [DOI] [PubMed] [Google Scholar]
  • 10.Gerberick GF, Willoughby JB, Willoughby WF. Serum factor requirement for reactive oxygen intermediate release by rabbit alveolar macrophages. J Exp Med. 1985;161:392. doi: 10.1084/jem.161.2.392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Havell EA, Spitalny GL. Endotoxin-induced interferon synthesis in macrophage cultures. J Reticuloendothelial Soc. 1983;33:369. [PubMed] [Google Scholar]
  • 12.Herberman RB, Holden HT. Natural cell-mediated immunity. Adv Cancer Res. 1978;27:305. doi: 10.1016/s0065-230x(08)60936-7. [DOI] [PubMed] [Google Scholar]
  • 13.Inaba K, Kitaura M, Kato T, Watanabe Y, Kawade Y, Muramatsu S. Contrasting effect of α/β and γ interferon expression of macrophage Ia antigens. J Exp Med. 1986;163:1030. doi: 10.1084/jem.163.4.1030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Jacob AI, Goldberg PK, Bloom N. Endotoxin and bacteria in portal blood. Gastroenterology. 1977;72:1268. [PubMed] [Google Scholar]
  • 15.Johnson HM. Interferon and host defense systems. Adv Exp Med Biol. 1983;162:105. doi: 10.1007/978-1-4684-4481-0_11. [DOI] [PubMed] [Google Scholar]
  • 16.Julius MH, Simpson E, Herzenberg LA. A rapid method for the isolation of functional thymus-derived murine lymphocytes. Eur J Immunol. 1973;3:645. doi: 10.1002/eji.1830031011. [DOI] [PubMed] [Google Scholar]
  • 17.Kaneda K, Dan C, Wake K. Pit cells as natural killer cells. Biomed Res. 1983;4:567. [Google Scholar]
  • 18.Kasai M, Iwamori M, Nagai Y, Okumura K, Tada T. A glycolipid on the surface of mouse natural killer cells. Eur J Immunol. 1980;10:175. doi: 10.1002/eji.1830100304. [DOI] [PubMed] [Google Scholar]
  • 19.Keller F, Wild M, Kirn A. In vitro cytostatic properties of unactivated rat Kupffer cells. J Reticuloendothelial Soc. 1984;35:467. doi: 10.1002/jlb.35.5.467. [DOI] [PubMed] [Google Scholar]
  • 20.Knook DL, Sleyster ECh. Preparation and characterization of Kupffer cells from rat and mouse liver. In: Wisse E, Knook DL, editors. Kupffer cells and other liver sinusoidal cells. Amsterdam: Elsevier North Holland Biomedical; 1977. p. 273. [Google Scholar]
  • 21.Lanier L, Phillips J, Hackett J, Tutt M, Kumar V. Natural killer cells: definition of a cell type rather than a function. J Immunol. 1986;137:2735. [PubMed] [Google Scholar]
  • 22.Le Blanc PA, Russell SW. Depletion of mononuclear phagocytes: pitfalls in the use of carbonyl iron, carrageenan, silica, trypan blue, or antimononuclear phagocyte serum. In: Adams DO, Edelson PJ, Koren H, editors. Methods for studying mononuclear phagocytes. New York: Academic Press; 1981. p. 231. [Google Scholar]
  • 23.Lepay DA, Nathan CF, Steinman RM, Murray HW, Cohn ZA. Murine Kupffer cells. Mononuclear phagocytes deficient in the generation of reactive oxygen intermediates. J Exp Med. 1985;161:1079. doi: 10.1084/jem.161.5.1079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Leung KH, Salazar D, Ip M, Cohen SA. Characterization of natural cytotoxic effector cells isolated from rat liver. Nat Immun Cell Growth Regul. 1987;5:150. [PubMed] [Google Scholar]
  • 25.Liehr H, Gruen M. Endotoxins in liver disease. Prog Liver Dis. 1979;6:313. [PubMed] [Google Scholar]
  • 26.Morrison D, Ryan J. Bacterial endotoxins and host immune responses. Adv Immunol. 1979;28:293. doi: 10.1016/s0065-2776(08)60802-0. [DOI] [PubMed] [Google Scholar]
  • 27.Morrison DC, Jacobs DM. Isolation of a lipid A bound polypeptide responsible for LPS-initiated mitogenesis of C3H/HeJ spleen cells. Immunochemistry. 1976;13:813. doi: 10.1084/jem.144.3.840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Nolan JP. Endotoxin, reticuloendothelial function and liver injury. Hepatology. 1981;1:458. doi: 10.1002/hep.1840010516. [DOI] [PubMed] [Google Scholar]
  • 29.Nolan JP. The role of endotoxin in liver disease. Gastroenterology. 1975;69:1346. [PubMed] [Google Scholar]
  • 30.Praaning-van Dalen DP, Brower A, Knook DL. Clearance capacity of rat liver Kupffer cells, endothelial cells and parenchymal cells. Gastroenterology. 1981;81:1036. [PubMed] [Google Scholar]
  • 31.Richman LK, Klingenstein RJ, Richman JA, Strober W, Berzofsky JA. The murine Kupffer cell: I. Characterization of the cell serving accessory function in antigen-specific T cell proliferation. J Immunol. 1979;123:2602. [PubMed] [Google Scholar]
  • 32.Roder JC, Lohman-Matthes M, Domzig W, Kiessling R, Haller O. A functional comparison of tumor killing by activated macrophages and natural killer cells. Eur J Immunol. 1979;9:283. doi: 10.1002/eji.1830090407. [DOI] [PubMed] [Google Scholar]
  • 33.Senik A, Gresser I, Maury C, Gidlung M, Orn A, Wigzell H. Enhancement of mouse NK cells by interferon. Transplant Proc. 1979;11:993. [PubMed] [Google Scholar]
  • 34.Stutman O. Natural cell-mediated cytotoxicity against tumors in mice. In: Serrou B, Rosenfeld C, Herberman R, editors. Human cancer immunology, vol 4. Amsterdam: Elsevier Biomedical; 1982. pp. 205–211. [Google Scholar]
  • 35.Vilchek J. Studies on an interferon from tick-borne encephalitis virus infected cells. Acta Virol. 1962;6:144. [PubMed] [Google Scholar]
  • 36.Virelizier J, Gresser I. Role of interferon in the pathogenesis of viral diseases of mice as demonstrated by the use of anti-interferon serum: V. Protective role in mouse hepatitis virus type 3 infection of susceptible and resistant strains of mice. J Immunol. 1978;120:1616. [PubMed] [Google Scholar]
  • 37.Vogel SN. LPS-unresponsive mice as a model for analyzing lymphokine-induced macrophage differentiation in vitro. In: Pick E, editor. Lymphokines, vol 3. New York: Academic Press; 1981. p. 149. [Google Scholar]
  • 38.Vogel SN, English K, Fertsch D, Fultz M. Differential modulation of macrophage membrane markers by interferon: analysis of Fc and C3b receptors, Mac-1 and Ia antigens. J Interferon Res. 1983;3:153. doi: 10.1089/jir.1983.3.153. [DOI] [PubMed] [Google Scholar]
  • 39.Wannemuehler M, Kiyono J, Babb M, Michalek M, McGhee J. Lipopolysaccharide (LPS) regulation of the immune response: LPS converts gremfree mice to sensitivity to oral induction. J Immunol. 1982;129:959. [PubMed] [Google Scholar]
  • 40.Welsh R, Hallenbeck LA. Effect of virus infections on target cell susceptibility to natural killer cell-mediated lysis. J Immunol. 1980;124:2491. [PubMed] [Google Scholar]
  • 41.Wisse E, Knook D. The investigation of sinusoidal cells. A new approach to the study of liver function. In: Popper H, Schaffner F, editors. Progress of liver diseases, vol 6. New York: Grune and Stratton; 1979. p. 153. [PubMed] [Google Scholar]

Articles from Cancer Immunology, Immunotherapy : CII are provided here courtesy of Springer

RESOURCES