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Augmented non-hallucinating large
language models as medical information
curators

Check for updates
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Reliably processing and interlinking medical information has been recognized as a critical foundation to the
digital transformation of medical workflows, and despite the development of medical ontologies, the optimi-
zation of these has been a major bottleneck to digital medicine. The advent of large language models has
brought great excitement, andmaybe a solution to themedicines’ ‘communication problem’ is in sight, but how
can the known weaknesses of these models, such as hallucination and non-determinism, be tempered?
Retrieval Augmented Generation, particularly through knowledge graphs, is an automated approach that can
deliver structured reasoning and a model of truth alongside LLMs, relevant to information structuring and
therefore also to decision support.

The ‘semantics problem in medicine’, otherwise known as medicine’s
‘communication problem’ refers to the difficult task of reliably recording
medical information and making it interoperable between systems1,2. This
problem is not an obscure issue affecting only researchers or a highly
technical problem only of relevance to software systemdevelopers. It affects
the day to day linking of medical information, betweenmedical IT systems
by healthcare providers (HCPs) and creates challenges in the automation of
medical tasks for and by HCPs and applies to all medical roles and
specialisms3. The ‘semantics problem’ contributes to the burden of medical
documentation,with tasks taking longer than theywouldwith interoperable
medical information systems3,4. Previous approaches to address this chal-
lenge have included the interrelated technologies of medical ontologies and
medical knowledge graphs (KGs).Medical ontologies capture the consensus
on a diverse range of concepts in the biomedical domain5. Leading ontol-
ogies include SNOMED CT6, which defines clinical terminology, and the
human phenotype ontology (HPO7), which describes phenotypic
abnormalities, but the ambiguity and contextual richness of medical
information poses challenges to their adoption2,8. Ambiguity results from
practitioners and patients referring to concepts in diverse ways (e.g., a ‘cold’
versus ‘acute rhinitis’ or ‘acute viral respiratory infection’), and from
situations where terms have different meanings in different contexts, e.g.
‘cold’ can relate to the clinical measurement of body temperature, or
environmental conditions, or to a clinical syndrome ‘acute rhinitis’ or to a
sub-component of various pathological conditions ‘cold [sores]/[agglutinin
disease]’9. The contextual richness of information in human communica-
tion results in clinical records being easily understandable and full of useful

nuanced information for HCPs but being very challenging to interpret
through computational means9. The expressive power of human commu-
nication, with its contextual richness, also poses the same problem for
Knowledge graphs (KGs), but these provide more delineated and curated
repositories of knowledge10. KGs create a network of real-world entities,
represented as nodes, and the relationships that exist between them,
represented as edges; for example, two nodes in a KG referring to “COVID-
19” and “fever”maybe linkedby an edge labeled “has symptom”. Presenting
knowledge in a structured form further allows KGs to be queried as graph
databases10. Many KGs further express machine-readable semantics, in the
form of ontologies, rules, etc., that allows for deductive reasoning to derive
new knowledge while preserving truth10. The medical ontologies discussed
earlier can thus be considered medical KGs with well-defined semantics11,
and are already in use for a variety of applications in medicine, albeit as a
simplified and narrow representation of medical information11. The argu-
mentwedevelop is that, althoughmedical ontologies andKGs are inflexible,
and are even sometimes gross simplifications, that through the power of
combination, and where applied in use cases where a verifiable record of
‘truth is needed’, they provide a means to bring the necessary control and
temperament to augment the more flexible approaches of large language
models (LLM)s. All models are wrong, some are useful and intelligent
combinations of imperfect models may be what the doctor has ordered for
the certain critical medical summarization tasks, to translate medical
information between free, contextually rich human modes of commu-
nication and certain rigid record structures that must limit context and
maximize factual simplification and precision.
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Whydoesmedicine’s ‘communication problem’persist
and how can it be solved?
Medical information often resides in unstructured natural language that is
difficult for information systems to process2,8, and despite advances in
information structuring through deep learning12, the ‘communication
problem’ remains significant.

It has been proposed that the technological advances brought by large
language models, which have been transformative in many areas of society
since 2022, will bring highly significant advances, perhaps even solutions to
semantic “communication problems” in many fields, including
medicine13,14. LLMs are deep learning-based models trained on massive
corpora of text to provide probabilistic autocompletion of withheld
words15,16. Fine-tuned with human feedback via reinforcement learning
from human feedback (RHLF) or other procedures, LLMs can generate
responses to prompts considered plausible to humans, powering con-
versational agents17. They also demonstrate a remarkable ability to structure
and categorize information13, including in medicine18–20. However, LLMs
exhibit bias, hallucinations, and inaccuracies, which, when twinned with
plausible responses presented with ostensible certainty, can mislead users,
casting doubts about their suitability for many tasks in clinical medicine
including the interoperability and linking of medical knowledge21,22. This
raises the question: how can the strengths of LLMs be delivered for orga-
nizing information in healthcare in a manner that tames their weaknesses?
We describe the potential of augmenting LLMs with other data technolo-
gies, including KGs, to address digital medicine’s communication problem.

Smoothing out the limitations of LLMs
Although LLMs are a remarkable advance, they lack a model of truth, and
have limited ability to reliably check their own accuracy23. An intriguing
feature of LLMs and KGs is that they are complementary in many of their
strengths and weaknesses (Table 1)24. This complementarity opens the
possibility of combining the approaches, to create a ‘dream team’ approach
to medical information processing and communications.

There are numerous conceptual approaches to combine LLMs and
KGs: using LLMs to enhance KGs, using KGs to enhance LLMs, and
combining LLMs and KGs in a holistic manner24. In the first approach,
LLMs can be used to construct, enrich and refine KGs from text, leveraging
LLMs’ ability to extract and recognize structure (Fig. 1a), e.g., as has been
applied in the construction of dietary KGs25 and KGs for precision
medicine26. This is an important application, and it illustrates how modern
KGs are generated efficiently through automated machine learning
approaches, and not the output of laborious and non-scalable manual
approaches. In the second category, which is a form of retrieval augmented
generation (RAG), KGs can be used to augment LLMs by enriching
prompts, verifying, or explaining responses (Fig. 1b), e.g., as has been
applied inmedicine for delivering explainable outputs27. In a second formof
RAG, LLMs and KGs can be used side-by-side or be hybridized to address
particular tasks (Fig. 1c), e.g.: (i) for answering medical queries28; and, (ii)
SapBert28 which combines a language model trained over PubMed with
knowledge from the Unified Medical Language System (UMLS) ontology.
Though the area is in its infancy, these works illustrate directions in which
research on combining LLMs andKGs for digitalmedicinewill evolve in the
coming years. A related approach is known as vector embedding, which is
also a formof RAGbut does not use KGs, and instead uses the unstructured
information collected frommedicalwebsites (Fig. 1b, c).Wedonot focus on
this approach as it does not use LLMs for chain of reasoning and therefore
lacks much of the complementary to LMMs that KG approaches have
(Table 1).

Summary
How will combined LLM and KG approaches evolve? These approaches
could be the enabler of robust digital twins of individual patients (i.e.,
representations of up-to-date individual patient data in digital form, serving
as a record of patient health and enabling personalized predictive analytics)
with LLMs used to rapidly create stable individual patient KGs as stable
robust data structures, which could be used to augment and verify data

Table 1 | The combination of LLMs and knowledge graphs (KGs) has the potential for complementarity

Property Large language
model (LLM) alone

Advantage (+) Dis-
advantage (-) Neu-
tral (=)

Knowledge graph
(KG) alone

Advantage (+) Dis-
advantage (-) Neu-
tral (=)

Large languagemodel with Retrieval
Augmented Generation (RAG)
through Knowledge
Graph (LLM+KG)

Hallucination High – None + Complementarity

Opaqueness High – Low + Complementarity

Staleness High1 – Neutral = none

Bias High – Neutral = none

Costs High – Neutral = none

Short tailed Substantially1 – Low + Complementarity

Sanitized Highly2 – Low + Complementarity

Non-deterministic Highly – Low + Complementarity

Indecisiveness Highly – Low + Complementarity

Usability High + Low – Complementarity

Contextual interpretation
and reasoning

Limited to moderate + None – Complementarity

Suitability/approvability
for medical informa-
tion tasks

Only for low-
risk tasks

– Only tasks not
requiring contextual
reasoning

– Complementarity—potentially for
moderate risk tasks needing con-
textual reasoning

Comparison of the limiting properties of Large Language Models alone and Knowledge Graphs alone to the complementarity of fusing these approaches.
The termsdescribing the algorithmic approaches are defined as follows:hallucination: inventionof plausible facts;opaqueness: lack of explanation or provenance for responses; staleness: outdatednessof
information; bias: under representation or lower accuracy of data on patient groups or condition types, or, repetition of known cultural often racist stereotypes from data; costs: energy costs and ethical
costs related to manual labeling tasks in training; short tailed: good performance in oft-discussed topics in the training data, but not good in deep technical knowledge fields (unless fine-tuned); sanitized:
some general purpose models are constrained to avoid controversial responses that may include important topics in medicine; non-deterministic: responses can vary depending on time, phrasing of a
prompt, language, etc.; Indecisiveness: inability to make decisive choices when faced with ambiguous or contradictory input; Usability: the ease of human interaction; contextual interpretation and
reasoning: the ability to providemore than simple factual answers, alongwith contextual and reasoning insights;Suitability/approvability for medical information tasks: an assessment of the types of tasks
forwhich approaches are suited, and their approvability under current national and internationalmedical devices frameworks;Some listedproperties relate to currently described large languagemodels but
are only partially inherent (1) or are not inherent (2) to the underlying approach.
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Fig. 1 | The combination of large language models with KGs, including in
retrieval augmented generation (RAG). a LLMs can be used to automate the
construction, enrichment and refinement of KGs from text queries, which can be
generated from medical information systems; b RAG augments the performance of
large language models (LLMs) through searching in either unstructured web-based
knowledge bases (in vector embedding), or information retrieval from knowledge

graphs, and using the output to refine LLM prompting; c in more sophisticated
approaches to RAG, LLMs and KGs (or vector embedding) can be used side-by-side
or be hybridized to address medical information reasoning tasks. Icons created by
the authors, I Putu Kharismayadi, Lucas Rathgeb and Nubaia Karim Barshafrom
from the Noun Project (https://thenounproject.com/).
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interpreted by LLMs from newly conducted consultations. This approach
would have the potential to reduce the environmental impact of LLMs, as
historical information from ‘legacy’ non-structured health records could be
codified once for a patient, creating a ‘twin’, the information from which
would be retrievable at little computational cost, which would be updated
through LLM approaches only when needed.

Even combining LLMs and KGs may still result in important inac-
curacies when used to automate medical information tasks. The features of
these technologies to enhance the ability of the physician to process this
information and to reach medical decisions will be critical. These could
include the design of interfaces for quality control and for sign off, as have
been designed in on-market LLM-based products (such as Microsoft’s
Nuance Dragon Experience) and differential labeling of the degree of
reliability of interpreted information, to flag when information should be
manually verified.

Although LLMs have been rapidly applied in on-market products for
medical information management (including information retrieval, struc-
turing and interlinking, e.g., as shown byMicrosoft’s early addition of GPT-
4-based voice-to-SNOMED CT in Microsoft Nuance Dragon Experience),
many questions still remain about their accuracy and appropriateness for
this task21. One of themost interesting questions for their use inmedicine is
how to optimize their strengths while curbing weaknesses. Here regulators
and policy makers need to adopt a degree of healthy skepticism whilst also
acknowledging the transformative potential of these technologies. Some
have challenged whether LLMs can ever have medical application due to
their weaknesses, whilst others have described the very challenging pathway
to regulatory approval of existing LLM tools for use in diagnostic or ther-
apeutic decision making22,29 (Table 1, Fig. 2), but many of the limitations of
LLMs in isolation are at least partially resolved through their augmentation
with vector embedding or KGs. On the other side of the argument, some
have proposed that LLM approaches alone, perhaps based on medical
specific training sets, more data, and refinement of their core approach, can
attain the accuracy needed for truly automated clinical documentation, and

even for medical decision making14, and that fallback to older approaches
may not be needed (Fig. 2). We are of the view that RAG approaches,
particularly augmenting LLMs with KGs, and with interactive back-and-
forward complementarity, show promise to better serve medicine, parti-
cularly in tasks where accuracy and bias control are critical.

In what seems like an alternative view to that presented here, a
model of three epochs of AI has been recently described: (i) AI 1.0
Symbolic AI and probabilistic models (including KGs); (ii) AI 2.0 Deep
learning; and, (iii) AI 3.0 Foundation models30. The ‘cross epoch model
we describe may seem naive—surely the newer concepts must replace
the earlier? The advancement of technology, practice, and governance
often integrates earlier and later concepts and this is rational when
the earlier technologies have complementary strengths. It is certainly
true that the limitations of insufficiently automated approaches to
developing KGs, which had a constant risk of human logic errors and
developer bias encoded in their rules30 must be replaced by hybrid
automatedKGgeneration through LLMs and deep learning26. In the end,
only time will show if KGs themselves, and hybrid approaches for
augmenting LLMs with KG, are technologies with sticking power.
Vector embedding approaches for RAG are currently the leading area of
research in the augmentation of LLMs for general and medical
purposes31. They do not yet provide the verifiable ‘model of truth’ that is
called for in many medical information recording tasks. Vector
embedding approaches may continue to develop and, and ultimately
reach a level of performance, accuracy and repeatability that removes the
advantage of KG-based RAG, as set out in Table 1. It is our view that
there will be a range of RAG approaches, selected on the needs of specific
clinical use cases (including regulatory considerations), that will harness
the power of LLMs, enabling them to ultimately solve medicine’s
‘communication problem’. Although challenges remain in finding the
right regulatory balance in oversight of these tools22, and in the control of
their environmental impact, it looks certain that HCPs graduating now
will enjoy highly interoperable tools and access to clinical information
summarization that, only 5 years before, were unthinkable.
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