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Nuclear and mitochondrial 
genomes of Polylopha cassiicola: 
the first assembly in Chlidanotinae 
(Tortricidae)
Fangyuan Yang   1, Li-Jun Cao   1, Jin-Cui Chen1, Wei Song1, Yuzhu Yu2 & Shu-Jun Wei   1 ✉

Tortricidae is one of the largest families in Lepidoptera, including subfamilies of Tortricinae, 
Olethreutinae, and Chlidanotinae. Here, we assembled the gap-free genome for the subfamily 
Chlidanotinae using Illumina, Nanopore, and Hi-C sequencing from Polylopha cassiicola, a pest of 
camphor trees in southern China. The nuclear genome is 302.03 Mb in size, with 36.82% of repeats and 
98.4% of BUCSO completeness. The karyotype is 2n = 44 for males. We identified 15412 protein-coding 
genes, 1052 tRNAs, and 67 rRNAs. We also determined the mitochondrial genome of this species and 
annotated 13 protein-coding genes, 22 tRNAs, and one rRNA. These high-quality genomes provide 
valuable information for studying phylogeny, karyotypic evolution, and adaptive evolution of tortricid 
moths.

Background & Summary
Tortricidae, the leafroller moths, is one of the largest families of Lepidoptera (butterflies and moths)1, including 
numerous notorious economic pests such as the spruce budworm, Choristoneura fumiferana2, oriental fruit 
moth Grapholita molesta3 and codling moth, Cydia pomonella4. The two main subfamilies are Tortricinae and 
Olethreutinae, which are relatively young5, comprising over 95% of tortricid species. Genomes of many species 
in these two subfamilies have been determined6, revealing an ancestral sex chromosome-autosome fusion and 
two subsequent autosome fusions relative to the ancestral karyotype of Lepidoptera7. Compared to the two suc-
cessful subfamilies, the relict subfamily Chlidanotinae is much more limited in distribution range, host range, 
species richness, and population size. Species of this subfamily are mainly distributed in tropical regions, indi-
cating varied climatic adaptability compared to species of the other subfamilies. Thus, this group can provide 
valuable insights into the phylogeny and pest adaptation and evolution of Tortricidae. However, no genome has 
been assembled for species of Chlidanotinae.

Here, we present the first chromosome-level genome assembly and annotation in the Olethreutinae using 
high-coverage long-read and Hi-C sequencing from Polylopha cassiicola8. This species is mainly distributed in 
the southern coastal regions of China and Southeast Asia. It is a pest of trees Cinnamomum cassia and C. cam-
phora. We also assembled the mitochondrial genome of this species from the Illumina short sequencing reads. 
These genomes are expected to provide information for understanding the phylogeny, karyotypic, and adaptive 
evolution of Tortricidae.

Methods
Sample collection and sequencing.  P. cassiicola larvae were collected from the tops of C. camphora in 
Guangxi, China. The larvae were reared in the laboratory to pupae and adults for genomic and transcriptome 
sequencing. Three individuals were used for three types of genome sequencing: one male pupae for Nanopore 
long-read sequencing, one male pupae for Illumina short-read sequencing, and one female adult for Hi-C 
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sequencing. In addition, four larvae were used for RNA sequencing. Nucleic acid extraction and sequencing 
libraries was contracted by BerryGenomic (Beijing, China). Methods for nucleic acid extraction, platforms for 
sequencing, and sequencing outputs are provided in Table 1.

Genome assembly.  The Nanopore long reads were assembled into 76 contigs using NextDenovo 2.5.2 
(https://github.com/Nextomics/NextDenovo) with parameters: “read_cutoff = 4k, genome_ size = 400 m, nex-
tgraph_options = -a 1”. Redundant sequences in contigs were removed using Purge_dups9. The cleaned contigs 
containing 65 sequences were then assembled to chromosome-level using Hi-C information. In this analysis, we 
mapped the Hi-C reads to cleaned contigs using BWA10 with options: “mem -SP5”, anchored contigs using YaHS 
1.2a.111 with option: “-e GATC”, and manually adjusted using Juicerbox 1.22.0112. We removed the contigs that 
did not have any contact information with the chromosomes, which could be from potential contamination, 
such as symbiotic microbes. At last, the chromosomal-level genomic sequences were subjected to two rounds of 
long-read polishing and two rounds of short-read polishing using Nextpolish 1.4.113. The obtained P. cassiicola 
genome is 302.03 Mb in size and contains 21 autosomes and one Z sex-chromosome (Fig. 1a).

We also assembled mitochondrial genome using MitoZ 3.614 based on the short-reads. In the mitochondrial 
genome, we identified 13 protein-coding genes, 22 tRNAs, and 1 rRNA (Fig. 2).

Genome synteny.  We analysed the chromosomal synteny between P. cassiicola and three other spe-
cies from Tortricidae and one from Sesiidae: Choristoneura fumiferana (Tortricidae: Tortricinae)2, Grapholita 
molesta (Tortricidae: Olethreutinae)3, Tortricodes alternella (Tortricidae: Tortricinae; NCBI GenBank assem-
bly: GCA_947859335.115), and Sesia bembeciformis (Sesiidae: Sesiinae)16. Synteny analysis was conducted using 
MSCANX pipeline in JCVI utility libraries17. We assigned names of the ancestral linkage group in Lepidoptera6 
(Merian elements, M1-31 and MZ) based on chromosomal homology. The results show different patterns of 
chromosomal fusion in species T. alternella and P. cassiicola (Fig. 1b).

Repeat element and non-coding RNA annotation.  Repeat elements were detected using 
RepeatMasker 4.1.518 with options “-no_is -norna -xsmall -q”. This analysis was conducted against three data-
bases: Repbase (http://www.girinst.org), Dfam database1 specific to Arthropoda, and a species-specific repeat 
library constructed using RepeatModeler219. Transfer RNA (tRNA) was predicted by tRNAscanSE 2.0.1220 with 
default parameters, and ribosome RNA (rRNA) was predicted using Barrnap 0.9 (https://github.com/tseemann/
barrnap). In the P. cassiicola genome, 36.82% of bases were annotated as repeat elements (Table 2). We identified 
67 rRNAs, and 1052 tRNAs (Table 2).

Gene prediction and functional annotation.  Gene structure was predicted using an ab initio method, 
Helixer21, with options: “–subsequence-length 320760–batch-size 6”, and with a pre-trained model for inverte-
brate “invertebrate_v0.3_m_0200”. Gene function, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) items for predicted genes were annotated using eggNOG-Mapper22 web tools, against the egg-
NOG Database 5. A total of 15412 protein-coding genes were predicted, in which 12671 genes were functionally 
annotated.

Data Records
The Nanopore reads, Illumina reads, Hi-C reads, and RNA reads for P. cassiicola genome assembly were depos-
ited at NCBI under Sequence Read Archive under accession number SRP47975923. The nuclear and mitochon-
drial genome assemblies were deposited in Genbank under accession number GCA_038024825.124. The genome 
annotation files are available in Figshare25 at https://doi.org/10.6084/m9.figshare.24902046.

Technical Validation
To validate the accuracy of the final genome assembly, we mapped the Illumina short reads and Nanopore long 
reads to the P. cassiicola genome using Minimap226 with option “-ax sr” for short reads and option “-ax map-ont” 
for long reads. The mapping rates for the short reads and long reads were calculated using Samtools27. Analysis 
revealed 96.38% and 98.73% mapping rates for the short and long reads, respectively. We examined the coverage 
of short reads along the mitochondrial genome and showed 100% coverage (Fig. 1b).

Completeness of the assembly and gene prediction were evaluated using BUSCO 5.4.728 with lepidop-
tera_odb10 database. In this analysis, BUSCO examined the states and proportions of 5,286 single-copy 
orthologous of Lepidoptera in our genome assembly: single-copy (S), duplication (D), fragment (F), and 
missing (M). The analyses showed completeness ranging 95.1%–98.4% for each assembly stage (Table 3), 
and 97.8% for predicted gene set: “C: 97.8% [S: 97.2%, D: 0.6%], F: 0.9%, M: 1.3%”. Quality of gene 

Experiment Method/Platform Manufacturer Insertion size Output Coverage

DNA extraction Magnetic bead method Invitrogen, Thermo Fisher Scientific, USA NA NA NA

RNA extraction TRIzol reagent Thermo Fisher Scientific, USA NA NA NA

Short-read seq NovaSeq 6000; paired-end Illumina, USA 350 bp 68.7 Gb 115×

Long-read seq PromethION Oxford Nanopore Technologies, UK N50 = 16.7 Kb 117.6 Gb 196×

Hi-C seq NovaSeq 6000; paired-end; digested by MboI Illumina, USA 350 bp 178.1 Gb 297×

RNA seq NovaSeq 6000; paired-end Illumina, USA 350 bp 16.3 Gb NA

Table 1.  Methods and outputs for sequencing experiments. NA, not available.
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prediction was manually evaluated using RNA-seq data. Specifically, RNA-seq reads were mapped to the 
genome using Hisat29 and Samtools27. We imported the obtained BAM file and annotation file into the IGV 
browser30. Based on manual examination, we found that the machine learning-based annotation method 
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Fig. 1  Genomic feature of nuclear genome of Polylopha cassiicola. (a) Hi-C contact matrix of 22 putative 
chromosomes. (b) Synteny among four tortricid species from four subfamilies and an outgroup. The labels at 
the bottom marked the ancestral linkage groups of Lepidoptera6.
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Fig. 2  Distribution of annotated genes on mitochondrial genome. The inner ring shows the relative read 
coverage.

Item Number Length (bp) Content (%)

SINEs 5219 354577 0.12

LINEs 143490 16636355 5.51

LTR elements 35392 11777710 3.9

DNA transposons 23636 4498331 1.49

Rolling-circles 315217 39695809 13.14

Unclassified repeats 235177 34162427 11.31

Satellites 17 2222 0

Simple repeats 72367 3737369 1.24

Low complexity repeats 7520 355233 0.12

rRNAs 67 46500 0.015

tRNAs 1052 78802 0.026

Table 2.  Statistics of repeat elements and non-coding RNAs in Polylopha cassiicola genome. SINEs, short 
interspersed nuclear elements; LINEs, long interspersed nuclear elements; LTR, long terminal repeat.
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has predicted a near-complete gene structure. These results indicate that we have obtained a high-quality 
assembly and annotation for P. cassiicola genome.

Code availability
No custom scripts or code were used in this study.
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Item Contig Purged contig Hi-C raised scaffold Polished scaffold

No. of contigs 76 65 22 22

Size (Mb) 297.20 294.45 294.46 302.03

N50 (Mb) 8.54 8.54 12.96 13.19

GC content 35.16% 35.12% 35.12% 35.14%

Single-copy BUSCOs 94.7% 94.8% 94.9% 98.1%

Duplicated BUSCOs 0.5% 0.3% 0.3% 0.3%

Fragmented BUSCOs 2.2% 2.2% 2.2% 0.3%

Missing BUSCOs 2.6% 2.7% 2.6% 1.3%

Table 3.  Statistics of Polylopha cassiicola assemblies.
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