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Abstract

The study aims at developing a neural network model to improve the performance of Human 

Phenotype Ontology (HPO) concept recognition tools. We used the terms, definitions, and 

comments about the phenotypic concepts in the HPO database to train our model. The document 

to be analyzed is first split into sentences and annotated with a base method to generate candidate 

concepts. The sentences, along with the candidate concepts, are then fed into the pre-trained model 

for re-ranking. Our model comprises the pre-trained BlueBERT and a feature selection module, 

followed by a contrastive loss. We re-ranked the results generated by three robust HPO annotation 

tools and compared the performance against most of the existing approaches. The experimental 

results show that our model can improve the performance of the existing methods. Significantly, 

it boosted 3.0% and 5.6% in F1 score on the two evaluated datasets compared with the base 

methods. It removed more than 80% of the false positives predicted by the base methods, resulting 

in up to 18% improvement in precision. Our model utilizes the descriptive data in the ontology and 

the contextual information in the sentences for re-ranking. The results indicate that the additional 

information and the re-ranking model can significantly enhance the precision of HPO concept 

recognition compared with the base method.

1. Introduction

Deep phenotyping has been identified as an efficient way to better describe the observable 

abnormalities of diseases [1]. Phenotypic concept recognition plays a vital role in this 

process. HPO [2] is a controlled vocabulary that has been widely used for computational 

deep phenotyping and precision medicine [3]. HPO has been adopted as a standardized 

terminology in some phenotyping analysis platforms for clinical practice (e.g., PhenoTips 
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[4], PhenoDB [5]). To capture the comprehensive phenotypic information of patients, 

clinicians use these platforms to search and select the most appropriate HPO terms for 

characterizing patients’ symptoms.

The ontology repository with the data version of 2021-02-08 contains 15,783 terms that 

characterize the phenotypic concepts in human disease. The terms are connected via 

semantic links representing the hierarchical relations among those concepts. The ontology 

database also includes cross-links to other knowledge databases, such as Online Mendelian 

Inheritance in Man (OMIM) [6], Unified Medical Language System (UMLS) [7], and 

Systematized Nomenclature of Medicine-Clinical Terms (SNOMED-CT) [8]. Each term’s 

detailed definition and evidence make HPO valuable for precise and dependable phenotype 

analysis. HPO is not widely employed in the literature, case reports, or most electronic 

health record (EHR) data to describe phenotypic information. Free text makes it challenging 

to conduct comparative analyses of phenotypes among these data sources or with new 

curated patient records, using HPO terms. Therefore, automatic recognition of HPO 

concepts from free text would be helpful for phenotype-based analysis.

The existing HPO concept recognition approaches are developed using different techniques. 

OBO annotator [9], NCBO annotator [10], ClinPhen [11], and MetaMap [12] adopt 

dictionary-based and traditional NLP methods to solve the above-noted problem. Machine-

learning approaches also have been applied to this problem for performance improvement 

[13], but high-quality annotated datasets are limited. Arbabi et al. presented a neural 

dictionary model, termed Neural Concept Recognizer (NeuralCR), for HPO and SNOMED-

CT concept recognition [14]. Other tools for HPO recognition are available via online 

platforms or APIs such as Doc2hpo [15], Monarch Initiative Annotator1 [16], and 

Track.Health2. These existing HPO annotation tools are built on the literal terms in the 

ontology database and the datasets with limited coverage of concept curation.

In our previous study [17], we built PhenoTagger for HPO concept annotation, combining 

dictionary-based and weakly supervised machine-learning techniques to obtain better recall, 

outperforming the existing machine-learning approaches. Filtering the false positives would 

be a straightforward solution to further improve overall performance, especially for those 

downstream tasks that require better precision or focus on a specific scope of phenotypic 

abnormality.

This study proposes a re-ranking model pre-trained on the HPO database to filter the 

results retrieved from the dictionary-based or machine-learning methods. The model utilizes 

the informative text in the ontology and employs a deep-learning approach to boost 

overall performance. To construct a pre-training dataset, many textual descriptions of the 

corresponding HPO concepts are extracted from the HPO ontology database. A pre-built 

language model is used to obtain the contextual information from the input text, and a novel 

feature selection component for deep-learning models is proposed to refine the context. 

Significant improvements as compared to existing methods are observed in the experimental 

1 https://monarchinitiative.org/tools/text-annotate 
2 https://track.health/api/ 
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results. The contribution of our proposed feature selection module also is validated in the 

exclusion experiment.

2. Methodology

2.1. Dataset

BiolarkGSC+—The Bio-LarK gold-standard corpus (GSC) [18] is broadly used in building 

and testing HPO concept recognition systems. The Bio-LarK CR system, NCBO Annotator 

[10], and OBO Annotator [9] have been evaluated on this dataset for comparison. The 

GSC dataset is then fixed in terms of HPO entity inconsistencies and referred to as 

BiolarkGSC+ [19]. These inconsistencies originate from similar concept mentions that were 

curated differently in various locations of the corpus. The updated version contains adjusted 

annotations that diminish the confusion. It enhances the quality of the annotations and 

reduces the errors of the machine-learning-based annotators.

This dataset comprises 228 abstracts manually annotated with HPO concepts on textual 

spans (mention level). There are 497 unique HPO terms located at the subtrees of 

“Phenotypic abnormality” (HP:0000118) and “Mode of inheritance” (HP:0000005). As 

shown in Supplementary Table S1, each document in the corpus has roughly seven sentences 

and 149 tokens on average, implying that it can fit into memory for most machine-learning 

models. The number of labels varies from 1 to 54, indicating that the distribution of 

annotations over all the documents is sparse.

COPD-HPO—Besides the updated abstract-level corpus GSC+, we also employed another 

corpus containing phenotypic annotations, COPD [20]. It consists of 30 full-text articles that 

focus on Chronic obstructive pulmonary disease (COPD) phenotypes. The full-text articles 

are split into paragraphs in advance, and the annotations are given for each paragraph to 

form a sample. The named entity annotations in the COPD corpus are linked to UMLS 

concept identifiers (CUIs). We map the CUIs to HPO ids through the cross-links provided in 

the HPO database, named COPD-HPO in this paper. As shown in Fig. 1, since this dataset 

only focuses on the phenotypes related to a specific disease and not every CUI can be 

mapped to a corresponding HPO concept, the documents contain fewer labels than those 

in GSC+. Because the COPD-HPO corpus is not intuitively designed for HPO annotation 

evaluation, we regard it as a silver standard corpus that serves as a secondary dataset for 

benchmarking.

In practice, most of the clinical notes are annotated at the document level. To align with 

those practical scenarios, we evaluate all the approaches only at the document level. 

Document classification and named entity recognition are two common tasks in NLP. 

However, formalizing HPO recognition as either one of these two tasks is not appropriate. 

It can be directly observed from Fig. 1 that documents in BiolarkGSC+ are annotated with 

more HPO labels than those in COPD-HPO on average. In other words, it would be a 

challenge to formalize the HPO annotation task as a multi-label classification problem due 

to the number and distribution of labels. Considering the HPO annotation task as a named 

entity recognition problem seems more reasonable. Document-level annotations, however, 

are adequate for downstream tasks. In addition, mention-level curations are immensely 
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expensive and time-consuming. Currently, corpora with mention-level annotations of HPO 

terms are limited for training a supervised NER model. Therefore, we formalized the 

problem as a document-concept pair similarity task with additional pre-processing and 

post-processing steps. Our model addresses the problem of insufficient curated data by 

leveraging the materials in the HPO database. The pre-training process does not need any 

datasets with manual curations of HPO labels, while the optional fine-tuning step requires 

only sentence- or mention-level annotations.

2.2. Problem formalization and transformation

As depicted in Table S1 about the data statistics, the machine-learning models may not work 

well in the multi-label classification problem in BiolarkGSC+ due to the sparse distribution 

of the labels. A conventional approach to address this is problem transformation for multi-

label classification [21]. Although the transformation will yield multiple classifiers, training 

more than 10,000 classifiers for HPO concept recognition is inappropriate when using 

a language model. Based on the above observations, we propose a framework that can 

improve the HPO annotator’s performance, specifically in terms of precision, by leveraging 

the language model. We formalize the concept recognition as a sentence similarity 

prediction problem. First, we derive the corresponding label names and definitions from 

the ontology database for the HPO IDs. For each document di annotated with k HPO IDs, 

we transform the document into k pairs of records, di,  HPO1 ,   di,  HPO2 ,  …,   di,  HPOk . 

If the document contains multiple long sentences that cannot fit into the models, we further 

split the document into sentences, treating each sentence as a document that is then paired 

with the annotated labels. This splitting step is only required when the text is too long to 

be handled by the model and the annotations are sentence- or mention-level. Adopting a 

new model that accepts an arbitrary input length is an alternative solution for this issue. 

After that, we link the label names and the definitions of the HPO IDs to these records. 

The objective is to predict whether the document di contains the HPO label names or has 

a similar meaning based on its definition. It is not feasible to iterate over all pairs of 

documents and HPO IDs. Accordingly, we adopt a base method to retrieve a candidate 

set of labels before constructing pairwise records. Based on the benchmarking results, we 

employed three robust methods, text annotator from Monarch Initiative, MetaMap, and 

the state-of-the-art HPO annotator PhenoTagger [17], to annotate the corpora with HPO 

concepts. The resulting candidate labels for each document were transformed into pairs of 

text and labels and fed into the trained re-ranking model. The final re-ranking model acts as 

a filter to diminish false-positive predictions.

The example in Fig. 2 demonstrates how we re-rank the results of the HPO annotator 

from Monarch Initiative. The predictions of a base method may contain irrelevant concepts 

(colored in pink). In this example, the terms “distal” and “proximal” can fully match the 

concepts under the sub-tree of clinical modifier. However, they better fit the longer text span 

according to the context of the sentence. Our model takes as input both the text and the 

predictions of the base method, and then determines if the predicted concepts fit the context.
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2.3. Re-ranking model

BlueBERT language model—We illustrate the workflow and architecture of our 

proposed re-ranking model in Fig. 3. The flow chart on the left side demonstrates the 

processes of prediction. The model on the right side is pre-trained on the informative 

content extracted from the ontology database before re-ranking. The parts before the linear 

transformation module in the re-ranking model can be divided into two streams. The left 

stream is a conventional sentence-similarity prediction workflow that employs BlueBERT, 

a BERT model pre-trained on PubMed abstracts, and MIMIC-III clinical notes [22]. The 

model takes a text pair as input, where the first one is the sentences in the documents, 

and the second one is the label names or definitions of the paired HPO term. It encodes 

the text pairs to a tensor with dimension m, which depends on the hyper-parameters of the 

BlueBERT model.

Feature selection module—Commonly, the output of the last layer (colored in blue in 

Fig. 3) in the BlueBERT model will be used as input of a linear transformation module. 

However, different layers of the output encode the granularity of the context, where the 

layers close to the textual tokens are more likely to represent word embeddings. In contrast, 

those close to the loss function imply features for the task labels. The strategy of selecting 

the best output layers varies for different labels, and it is time-consuming to exploit the 

performance of all layers [23]. The HPO annotation problem that we formalized also can 

be regarded as a multiple binary classification problem for different HPO terms. Therefore, 

we developed a feature selection module that utilizes the optimum choice of output from 

the language model for each label. As shown in the right stream in Fig. 3, we employ 

a selection-embedding module for the HPO concepts. After pre-training, this module’s 

parameters will be fixed, which means that we encode all the HPO IDs into a continuous 

space that represents each unique HPO concept. A feed-forward module is employed to 

encode the trained embeddings into weight vectors used to calculate weighted sums on 

BlueBERT’s multi-layer outputs. The resulting output (colored in yellow in Fig. 3) is 

concatenated to the output of the last layer of BlueBERT.

Contrastive loss—We append a batch normalization module [24] after the BlueBERT 

model’s output to accelerate the training process. After the merged output tensor is applied 

to the linear module, we append a dropout module to prevent overfitting. Last, we adopted 

a pairwise ranking loss, contrastive loss [25], to optimize the predicted similarity scores for 

the input pairs of text. Assume the ground truth label and predicted label for document i
is yi and yi, the contrastive loss of the model on sample i is 1 − yi *yi

2 + yi*max 0,   m − yi
2 , 

where the parameter m is set to 2 normally. We also employ an early-stopping strategy 

to terminate the training process when the loss value no longer decreases. The detailed 

hyperparameters of our proposed model are shown in Supplementary Table S2.

2.4. Weakly supervised pre-training

Due to the lack of sufficient annotated corpora for HPO concept recognition, we use 

the intrinsic data of HPO database for weakly supervised pre-training. In addition to 

term names, the HPO database contains multiple types of textual data (e.g., synonyms, 
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definitions, comments) for most concepts that can be used for pre-training. The labels are 

first obtained from the associations between the concepts and the textual content provided in 

the HPO ontology database. We observe that those textual records either imply or explicitly 

contain the corresponding concept terms, given that the associations between the text and 

concepts are extracted from the ontology database. Then, a group of randomly selected 

non-ancestor concepts and the correct concept are paired with each record. The objective 

of this pre-training task is to predict whether the textual records imply the paired concept 

terms. The textual data embedded, involving almost all the HPO labels in the ontology 

database, are used to initialize the model. Consequently, the parameters of the pre-trained 

model are shared with the downstream tasks.

To derive a robust model that can perform concept recognition on the complete set of 

HPO terms, we fed the model with different types of ontology content for pre-training. 

The textual content is paired with the corresponding concept terms as input. The version 

of the ontology database we used in our experiments contains definitions of about 11,084 

of the 15,783 HPO concepts. We adopted the synonyms of the remaining 4,699 concepts 

to represent their meanings. In addition to definitions and synonyms, the database consists 

of many comment notes that can be organized as a corpus in which the notes describe the 

corresponding HPO concept. Cross-links with other databases also contain similar notes 

that can be merged into this corpus. We constructed a corpus with all the textual data that 

we extracted from the ontology database, including concept terms, definitions, comments, 

and synonyms for pre-training. As for the negative samples of a specific label annotated 

in each document, we used the Damerau-Levenshtein distance [26] to find similar terms 

from the HPO database, except the ancestors and descendants of a specific HPO ID. The 

negative samples are then randomly selected from a large set of candidates. The definitions 

and comments of those negative labels are paired with the concept terms, as with the positive 

samples. We used synonyms instead for those concepts without definitions or comments in 

the ontology database. The negative samples can help our model discriminate against the 

positive samples from a large number of negatives. To handle this imbalanced dataset, we 

applied a label-based weighting scheme to the loss function.

2.5. Fine-tuning

After pre-training, we fine-tuned the model using a target dataset (e.g., BiolarkGSC+ 

and COPD-HPO). This is an optional step because the pre-training corpus already had 

covered all the available HPO concepts, and the pre-trained model can work on most 

HPO recognition tasks. If better performance is desired and a portion of the target dataset 

has been annotated, however, the fine-tuning step is helpful to further improve predictive 

performance. Nevertheless, some studies focus on only a specific type of disease or a set 

of phenotypes, in which the existing methods will retrieve irrelevant concepts that appear 

in the text. Re-ranking approaches can better resolve this problem by fine-tuning the model 

on the target dataset. We evaluated the difference in performance when using this optional 

fine-tuning step, as shown in the Results section below.
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2.6. Evaluation

Because some existing methods have different behaviors for HPO concept extraction, a 

consolidated post-processing procedure was applied to all compared methods to ensure 

fairness. The first and most crucial step is the unification of concept IDs among different 

HPO releases. We obtained the mapping between each deprecated alternative ID and its 

primary concept ID from the ontology database and applied this mapping to the datasets 

and predictions. Another crucial step is to evaluate the model on a specific subtree of the 

HPO hierarchical structure to ensure fairness due to the limitations of some existing methods 

(e.g., OBO annotator works on concepts under HP:0000118 “phenotypic abnormality”). 

This step, however, is not necessary for a real-world application unless the task is required 

to focus on a specific subtree of the ontology. As a result of evaluating our model on 

a subset of labels, the original data records may have empty lists of annotated concepts. 

Calculating some metrics may encounter a zero-divisor problem if the prediction is also an 

empty list of concepts. We addressed the null label issue by adding a dummy label to both 

the gold-standard annotations and the record predictions and adopting the original metrics 

during the evaluation.

3. Results

3.1. Experimental setting

We implemented our model using PyTorch3 and trained it on four Nvidia Tesla V100 

GPUs. We wrote custom wrapper code for each comparison method to ensure consistency 

between all inputs and outputs. From the perspective of practicability, the document-level 

annotations are sufficient for the downstream analysis. Therefore, we adopted macro average 

[27] document-level metrics to evaluate all the comparison approaches’ performance.

We compared our approaches with the existing methods on BiolarkGSC+ and COPD-HPO. 

We evaluated our model on the whole target datasets when it is pre-trained only on the 

corpus generated from the ontology database. We compared our method to others by not 

training on the target datasets. We built three versions of our approach adopting different 

base methods, Monarch Initiative annotator (MNI), MetaMap (MM), and PhenoTagger (PT), 

reported as MNIRerank, MMRerank, and PTRerank, respectively, because they achieved 

the most robust performance in the benchmark experiment. PhenoTagger and MetaMap 

have the highest recall on BiolarkGSC+ and COPD-HPO, respectively. As shown in Table 

1, our re-ranking model sacrifices a little recall for a significant increase in precision. 

Compared with the original method, PTRerank, MMRerank, and MNIRerank achieved 3%, 

1.9%, and 1.1% F1-score improvement on BiolarkGSC+, while obtaining 9.4%, 9.6%, 2.4% 

F1-score improvement on COPD-HPO. Precision and recall play an essential role in deep 

phenotyping. We make full use of the dictionary-based methods to retrieve as many relevant 

candidate labels as possible, then employ a model with deep-language understanding to filter 

out irrelevant labels. As we generate plenty of negative samples for training, a label-based 

weighting scheme is applied. Namely, we penalize false negatives more than false positives 

3 https://pytorch.org 
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in the loss function. That is why the recall of the base method and our re-ranking method are 

so similar.

We also conducted experiments to fine-tune the model on the target datasets. We split 

the dataset into 80:20 samples for training and testing, respectively. We recalculated the 

performance of the existing methods on the testing set of the dataset. The training sets 

were then fitted into our pre-trained re-ranking model before evaluating it on the testing set. 

As depicted in Supplementary Table S3, the performance improvement is consistent with 

evaluations on the whole dataset. The re-ranking model boosted the F1-score at most by 

8.1% and 7.6% on the testing set of BiolarkGSC and COPD-HPO, respectively.

As shown in Supplementary Table S4, we conducted the same experiments without post-

processing applied to all the methods on the whole dataset to highlight the importance of 

post-processing steps. To align with the results in our previous study [17], we also ran the 

experiments on the pre-defined subset of BiolarkGSC+. As illustrated in Supplementary 

Table S5, the results are mainly consistent with those conducted on the whole dataset. The 

re-ranking results demonstrate that our model can fit both dictionary-based and machine-

learning approaches for performance boosting. Details are provided in Appendix A.

3.2. Excluding selection embedding

The selection embedding shown in Stream 2 of Fig. 3 plays an essential role in our proposed 

method. The multi-layer multi-head transformer-based model captures different types and 

levels of context, represented over all the layers and heads. Each HPO concept has a 

different focus in this context. The selection embedding encodes the focus for each HPO 

concept and helps the model make the optimum choice of context according to the observed 

patterns. We conducted additional experiments to verify the effectiveness of the selection 

embedding. We excluded Stream 2 of Fig. 3 and repeated the experiments for our re-ranking 

model. As tabulated in Table 2, the re-ranking model without selection embedding slightly 

improved the precision but resulted in a more significant decrease in the recall, resulting in 

lower overall performance.

3.3. Detailed comparison of predictions

To further illustrate how our proposed method works, we compared the prediction results of 

the base approaches, our re-ranking methods, and the re-ranking methods without selection 

embedding. The Venn diagram in Fig. 4 demonstrates the number of overlapping HPO terms 

predicted by the compared methods and lists the number of true positives in brackets. Our 

re-ranking model filters out most of the false positives produced by the base approaches. 

The Venn diagram counts consider only the HPO term predicted in all documents. The 

number of false positives can be calculated by subtracting the numbers from the ones in 

parenthesis for each part of the Venn diagrams. PTRerank, MMRerank, and MNIRerank 

eliminate 83.2%, 85.7%, and 84.7%, respectively, of the false positives on BiolarkGSC+. 

However, the models without the selection embedding module kept many false positives, 

leading to poorer re-ranking performance.

Another finding is that the total number of concepts contained in COPD-HPO is much larger 

than that in BioLarkGSC+, which is caused by the large difference in the number of samples 
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in both datasets. Along with the fact that fewer labels are contained in COPD-HPO, it leads 

to larger sparsity of the label distribution in BioLarkGSC+. As a result, the recall of most 

of the methods on BioLarkGSC+ is lower than that on COPD-HPO. The difference between 

BioLarkGSC+ and COPD-HPO reflects the complexity in the real-world applications and 

the challenge in HPO concept recognition. Our approach addresses this issue by problem 

transformation and pre-training on the ontology.

3.4. Error analysis

We randomly pick some samples from the categories of true positives that were wrongly 

filtered out (false negatives) and the false positives that were wrongly kept in by our 

proposed re-ranking model (jointly predicted by PTRerank, MMRerank, and MNIRerank) 

on BiolarkGSC+ for error analysis. The re-ranking model might fail to recognize the 

completed different expressions of these HPO concepts. For example, the sentence, “The 

analysis of a de novo 8q12.2-q21.2 deletion led to the identification of a proposed previously 

undescribed contiguous gene syndrome consisting of Branchio-Oto-Renal (BOR) syndrome, 

Duane syndrome, hydrocephalus and trapeze aplasia.” in document PMID:7849713 contains 

the HPO concept HP:0004253 “Absent trapezium”, mentioned as “trapeze aplasia”. The 

base approach finds this concept by string matching, but the re-ranking model filters it out 

according to the context. This is because this concept term is completely different from 

the mentions, and it has limited information in the ontology including the definition and 

synonyms. The model wrongly filtered out this concept during the re-ranking step. However, 

if the information is sufficient for the model to learn the alternative expressions, it could help 

prevent this type of error. For instance, the sentence “All affected individuals had shortness 

principally affecting the second and fifth phalanges and first metacarpal.” in document 

PMID:9024575 is predicted with HPO:0010692 “2–5 finger syndactyly”. However, this 

concept emphasizes the fusion of fingers but it is not reflected in the context, which is then 

filtered by our re-ranking model.

Another example is that the re-ranking model may not be able to discriminate against variant 

expressions with few common words. “These features include severe mental retardation, 

epileptic seizures, easily provoked and prolonged paroxysms of laughter, atactic jerky 

movements, hypotonia, large mandible with prognathia, and 2–3 cps spike and wave activity 

in the EEG” in PMID:7450780 contains concept HP:0000303 “Mandibular prognathia” but 

expressed as “large mandible with prognathia” in the paragraph. The relation between these 

two phrases is not captured by the re-ranking model, which leads to a false negative. 

For instance, the base approach detects concept HP:0100272 “Branchial sinus” in the 

sentence, “The earpits-deafness syndrome is an autosomal dominant disorder in which 

affected individuals may have sensorineural, conductive or mixed hearing loss, preauricular 

pits, structural defects of the outer, middle and inner ear, lacrimal duct stenosis, branchial 

fistulas or cysts of the second branchial arch, and renal anomalies ranging from mild 

hypoplasia to complete absence” of PMID:6964893. The re-ranking method and the base 

approach think that “branchial fistulas or cysts” has the identical meaning of “branchial 

sinus.” Another possibility is that the dataset has confusing gold-standard annotations. 

The sentence, “Tongue thrusting is common,” in PMID:2466440 should match concept 

HP:0100703 “Tongue thrusting.” The gold-standard annotations, however, indicate it as 
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concept HP:0000182 “Movement abnormality of the tongue.” The curator of the gold-

standard annotations has a different understanding of the phenotype contained in this 

sentence. Given the limited training samples for this particular concept, it is difficult for 

the algorithm to learn this pattern.

In addition to prediction errors, annotation bias is inevitable in manually curated datasets 

that would affect the evaluation results. Some of the false positives identified by algorithms 

might be “true positives” that curators miss. Therefore, this bias might affect our approach 

since the re-ranking model is designed to filter out the actual false positives. We sampled 

10% and 3% of the records from BioLarkGSC+ and COPD-HPO, which we manually 

reviewed to estimate the error rate of each approach. We then calculated the calibrated 

precisions by TP + FP * ErrorRate / TP + FP  for each document and obtained the overall 

results using macro averaging. As shown in Supplementary Table S6, the improvement of 

precision by our re-ranking approaches is slightly decreased, but the ranking of precisions is 

consistent with the original results. It reveals that the evaluation results are still meaningful 

since the pre-training step of our re-ranking model does not heavily rely on those manually 

curated datasets which might contain annotation bias.

4. Discussion

We have presented a benchmarking experiment on the BiolarkGSC+ dataset over several 

existing approaches and our approach. Our method, which re-ranks results derived from 

other dictionary-based approaches, significantly improves precision (from 3.8% to 12.3% on 

BiolarkGSC+ and 1.82% to 21.3% on COPD-HPO, as seen in Table 1) at the cost of a minor 

reduction in recall compared to the base approach. The existing methods rely mainly on 

dictionary data instead of the complete ontology information for HPO concept annotation, 

resulting in more false positives. Our proposed re-ranking method acts as a filter to help 

eliminate irrelevant results according to context. We pair each sentence and candidate HPO 

term together to form a textual pair instance, which can be fed into a language model for 

improved classification.

The method presented here does not require mention-level annotations; instead, it only 

utilizes the description data in the ontology database for model training. It addresses the 

problem of limited annotated resources in terms of label coverage and annotation level. 

It also can be fine-tuned to a specific dataset for better performance when provided with 

sentence- or abstract-level annotations for training. However, identifying a base approach 

with high recall is a limitation of our proposed method. Our benchmark experiments 

revealed that PhenoTagger, MetaMap, and the annotator from the Monarch Initiative team 

worked consistently well on BiolarkGSC+ and COPD-HPO. They yielded higher recall, 

which implies that they are more suitable to be employed in our re-ranking model.

5. Conclusion

In this study, we conducted a comprehensive study on HPO concept recognition, and 

evaluated most existing approaches on a gold-standard dataset as well as a large corpus 

focuses on a specific disease. The benchmark results indicated that those approaches with 
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higher recall have room for improvement in precision. Precision becomes more important 

when the text contains a number of irrelevant concepts but the annotations only focus on 

specific diseases. This is common in clinical notes when patients have multiple visits and 

tests. To achieve this goal, we proposed a re-ranking model that can refine the results 

of an existing base approach. We formalized the HPO concept annotation task as a multi-

label classification problem and transformed the problem into a sentence-concept similarity 

prediction. The problem transformation intends to build a weakly supervised model that 

employs knowledge from the HPO database. The model was fed with the textual information 

in the HPO database, including terms, synonyms, definitions, notes, and comments. The 

objective of training the model is to learn whether a sentence contains a specific HPO 

concept. The re-ranking approach was shown to work well with base algorithms that 

demonstrate high recall and retrieve as many true positives as possible. The re-ranking 

model improves precision by filtering out most retrieved false positives, resulting in a 

significant improvement in the F1-score. A clear advantage of using our re-ranking model is 

that it does not need mention-level annotations for training and can be fine-tuned on specific 

datasets by providing corresponding sentence- or abstract-level curations. The relied-upon 

base approach may limit the power of our model in terms of recall. However, our general 

re-ranking method can be paired with future approaches to obtain a better overall recall. 

It ensures that our method remains flexible for use with different types of datasets. Future 

work in this area would involve developing a more accurate HPO annotator for documents 

with arbitrary lengths and considering correlations among the predicted concepts. Negation 

detection and clinical modifier recognition of phenotype [28] are also important for real-

world applications. Our clinical NLP tool NegBio [29] would be helpful in handling the 

negation problem for practical usage. They could further improve the accuracy and refine 

the granularity of the extracted phenotypic information, which is worth exploring in a future 

study.
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Fig. 1. 
Distributions of labels for (a) BiolarkGSC+ and (b) COPD-HPO datasets
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Fig. 2. 
An example of HPO concept re-ranking. The predictions are generated using Monarch 

Initiative Annotator and then re-ranked for more accurate results. The concepts in bold are 

ground truth annotations, whose corresponding text is highlighted in yellow. The problem is 

to filter out the false positives colored in pink and keep the true positives.
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Fig. 3. 
Architecture of the re-ranking model. Pairs of document and candidate HPO terms are 

inputted into the model. The text in the document and HPO term (or term definition) are 

merged into the BlueBERT model, while the HPO IDs are fed into the selection-embedding 

module. The outputs of these two streams are concatenated before the linear transformation 

module.
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Fig. 4. 
Venn diagram of the prediction results among the base approaches (MetaMap, 

MonarchInitiative, PhenoTagger), the re-ranking approaches (MMRerank, MNIRerank, 

PTRerank), and the re-ranking without selection embedding (without SE) approaches 

(MMRerank without SE, MNIRerank without SE, PTRerank without SE) on (a) 

BiolarkgGSC+ and (b) COPD-HPO. The digits outside parentheses represent the number of 

predicted labels, and the ones in parentheses indicate the true positive among the predictions.
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Table 1

Performance comparison on BiolarkGSC+ and COPD-HPO

BiolarkGSC+ COPD-HPO

Method/Metric Precision Recall F1-score Precision Recall F1-score

OBO Anotator [9] 0.810 0.568 0.668 0.318 0.282 0.299

NCBO [10] 0.777 0.521 0.624 0.756 0.763 0.760

MonarchInitiative [16] 0.751 0.608 0.672 0.741 0.747 0.744

Doc2hpo-Ensemble [15] 0.754 0.608 0.673 0.779 0.755 0.767

MetaMap [12] 0.707 0.599 0.649 0.640 0.781 0.704

Clinphen [11] 0.590 0.418 0.489 0.377 0.328 0.351

NeuralCR [14] 0.736 0.610 0.667 0.543 0.719 0.619

TrackHealth 0.757 0.595 0.666 0.719 0.669 0.693

PhenoTagger [17] 0.720 0.760 0.740 0.623 0.820 0.708

MMRerank 0.754 0.599 0.668 0.822 0.779 0.800

MNIRerank 0.789 0.603 0.683 0.802 0.736 0.768

PTRerank 0.843 0.708 0.770 0.836 0.771 0.802

Note. MMRerank, MNIRerank, and PTRerank represent the re-ranking models based on MetaMap, MonarchInitiative methods, and PhenoTagger. 
The digits in bold indicate the best scores in terms of the corresponding metrics.
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Table 2

Performance of the re-ranking model without the selection embedding component

Method

Precision Recall F1-score Precision Recall F1-score

BiolarkGSC+ COPD-HPO

MMRerank w/o SE 0.605(−20%) 0.460(−23%) 0.523(−22%) 0.463(−44%) 0.615(−21%) 0.528(−34%)

MNIRerank w/o SE 0.567(−28%) 0.483(−20%) 0.522(−24%) 0.445(−45%) 0.564(−23%) 0.497(−35%)

PTRerank w/o SE 0.753(−11%) 0.407(−43%) 0.528(−31%) 0.683(−18%) 0.506(−34%) 0.581(−28%)

BiolarkGSC+ Testing Set COPD-HPO Testing Set

MMRerank w/o SE 0.581(−27%) 0.377(−7%) 0.457(−15%) 0.478(−33%) 0.623(−4%) 0.541(−20%)

MNIRerank w/o SE 0.714(−14%) 0.349(−21%) 0.468(−19%) 0.658(−1%) 0.590(−1%) 0.622(−1%)

PTRerank w/o SE 0.580(−19%) 0.218(−50%) 0.317(−41%) 0.637(−10%) 0.558(−21%) 0.595(−15%)

Note. w/o SE represents without the selection embedding component. Each percentage number in the brackets is the change compared with the 
sampe approach with selection embedding.
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