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Abstract 

Background  The emergence and spread of β-lactamase-producing Klebsiella spp. has been associated with a sub-
stantial healthcare burden resulting in therapeutic failures. We sought to describe the proportion of phenotypic 
resistance to commonly used antibiotics, characterize β-lactamase genes among isolates with antimicrobial resistance 
(AMR), and assess the correlates of phenotypic AMR in Klebsiella spp. isolated from stool or rectal swab samples col-
lected from children being discharged from hospital.

Methods  We conducted a cross-sectional study involving 245 children aged 1–59 months who were being dis-
charged from hospitals in western Kenya between June 2016 and November 2019. Whole stool or rectal swab 
samples were collected and Klebsiella spp. isolated by standard microbiological culture. β-lactamase genes were 
detected by PCR whilst phenotypic antimicrobial susceptibility was determined using the disc diffusion technique fol-
lowing standard microbiology protocols. Descriptive analyses were used to characterize phenotypic AMR and carriage 
of β-lactamase-producing genes. The modified Poisson regression models were used to assess correlates of pheno-
typic beta-lactam resistance.

Results  The prevalence of β-lactamase carriage among Klebsiella spp. isolates at hospital discharge was 62.9% 
(154/245). Antibiotic use during hospitalization (adjusted prevalence ratio [aPR] = 4.51; 95%CI: 1.79–11.4, p < 0.001), 
longer duration of hospitalization (aPR = 1.42; 95%CI: 1.14–1.77, p < 0.002), and access to treated water (aPR = 1.38; 
95%CI: 1.12–1.71, p < 0.003), were significant predictors of phenotypically determined β-lactamase. All the 154 
β-lactamase-producing Klebsiella spp. isolates had at least one genetic marker of β-lactam/third-generation cepha-
losporin resistance. The most prevalent genes were blaCTX-M 142/154 (92.2%,) and blaSHV 142/154 (92.2%,) followed 
by blaTEM 88/154 (57.1%,) and blaOXA 48/154 (31.2%,) respectively.

Conclusion  Carriage of β-lactamase producing Klebsiella spp. in stool is common among children discharged 
from hospital in western Kenya and is associated with longer duration of hospitalization, antibiotic use, and access 
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Background
Antimicrobial resistance (AMR) is a leading cause of 
death worldwide, with the highest burden reported in 
sub-Saharan Africa (SSA) where approximately 1.2 mil-
lion deaths in 2019 were attributed to bacterial AMR [1, 
2]. Nearly all AMR deaths related to under 5-year-old 
occur in low- or middle-income countries (LMICs) [3] 
where AMR is associated with a substantial healthcare 
burden resulting from empirical antimicrobial treat-
ment failure [4]. This translates to a considerable disease 
burden resulting from limited treatment options, more 
severe disease leading to longer duration of hospitaliza-
tion, poorer clinical outcomes, and increased healthcare 
associated costs [3].

Klebsiella spp. are gram-negative commensal bacteria 
with pathogenic potential commonly found in the gut. 
Klebsiella spp. bacteremia, for example, has a case fatal-
ity rate of at least 30% [5]. Resistance to a commonly 
used class of antibiotics, beta-lactams, as measured by 
extended spectrum beta-lactamases (ESBLs), is asso-
ciated with a 50% higher case fatality rates [5]. ESBLs 
are of public health concern because they not only sug-
gests resistance to an entire class of antibiotics but can 
facilitate selection for resistance determinants in other 
antimicrobial classes, including aminoglycosides and 
fluoroquinolones [6]. According to Kenyan guidelines 
[7], initial treatments for suspected severe bacterial 
infections involve the use of two beta-lactam antibiotics, 
penicillin, or ampicillin, along with the aminoglycoside 
antibiotic gentamicin. Subsequently, intravenous ceftri-
axone, a cephalosporin antibiotic, is recommended [8]. 
However, cephalosporin-resistant Klebsiella infections 
has posed challenges with these antibiotic regimens [8]. 
ESBL-producing Klebsiella spp. is a growing problem in 
SSA, where antibiotic options are already limited.

Nosocomial spread of Klebsiella spp. is prevalent, espe-
cially in crowded hospital environments where children 
are frequently exposed to antibiotics. This hospital set-
tings serves as a particularly significant breeding ground 
for antibiotic resistant Klebsiella spp. Children returning 
home from hospital who develop infection with AMR 
Klebsiella may have limited treatment options and may 
spread these AMR bacteria within households and the 
community.

Although AMR bacterial infections pose a dispropor-
tionate public health challenge in SSA, epidemiological 
data are scarce. We conducted an AMR study that was 
nested within a clinical trial investigating the impact of 
azithromycin for prevention of morbidity and mortal-
ity in the six months following discharge from hospitals 
in western Kenya [9]. In this nested study, we sought to 
describe the proportion of phenotypic resistance to com-
monly used antibiotics, characterize β-lactamase genes 
among the phenotypically resistant isolates and assess the 
correlates of ESBL-producing Klebsiella isolates among 
children discharged from hospital in western Kenya.

Methods
Study design
In the parent trial [9], we systematically recruited chil-
dren aged 1 – 59  months who were discharged from 
two county referral hospitals in Western Kenya between 
June 2016 and Nov 2019. In this nested cross-sectional 
study, we examine Klebsiella isolates collected at enrol-
ment from two county hospitals in Western Kenya. The 
Kisii Teaching and Referral Hospital is located within the 
urban center in Kisii town whilst the Homa Bay County 
Teaching and Referral Hospital is in Homa Bay county. 
Kisii Teaching and Referral Hospital serves a population 
of about 1.2 million people with about 220,000 children 
under five years of age and serves as a major referral hos-
pital in western Kenya [10]. Homa Bay County Teaching 
and Referral Hospital is classified as a level four health-
care institution, serving a predominantly rural popula-
tion of around 1.1 million people. Homa Bay county has 
one of the highest under-five childhood mortality rates 
and HIV prevalence in the country [11].

Eligibility criteria included children who weighed at 
least 2  kg, had been hospitalized, recovered, and dis-
charged from hospital, planned to remain in the study 
area for at least 6  months, had no contradiction to 
azithromycin, and had not been prescribed any mac-
rolide antibiotics. We excluded children from the study if 
their hospital admission was solely due to trauma, injury, 
or birth defect, or if the legal guardian refused consent 
[9].

Prior to randomization, stool samples were col-
lected from children, processed, and archived. Data 

to treated water. The findings emphasize the need for continued monitoring of antimicrobial susceptibility patterns 
to inform the development and implementation of appropriate treatment guidelines. In addition, we recommend 
measures beyond antimicrobial stewardship and infection control within hospitals, improved sanitation, and access 
to safe drinking water to mitigate the spread of β-lactamase-producing Klebsiella pathogens in these and similar 
settings.
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on demographics, medical history, underlying medi-
cal conditions, clinical examination, and nutritional 
anthropometry were collected on standardized paper 
questionnaires by trained study clinicians. In the current 
nested cross-sectional study, we utilized a random sam-
ple of 245 children whose enrollment stool samples had 
Klebsiella isolated, linked them to clinical data recorded 
during hospital stay, and demographic and social eco-
nomic factors collected from the primary caregiver dur-
ing enrollment.

Sample collection and processing
At enrollment, all children provided whole stool samples, 
or rectal swabs were used if whole stool collection was 
not feasible [9]. These samples were preserved in Cary-
Blair media to ensure bacterial viability during trans-
portation for microbiological culture. The samples were 
then promptly shipped to the central laboratory at the 
Kenya Medical Research Institute-Centre for Microbiol-
ogy Research (KEMRI-CMR) in Nairobi within a 24-h 
timeframe. A swab or a sample of stool was streaked on 
MacConkey (MAC) (Oxoid, United Kingdom) and Eosin 
Methylene Blue agars (Oxoid, United Kingdom) and 
incubated in ambient air at 37 °C for 24 h. Morphologi-
cally distinct lactose fermenting mucoid colonies were 
subcultured onto Mueller Hinton (Oxoid, United King-
dom) agar and subjected to API 20E system (bioMérieux, 
Inc., France) and oxidase reactions for confirmation of 
Klebsiella spp. Confirmed Klebsiella spp. isolates were 
stocked in tryptone soy broth supplemented with 15% 
glycerol (Oxoid, United Kingdom) and frozen at -80  °C. 
For this analysis, the Klebsiella spp. isolates were thawed, 
quadrant streaked for isolation onto MAC agar and incu-
bated at 37° C in ambient air to perform antimicrobial 
susceptibility testing (AST), DNA extraction and genetic 
characterization.

Antibiotic susceptibility testing
The antibiotic susceptibility profiles of the Klebsiella iso-
lates were determined by the Kirby-Bauer disk diffusion 
method as described by CLSI [12]. The antibiotics pan-
els used included ceftriaxone (CRO, 30 µg), ceftazidime 
(CAZ, 30 µg), cefotaxime (CTX, 30 µg), cefoxitin (FOX, 
30  µg), chloramphenicol (C, 30  µg), ciprofloxacin (CIP, 
5  µg), gentamicin (CN,10  µg), amoxicillin-clavulanate 
(AMC, 20  µg/10  µg), meropenem (MEM, 10  µg), imi-
penem (IPM, 10  µg), azithromycin (AZM, 15  µg), and 
aztreonam (AZT, 30  µg). Zone diameters, measured in 
millimeters, established by CLSI-2020 M-100 were used 
to determine susceptibility, resistance, or an intermediate 
designation [12]. Both intermediate and resistant isolates 
were classified as non-susceptible [12].

Determination of ESBL–producing Klebsiella spp
ESBL production was determined using the double-disc 
diffusion synergy test, which utilizes cefotaxime and cef-
tazidime with and without clavulanic acid [12]. The discs 
were placed 20 mm apart on a lawn culture of Klebsiella 
spp. plated on MH agar and incubated at 37 °C for 24 h as 
described previously [12, 13]. Quality control was assured 
by simultaneously plating and testing an ESBL-producing 
Klebsiella strain (ATCC 700603) and an ESBL-negative 
E. coli strain (ATCC 25922) [13]. ESBL-producing Kleb-
siella spp. was confirmed if the difference in the zone 
size between cefotaxime and the zone size of cefotaxime 
with clavulanic acid was ≥ 5 mm or if the difference in the 
zone size between ceftazidime and the zone size of cef-
tazidime with clavulanic acid was ≥ 5 mm as established 
previously [12].

Genotypic detection of ESBL genes using conventional PCR
Bacterial DNA was extracted from ESBL-producing 
colonies of Klebsiella spp. using a boiling method. An 
inoculating loop was placed into bacteria pooled from 
an overnight culture in MH mixed with 0.5 ml nuclease 
free water. The cell suspension was heated for 10 min at 
100  °C then centrifuged at 15,000 revolutions per min-
ute for 5  min (maintained at 25  °C). The supernatant 
was used as DNA template for amplification. Extracted 
DNA was amplified using sets of primers targeting ESBL 
encoding genes (blaTEM, blaSHV, blaCTX-M, blaOXA) as pre-
viously described [14–16]. Briefly, a final reaction vol-
ume of 25 µl was used in a master mix containing 0.5 µl 
forward primer (0.2 µM), 0.5 µl reverse primer (0.2 µM), 
9.5 µl nuclease free water. A 12.5 µl mix which included 
Taq DNA polymerase (2.5 units), 1 × PCR Buffer, MgCl2 
(0.2  µM), and ultrapure dNTPs (200  µM,) followed by 
addition of 2  µl template DNA was combined with the 
PCR master mix. Amplification conditions consisted of 
30 cycles of 94°C for 30 s, 50°C, 55 C and 60°C for 30 s, 
initial extension of 68°C for 1 min and with a final exten-
sion step of 68  °C for 5 min [16]. Gel electrophoresis of 
PCR products was carried out at 200  V on a 1.5% aga-
rose gel, stained with gel red stain and visualized on a Vil-
ber E-Box gel documentation system. All PCR reactions 
were run with both negative and positive DNA control 
templates.

Definitions
Detailed descriptions of exposure variables and the 
derived variables has been provided elsewhere [9]. 
Briefly, we collected data on sex, child age, study site, HIV 
exposure, nutritional status, history of exclusive breast 
feeding, childhood vaccination (included pneumonia, 
rotavirus, measles, DPT, and BCG), length of hospital 
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stay, antibiotic use during hospitalization, caregiver 
reported income, caregiver education level, household 
toilet type, water source and treatment, and household 
crowding. A household had access to improved water if 
the caregiver reported access to reliable piped water in 
the dwelling or community, or if the household primar-
ily used water from a borehole, a protected spring, a well 
with a pump, bottled water, or rainwater from storage 
tanks for household chores. Access to treated drinking 
water was defined as a household whose drinking water 
is filtered, boiled, or chlorinated before use. Household 
crowding was defined as a household with more than two 
individuals sharing a room. The 2006 WHO growth ref-
erences for children age < 5-years were used to construct 
anthropometric z-scores. We defined underweight as 
weight-for-age z-score (WAZ) less than -2SD, stunting as 
a height-for-age z-score (HAZ) less than -2SD, and wast-
ing as weight-for-height/length z-score (WHZ) less than 
-2SD. Data on vaccination was derived from childhood 
vaccination cards if the cards were available at the hospi-
tal. However, if the cards were not available, the caregiver 
provided a report on the child’s vaccination status includ-
ing the doses taken thus far. We derived an overall vac-
cine variable that defined children who had completed 
all essential age-appropriate vaccines, herein referred to 
“complete age-appropriate vaccination”.

Statistical analysis
We reported the proportion of Klebsiella spp. isolates 
resistant to each tested antibiotic and carrying ESBL. To 

evaluate correlates of ESBL-producing Klebsiella spp., we 
constructed univariate and multivariable Poisson regres-
sion models with a robust variance for various child, hos-
pital, and household factors, adjusting for key a priori 
confounders (age, sex, and site). Associations were con-
sidered statistically significant at an alpha < 0.05. All sta-
tistical analyses were performed in Stata (Version 17.0, 
Stata Corp, College Station, TX, USA).

Results
Baseline characteristics
Out of 1400 children enrolled in the parent trial, 
461/1400 (32.9%) had Klebsiella spp. isolated from their 
stool samples and 245 of those with Klebsiella spp. iso-
lated, were randomly chosen to be included in this sub-
study (Fig.  1). The 245 children had a median age of 
15  months (IQR 8–30), 144/245 (58%) were from the 
Kisii site, 140/245 (57%) were male, 20/245 (8%) had 
severe wasting, and 18/245(7%) had moderate wasting. 
Diagnosis at discharge included 57/245 (23%) pneu-
monia, 19/245 (8%) diarrhea and 41/245 (17%) malaria 
cases. During hospitalization, 219/245 (89%) children 
had taken at least one antibiotic and 172/245 (70%) had 
taken more than 1 antibiotic: 77/245 (31%) received cef-
triaxone, 2/245 (1%) received ciprofloxacin, 5/245 (2%) 
received cefuroxime, 142/245 (58%) received gentamicin, 
19/245 (8%) received chloramphenicol, and 165/245 
(67%) received penicillin. Further detailed description of 
the participants characteristics is shown by site in (Table 
S1).

Fig. 1  Participant flow chart
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Phenotypic and genetic AMR
Overall, 231/245 (94.3%) were K. pneumoniae and 14/245 
(5.7%) were K. oxytoca. A total of 154/245 (62.8%) iso-
lates were phenotypically ESBL positive, 148/231 (64.1%) 
K. pneumoniae and 6/14 (42.9%) K. oxytoca. More than 
half, 152/245 (62%) harbored Klebsiella spp. isolates that 
were resistant to a third-generation cephalosporin; more 
specifically, 155/245 (63.2%) were resistant to ceftriax-
one, 154/245 (62.8%) were resistant to cefotaxime and 
146/245 (59.6%) were resistant to ceftazidime. A total of 
152/245 (62%) Klebsiella isolates were non susceptible to 
at least three categories of antimicrobials considered as 
multidrug resistant (MDR). Resistance to cefoxitin was 
only 12/154 (4.9%) and 143/245 (58.0%) were resistant 
to gentamicin. Furthermore, among the less commonly 
prescribed antibiotics in Kenyan hospitals, 103/245 (42%) 
were resistance to chloramphenicol, 79/245 (32%) to cip-
rofloxacin and 59/245 (24%) to azithromycin. In contrast, 
only 4 isolates were resistant carbapenem antibiotics 
(meropenem or imipenem) (Fig. 2).

At least one ESBL-conferring gene was detected in 
all the 154 ESBL-producing Klebsiella isolates geno-
typed. The blaCTX-M 142/154 (92.2%) and blaSHV 142/154 
(92.2%) were the most prevalent ESBL-conferring gene 
followed by blaTEM 88/154 (57.1%) and blaOXA 48/154 
(31.2%). Over 90% (141/154) of the ESBL positive sam-
ples had multiple genetic markers, further details on co-
carriage of genetic markers of resistance are shown in 
Table 1 segregated by species (Table 1). A total of 32/154 
(20.8%) isolates co-carried all the 4 bla genes screened 
while majority of the isolates 61/154 (39.6%) had co-car-
riage of 3 β-lactamase genes. Only 13 isolates had either 

blaCTX-M or blaSHV as the only β-lactamase genes present 
(Fig.  3). A further description of the phenotypic resist-
ance against gene carriage among isolates that were posi-
tive for ESBL is shown in Table 2.

Risk factors of ESBL carriage among Klebsiella spp. isolates
In the multivariable regression model adjusted for a pri-
ori confounders (age, site, and sex), any antibiotic admin-
istration during hospitalization was associated with a 

Fig. 2  Prevalence of phenotypic resistance in Klebsiella isolates from children discharged from hospital in western Kenya. The error bars represent 
95% CI

Table 1  Co-carriage of resistance genes among ESBL positive 
Klebsiella isolates segregated by Klebsiella species

Only one ESBL encoding gene K. 
pneumoniae 
(N = 148)

K. oxytoca 
(n = 6)

Total

blaCTX-M 4 0 4/154

blaSHV 9 0 9/154

blaTEM 0 0

blaOXA 0 0

Combination of 4 encoding gene

  blaCTX-M + SHV + TEM + OXA 30 2 32/154

Combination of 3 encoding gene

  blaCTX-M + SHV + TEM 45 0 45/154

  blaSHV + TEM + OXA 2 0 2/154

  blaCTX-M + TEM + OXA 4 1 5/154

  blaCTX-M + SHV + OXA 7 2 9/154

Combination of 2 ESBL encoding Genes

  blaCTX-M + SHV 43 1 44/154

  blaCTX-M + TEM 3 0 3/154

  blaSHV + TEM 1 0 1/154
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significant increase in the likelihood of ESBL-producing 
Klebsiella spp. (aPR = 4.51; 95%CI: 1.79–11.37, p < 0.001). 
Among children who received at least one antibiotic 
during hospitalization, ESBL-producing Klebsiella spp. 
isolates were more likely to be found in children who 
received ceftriaxone (aPR = 1.42; 95%CI: 1.19–1.71, 
p < 0.001) and chloramphenicol (aPR = 1.28; 95%CI: 1.01–
1.62, p = 0.042) but not gentamicin (aPR = 0.72; 95%CI: 
0.60–0.87, p < 0.001) or penicillin (aPR = 0.77; 95%CI: 
0.62–0.95, p = 0.014) during hospital admission (Table 
S2). Compared to children who stayed in the hospital for 
3 days or less, a longer hospital stay (> 3 days) was associ-
ated with an increased risk of ESBL-producing Klebsiella 
spp. (aPR = 1.42; 95% CI: 1.14–1.77, p = 0.002). Surpris-
ingly, children residing in households with access to 
treated water were significantly associated with a higher 
likelihood of ESBL carriage (aPR = 1.38; 95%CI: 1.12–
1.71, p < 0.003). Living in a crowded household, open 
defecation, nutritional status, HIV status and household 
reported income were not significantly associated with 
β-lactamase-producing Klebsiella spp. (Table S2).

Discussion
Among children discharged from hospital in western 
Kenya with Klebsiella spp. isolated in stool samples, 
resistance to commonly used antibiotics was common, 
and over 60% were ESBL-producing. ESBL-conferring 
genes of high epidemiologic significance were found 
in ESBL-producing Klebsiella spp. isolates, most com-
monly blaCTX-M and blaSHV. These findings highlight the 
burden of commensal AMR bacteria with the ability to 
cause infections in children discharged from hospitals in 

western Kenya and suggest the potential for disease and/
or transmission during the period following discharge 
from hospital.

Antibiotics are an essential, and often life-saving tool 
for hospitalized children in settings of high infectious-
disease related morbidity and mortality. Phenotypic 
AMR was associated with longer period of hospitaliza-
tion and antibiotic use during hospitalization consistent 
with our previous findings [17, 18] and findings from 
studies conducted elsewhere [19]. We observed a high 
prevalence of non-susceptibility to 3rd generation cepha-
losporins (cefotaxime, ceftriaxone and ceftazidime) in 
our study sites, as has been described elsewhere in SSA 
[20–22]. These antibiotics are widely used during hospi-
talization in the management of bacterial infections [23]. 
Empiric antibiotic treatment is critical to pediatric hos-
pital care, particularly where access to diagnostic tools 
such as bacterial culture and antimicrobial susceptibility 
testing are limited or unavailable. Therefore, while anti-
biotic use is often unavoidable during a hospital stay, it 
could be that limiting time in hospital could reduce the 
likelihood of carriage of ESBL-producing Klebsiella spp. 
that could pose problems during the discharge period.

Children leaving the hospital may be carrying ESBL 
producing Klebsiella acquired during their hospital 
stay. The high rates of AMR acquisition in Klebsiella 
spp. during hospitalization are well established. For 
instance, 55% of the neonates admitted without ESBL 
in Kilifi, Kenya, acquired ESBL during hospitaliza-
tion whilst only 10% had ESBL at admission to inpa-
tient care [24]. Children may acquire ESBL-producing 
pathogens from nosocomial infections during hospital 

Fig. 3  Venn diagram showing co-carriage of resistance genes among ESBL positive Klebsiella isolates
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admission or through colonization of ESBL-producing 
bacteria resulting from antimicrobial selection pres-
sure [18, 25, 26]. There was no significant association 
between ESBL-producing Klebsiella spp. and social-
demographic factors including age, sex and site consist-
ent with findings from other studies [27, 28]

The WHO recommends tailoring therapy to local 
AMR patterns in SSA, however, this is usually hindered 
by the lack of data about local antimicrobial susceptibil-
ity profiles due to a lack of reliable and consistent test-
ing due to insufficient laboratory capacities [22]. As a 
result, hospitals in SSA rely on clinical syndromes and 

Table 2  Descriptive data on antimicrobial susceptibility testing and Beta lactamase genes among isolates that tested positive for ESBL

ESBL Genes

blaCTX-M blaSHV blaTEM blaOXA

Negative Positive Negative Positive Negative Positive Negative Positive

N = 12 N = 142 N = 12 N = 142 N = 66 N = 88 N = 106 N = 48

Chloramphenicol
  Susceptible 5 (42%) 63 (44%) 6 (50%) 62 (44%) 19 (29%) 49 (56%) 41 (39%) 27 (56%)

  Non susceptible 7 (58%) 79 (56%) 6 (50%) 80 (56%) 47 (71%) 39 (44%) 65 (61%) 21 (44%)

Ciprofloxacin
  Susceptible 4 (33%) 71 (50%) 6 (50%) 69 (49%) 36 (55%) 39 (44%) 61 (58%) 14 (29%)

  Non susceptible 8 (67%) 71 (50%) 6 (50%) 73 (51%) 30 (45%) 49 (56%) 45 (42%) 34 (71%)

Gentamicin
  Susceptible 2 (17%) 17 (12%) 1 (8%) 18 (13%) 4 (6%) 15 (17%) 14 (13%) 5 (10%)

  Non susceptible 10 (83%) 125 (88%) 11 (92%) 124 (87%) 62 (94%) 73 (83%) 92 (87%) 43 (90%)

Ceftriaxone
  Susceptible 1 (8%) 0 (0%) 0 (0%) 1 (1%) 1 (2%) 0 (0%) 1 (1%) 0 (0%)

  Non susceptible 11 (92%) 142 (100%) 12 (100%) 141 (99%) 65 (98%) 88 (100%) 105 (99%) 48 (100%)

Cefoxitin
  Susceptible 11 (92%) 133 (94%) 10 (83%) 134 (94%) 62 (94%) 82 (93%) 99 (93%) 45 (94%)

  Non susceptible 1 (8%) 9 (6%) 2 (17%) 8 (6%) 4 (6%) 6 (7%) 7 (7%) 3 (6%)

Amoxicillin/ clavulanate
  Susceptible 6 (50%) 54 (38%) 6 (50%) 54 (38%) 29 (44%) 31 (35%) 42 (40%) 18 (38%)

  Non susceptible 6 (50%) 88 (62%) 6 (50%) 88 (62%) 37 (56%) 57 (65%) 64 (60%) 30 (62%)

Aztreonam
  Susceptible 1 (8%) 3 (2%) 0 (0%) 4 (3%) 1 (2%) 3 (3%) 2 (2%) 2 (4%)

  Non susceptible 11 (92%) 139 (98%) 12 (100%) 138 (97%) 65 (98%) 85 (97%) 104 (98%) 46 (96%)

Ceftazidime
  Susceptible 2 (17%) 6 (4%) 1 (8%) 7 (5%) 4 (6%) 4 (5%) 7 (7%) 1 (2%)

  Non susceptible 10 (83%) 136 (96%) 11 (92%) 135 (95%) 62 (94%) 84 (95%) 99 (93%) 47 (98%)

Cefotaxime
  Susceptible 1 (8%) 1 (1%) 0 (0%) 2 (1%) 2 (3%) 0 (0%) 1 (1%) 1 (2%)

  Non susceptible 11 (92%) 141 (99%) 12 (100%) 140 (99%) 64 (97%) 88 (100%) 105 (99%) 47 (98%)

Azithromycin
  Susceptible 7 (58%) 103 (73%) 8 (67%) 102 (72%) 53 (80%) 57 (65%) 83 (78%) 27 (56%)

  Non susceptible 5 (42%) 39 (27%) 4 (33%) 40 (28%) 13 (20%) 31 (35%) 23 (22%) 21 (44%)

Imipenem
  Susceptible 11 (92%) 139 (98%) 12 (100%) 138 (97%) 64 (97%) 86 (98%) 103 (97%) 47 (98%)

  Non susceptible 1 (8%) 3 (2%) 0 (0%) 4 (3%) 2 (3%) 2 (2%) 3 (3%) 1 (2%)

Meropenem
  Susceptible 11 (92%) 141 (99%) 12 (100%) 140 (99%) 66 (100%) 86 (98%) 105 (99%) 47 (98%)

  Non susceptible 1 (8%) 1 (1%) 0 (0%) 2 (1%) 0 (0%) 2 (2%) 1 (1%) 1 (2%)



Page 8 of 10Rwigi et al. BMC Microbiology          (2024) 24:135 

the administration of broad-spectrum antibiotics in the 
treatment of serious bacterial infections [22]. Evidence 
shows that while syndromic diagnosis has a high sen-
sitivity of detection, it is associated with low specificity 
therefore driving higher than necessary consumption of 
antibiotics, a key factor in the selection of antimicrobial-
resistant bacteria [29]. In this African setting, most chil-
dren received antibiotic during hospitalization which 
may explain the high rates of ESBL carriage. This is a 
cause of concern considering that beta-lactams are the 
mainstay in the management of bacterial illnesses in SSA. 
Cephalosporins mediate co-selection pressure conferring 
resistance to facilitating horizontal transfer of resistance 
determinants non-beta lactam antibiotics that include 
aminoglycosides and quinolones [18, 30].

Phenotypic AMR was associated with antibiotic use 
and duration of hospitalization, suggesting either selec-
tion for antibiotic-resistant bacteria or exposure to 
ESBL-producing bacteria during hospitalization. The 
association between ceftriaxone use and ESBL carriage 
has been previously described in the same settings [18]. 
Use of ceftriaxone and chloramphenicol during the hos-
pital stay was associated with a higher prevalence of 
ESBL while the use of gentamicin and penicillin was sig-
nificantly associated with a lower prevalence of ESBL, 
likely due to ceftriaxone exposure in the comparison 
group. Resistance to chloramphenicol may have occurred 
through modification of antibiotic target sites or efflux 
pumps extrusion or carriage of plasmid mediated deter-
minants which reduce the effectiveness of the antibi-
otic. Chloramphenicol is used as first-line treatment for 
typhoid in Kenya and other East African countries [19, 
31]. Carbapenems are broad spectrum members of the 
β-lactam antimicrobials with an additional β-ring which 
makes the antibiotic potent against beta-lactamases, 
attaching to the penicillin binding proteins of the cell 
wall thereby resulting in bacterial cell death [32] and are 
therefore effective in the treatment of ESBL producing 
Klebsiella. Additionally, carbapenems are expensive and 
not commonly prescribed, especially in public hospitals 
hence they are less likely to develop resistance.

The percentage of decreased susceptibility to gen-
tamicin (58.0%), a common first-line antibiotics recom-
mended by the WHO in the treatment and management 
of severe bacterial infections in resource limited settings 
[21], was consistent with previous studies conducted in 
SSA [29]. We observed a high degree of susceptibility to 
cefoxitin likely because cephamycin antibiotics are less 
likely to be hydrolyzed by ESBLs [18, 33]. BlaCTX-M and 
blaSHV-type ESBL were the most predominant ESBL gene 
variants detected in this area consistent with the global 
increase in blaCTX-M type ESBLs witnessed in the last two 
decades [33–35]. The co-carriage of bla genes observed 

in this study is consistent with findings from other stud-
ies [34, 36, 37]. Intrestingly, we obaserved isolates that 
contained upto upto 4 β-lactamase genes inferring cir-
culation of multiple plasmid [36] within the same genetic 
environment medaiting multidrug resistance phenotype. 
This phenomena has previouly been reported in other 
studies within the SSA and other parts of the world [34, 
36–38].

Antibiotic resistant bacteria may enter water sources 
from wastewater released from hospitals, household, 
or agricultural farmland [39]. The finding that children 
who have access to treated drinking water are at a higher 
risk of β-lactamase-producing Klebsiella spp. is sur-
prising. We hypothesize that households that reported 
access to treated drinking water were probably situated 
in areas linked to water supply systems that are vulner-
able to contamination [40], particularly in urban or peri-
urban settings. Alternatively, whilst most countries in 
SSA recommend the use of chlorine in the treatment of 
water [41], studies have reported that chlorinated drink-
ing water may contribute to the enrichment of antibiotic 
resistance bacteria and therefore aid the spread of antibi-
otic resistance genes [42–44].

An important strength of our study is that few stud-
ies provide a comprehensive assessment of AMR among 
children discharged from hospital who are at a high risk 
of morbidity and mortality. The study was conducted 
in a rural and peri-urban setting in western Kenya and 
therefore provides important data on AMR from a low-
income country with a high burden of bacterial infection. 
Our study also had important limitations. In recruiting 
children discharged from hospital, we excluded those 
that died during hospitalization, a population potentially 
at the highest risk of AMR carriage. Therefore, the bur-
den of ESBL in Klebsiella spp. isolates that was observed 
is likely an underestimate of the true burden among 
hospitalized children. This analysis included only chil-
dren with Klebsiella isolated thus selecting for patients 
with high amounts of healthcare exposure introducing a 
potential limitation on generalizability. We only collected 
stool samples at the point of hospital discharge, making 
it difficult to distinguish between AMR acquired during 
hospitalization and that acquired before admission. Fur-
thermore, we are not able to definitively determine how 
resistance to the antibiotic classes was acquired. To do 
this, targeted PCR analysis or whole genome sequenc-
ing would be required. Our study was conducted in 
two counties of western Kenya and therefore difficult to 
generalize to other settings. Finally, we cannot exclude 
the possibility that the identified risk factors may be 
explained by confounders not accounted for in the analy-
sis. Potential confounders may include unmeasured soci-
odemographic factors.
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Conclusion
Carriage of β-lactamase producing Klebsiella spp. is 
common among children discharged from hospital in 
western Kenya and is associated with the duration of 
hospitalization and antibiotic use. The findings empha-
size the need for continued monitoring of antimicro-
bial susceptibility profiles to inform the development 
and implementation of appropriate treatment guide-
lines. Measures beyond antimicrobial stewardship that 
include infection control within hospitals are needed 
to mitigate the spread and impact of β-lactamase-
producing Klebsiella on the public health system. 
Efforts to improve diagnosis and detection of AMR 
pathogens within the healthcare system is needed to 
inform personalized therapeutics in these settings. Fur-
thermore, research is needed to investigate the quality 
of treated drinking water and examine the effectiveness 
of the technologies used in the treatment of drinking 
water in these settings to inform public health policy 
change.
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