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Emotional dysregulation such as that seen in depression, are a long-term consequence of mild traumatic brain injury (TBI), that can
be improved by using neuromodulation treatments such as repetitive transcranial magnetic stimulation (rTMS). Previous studies
provide insights into the changes in functional connectivity related to general emotional health after the application of rTMS
procedures in patients with TBI. However, these studies provide little understanding of the underlying neuronal mechanisms that
drive the improvement of the emotional health in these patients. The current study focuses on inferring the effective (causal)
connectivity changes and their association with emotional health, after rTMS treatment of cognitive problems in TBI patients
(N= 32). Specifically, we used resting state functional magnetic resonance imaging (fMRI) together with spectral dynamic causal
model (spDCM) to investigate changes in brain effective connectivity, before and after the application of high frequency (10 Hz)
rTMS over left dorsolateral prefrontal cortex. We investigated the effective connectivity of the cortico-limbic network comprised of
11 regions of interest (ROIs) which are part of the default mode, salience, and executive control networks, known to be implicated
in emotional processing. The results indicate that overall, among extrinsic connections, the strength of excitatory connections
decreased while that of inhibitory connections increased after the neuromodulation. The cardinal region in the analysis was dorsal
anterior cingulate cortex (dACC) which is considered to be the most influenced during emotional health disorders. Our findings
implicate the altered connectivity of dACC with left anterior insula and medial prefrontal cortex, after the application of rTMS, as a
potential neural mechanism underlying improvement of emotional health. Our investigation highlights the importance of these
brain regions as treatment targets in emotional processing in TBI.
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INTRODUCTION
Traumatic brain injury (TBI) is frequently characterized as a silent
epidemic because of its high rate of incidence and dire con-
sequences [1]. According to the memorandum issued by the US
Department of Defense, in 2015, the TBI severity stratification into
mild, moderate, and severe is based on duration of unconsciousness,
duration of alteration of consciousness and post traumatic amnesia
[2]. TBI is an event where after the initial injury, a pathophysiological
process begins that generates structural and functional alterations
leading to cognitive, social, and behavioral deficits [3].
Usually, mild TBI (mTBI) patients sustain long-term neuropsychia-

tric disorders [4] in addition to impairments in cognitive domains
such as attention, memory and executive control [5, 6]. It is crucial to
manage these long-term implications to improve the patients’
quality of life [7]. The intervention mechanisms include, but are not
limited to, pharmacotherapy, psychotherapy, and non-invasive
brain stimulation techniques. Various modes of intervention are

prescribed at different stages of TBI recovery. At the acute and
subacute stage, controlling the neurochemical disturbances are
desirable to promote survival probability and resist the functional
disability. At the chronic stage non-invasive rehabilitation techni-
ques are used to address the change in neuroplasticity following
TBI and to promote reorganization of neural network for recovery
[8]. Repetitive transcranial magnetic stimulation (rTMS) is a well-
recognized therapeutic alternative for brain function modulation.
It is a non-invasive method to stimulate specific brain regions by
applying an intermittent magnetic field using an electromagnetic
coil. It is an FDA-approved method for the treatment of depression
and Obsessive Compulsive Disorder (OCD) but its use in TBI is still
under investigation [9–12].
The neuroimaging modality most widely employed to assess

and monitor the functional modulation in TBI patients is functional
magnetic resonance imaging (fMRI). Numerous research studies
have been conducted to investigate the impact of modulation on
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brain functional connectivity post-TBI using fMRI [13–16]. Resting-
state fMRI analysis has also been extensively performed to
understand the baseline brain connectivity of healthy and TBI
populations. The major brain networks and/or regions studied
during previous studies in TBI include the core default mode
network (DMN) [13, 17–23], medial temporal lobe (MTL) [21, 24]
anterior cingulate cortex [25, 26], amygdala [21, 27], insula [26],
thalamus [21, 26] and other subcortical regions. The most studied
brain network in TBI is DMN. DMN is the brain network that shows
increased activation in the awake mode without any externally
oriented task [28]. It comprises different subsystems including
mPFC, PCC, and medial temporal lobe (MTL). Mental health
disorders including anxiety, stress, and depression are frequently
observed in TBI patients which is a major hindrance in their
recovery and consequently leads to cognitive disorders and social
abnormalities [29]. Increased DMN connectivity [22], increased
ACC connectivity [25], and increased amygdala connectivity [27]
in resting-state may be regarded as biomarkers in chronic TBI
with comorbid mental health disorders. Elevated aggression level
was associated with increased resting-state connectivity between
the right hippocampus and midcingulate cortex [30]; other
regions affected by depression in TBI include insula, thalamus,
and ACC [26].
The mental health sequelae of TBI including emotional

dysfunction have a strong impact on the quality of life and daily
life functioning of the patient [31]. There is an urgent need of
sustained research to identify the effective rehabilitation
techniques [32]. There is a growing interest in TMS as a treatment
for post-concussive symptoms specifically depression [33–38],
however, previous research in rTMS concerning prognosis,
biomarker identification and investigation of underlying neural
mechanisms (using effective connectivity) was mostly focused on
psychiatric disorders. There are only a few studies assessing
brain functional connectivity changes in treating psychological
deficits in TBI using rTMS [36, 39]. The results of these studies
have given insight into the changes in functional connectivity
between brain regions; however, they do not provide underlying
neuronal mechanisms that generate them. Despite the impor-
tance of effective connectivity in formulating the pathways for
post-concussive symptoms therapy, virtually no research exists.
The current work is the first that uses effective connectivity to
investigate the utility of using rTMS with TBI. This study focuses
on inferring the changes in effective connectivity observed in TBI
patients after treatment with rTMS and the association of
effective connectivity with the emotional health assessment.
Dynamic causal modeling [40, 41] (DCM) is the preferred
approach for the analysis of effective connectivity using multi-
variate neural time series from various regions of interest. We
used its variant called spectral DCM [42, 43] (spDCM) which is
widely adopted to model the directed communication among
brain regions in the resting state. Previous work has shown the
reliability of the resting state effective connectivity estimation
using spDCM [44]. We selected the distributed brain regions
influencing emotional well-being after TBI, using evidence
from previous literature [45–47]. These brain regions include
the anterior and posterior hubs of DMN; mPFC, and PCC, the
hippocampus which is the hub of the medial temporal lobe, and
the salience network regions: dACC, AI and AMG. We also selected
the target-site of rTMS and its counterpart across hemispheres
that are the bilateral DLPFC which are part of the Executive
Network (EN). Our aim is to investigate the resting state causal
connectivity among distributed brain regions of chronic TBI
subjects related to emotional network before and after the
therapeutic intervention of rTMS. We hypothesize that treatment
with rTMS would yield improved emotional health in TBI subjects,
and based on the previous functional connectivity literature, the
effective connectivity between the selected tri-network would
play major a role in the emotional wellness.

MATERIALS AND METHODS
Dataset
The anonymized dataset consisted of 32 veterans with TBI who were
recruited from Veterans Affairs Palo Alto Health Care System (VAPAHCS)
and surrounding community via advertisements. The experimental
protocol of the double-blind randomized clinical trial was approved by
the Institutional Review Boards (IRB) of Veterans Affairs Palo Alto Health
Care System (VAPAHCS) and Stanford University. The age range of
participants was from 20 to 69 years with 27 males and 5 females. The
severity level of TBI was either mild or moderate for each participant. The
participants were split up into active (N= 17) and sham (N= 15) groups
randomized on mild and moderate TBI. The data was divided into 3 sets:
baseline (pre-rTMS), immediately after the end of the treatment period
(post-rTMS), and at six months follow-up. The current analysis only utilized
the dataset acquired at the first two instances. The rTMS treatment period
of 20 sessions comprised of 2 weeks with 2–3 treatments per day. The
rTMS was delivered to active group participants at left DLPFC with 80 trains
of 5 sec each at 10 Hz frequency and the inter-train interval was 10 s. The
sham group was provided with a similar setup as active participants except
they were not given rTMS. For complete details about the data, please refer
to Adamson et al. [10] and supplementary material.
The MRI and rs-fMRI data were acquired using GE 3 T MRI scanner from

VAPAHCS. The acquisition parameters for structural scan were TR= 7.24ms,
TE= 2.78ms, flip angle= 12°, voxel size 0.9 × 0.9 × 0.9 mm, 192 axial slices.
The functional images were collected with parameters: TR= 2000 ms,
TE= 30ms, flip angle= 77°, FOV= 232mm, voxel size 2.9 × 2.9 × 2.9mm, 42
axial slices, 250 frames in 8m 20 s.

Emotional health assessment
A neuropsychological assessment battery was also executed on each patient
which included the Veterans RAND 36 Item Health Survey (VR-36) at baseline,
post-rTMS and follow-up to assess the physical andmental health. Themental
health subscale (8th scale) of VR-36 also known as emotional well-being [48],
consists of five items (Supplementary Table S1) that spans four major mental
health categories including anxiety, depression, loss of behavioral or
emotional control and psychological well-being [49]. The scoring process
consists of two steps, coding and re-coding of responses [48]. All questions for
the emotional health assessment have a response category (codes) from 1 to
6 (Supplementary Table S2). Each item’s score is re-coded on a range of 0 to
100 with 0 and 100 representing the lowest and highest scores respectively
(Supplementary Table S3). The re-coded scores of all five items are averaged
to generate the emotional health score.

Preprocessing
The preprocessing and subsequent subject-level and group-level analysis
were performed using Statistical Parametric Mapping software (SPM 12).
The stepwise complete analysis is depicted using a flowchart in Fig. 1. The
preprocessing steps included DICOM to NIfTI conversion, removal of first
five volumes, realignment of the brain slices using rigid-body transforma-
tion with six parameters (3 translational and 3 rotational), coregistration of
the structural and functional images, segmentation of MRI images
according to their tissue types using tissue probability maps, normalization
of structural and functional images to the standard MNI coordinate system
using affine transformation, and smoothing of functional images using
6mm full-width half-maximum Gaussian kernel. After spatial preproces-
sing, the denoising of the dataset was performed using ICA-based
automatic removal of artifacts (ICA-AROMA) [50] and performing nuisance
regression using general linear model (GLM) with white matter (WM) and
cerebrospinal fluid (CSF) time series as regressors.

ROI selection and time series extraction
The preprocessed data were then used to obtain a set of independent
components to identify the desired resting-state networks (RSNs; DMN, SN,
ECN) and to define the peak coordinates of 11 regions of interest namely
posterior cingulate cortex (PCC), medial prefrontal cortex (mPFC), bilateral
hippocampus (HP), bilateral amygdala (AMG), dorsal anterior cingulate cortex
(dACC), bilateral anterior insula (AI) and bilateral dorsolateral prefrontal cortex
(DLPFC). Spatial ICA was performed using group independent component
analysis fMRI toolbox (GIFT) [51] and 75 independent components were
estimated. A two-step principal component setup was executed to extract 100
subject-specific Principal Components (PCs) and 75 PCs from the aggregate
data. Subject-specific spatial maps and time courses were estimated using the
GICA back-reconstruction algorithm. The built-in tool ICASSO was used to run
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the Infomax algorithm 20 times to ensure the reliability of components. The
components were scaled using the z-scores. The 75 ICs were then spatially
correlated with (default) RSN templates which contain 90 functional ROIs
across 14 large-scale RSNs [52] to identify the intrinsic brain networks. The
peak MNI coordinates (using xjview [https://www.alivelearn.net/xjview]) in the
resulting components were then used as the center of spheres for the desired
regions (Table 1). The spherical regions were specified with radius of 8mm.
Additionally, binary masks were used for the regions which are smaller in area
which were created using AAL [53] for amygdala and anterior insula and; RSN
template masks for hippocampus [52]. Then the first principal component of
the voxels time series was extracted from each spherical region to be used in
DCM analysis. In the first study, the stimulation site for TMS, left DLPFC, was
selected using neuronavigation [10] as shown in Supplementary Fig. S1;
detailed information is available in the Supplementary material. For
connectivity analysis in the current study, the DLPFC centroid was selected
based on the same principle as for other ROIs - peak MNI coordinates in the
independent components - to preserve consistency in methodology.

Effective connectivity analysis
The fMRI experiment was a 2 × 2 factorial design with factors at the level of
treatment timings (pre-rTMS and post-rTMS) and intervention groups (active
and sham). All 32 subjects were scanned before rTMS treatment (which we
call here as pre-rTMS group) and out of them only 25 were scanned after
completing rTMS treatment (which we call here as post-rTMS group). At the
subject (first) level analysis, within subject connectivity was estimated using
spectral dynamic causal modeling (spDCM) [42, 43, 54] and these connectivity
parameters were then taken to group (second) level analysis to estimate the
between group (pre-rTMS vs post-rTMS) connectivity parameters.

Subject-level analysis using spectral dynamic causal modeling. The effective
connectivity of each subject in groups, pre-rTMS (active and sham) and post-
rTMS (active and sham) was estimated using spDCM. It is a variant of DCM for
the resting-state data based on the second-order statistics (cross spectra) of
observed BOLD time series. It performs the modeling using cross-spectra; the
frequency domain equivalent of the cross-correlation among time series
[41, 42, 55]. (Please see supplementary material for technical description of
spectral DCM). This analysis involved the specification of a fully connected
model with 11 nodes (ROIs). To ensure the data fit, the cross spectral density
plots were inspected visually resulting in 4 subjects being discarded from

each pre- and post-rTMS groups due to bad models fits or large amount of
residual noise. The cross spectral density of the bold signal follows the
power-law distribution with a peak at very low frequency. However, after
model inversion, for few subjects, the estimated peaks of regional cross
spectral power had a peak at much higher frequencies (perhaps represent-
ing an aliased BOLD signal) which may occur if the signal was not properly
cleaned for various artifacts. Based on this, only two subjects from active
group were excluded at only post TMS while they were included in the
analysis of the pre-TMS session. All other discarded data belonged to the
same subjects in pre- and post-TMS groups.

Group-level analysis using hierarchical PEB. At the group level, a two-level
hierarchical parametric empirical Bayes (PEB) was used [56, 57]: within group
analysis (within pre-rTMS and within post-rTMS) at the first PEB level and
between group analysis (post-rTMS vs pre-rTMS) at the second PEB level.
PEB is a statistical method that combines information (probability

densities of subject-level parameters) across multiple subjects to
estimate the group-level parameters. This involves specifying a Bayesian
GLM incorporating the within-subject connectivity parameters’ prob-
ability densities as responses, and the between-subject or group-level
parameters as covariates. The covariates usually represent the common-
alities and differences across the subjects. The Bayesian model inversion
of the ensuing PEB model provides the posterior estimates of the group-
level connectivity parameters.
This technique is better than the classical approaches of statistical

analysis (such as ANOVA) because the full posterior probability density
(i.e. both the mean and the variance) of each subject-level parameters is
carried to the group level. Since PEB uses the quantified uncertainty in
addition to the mean value, which is in contrast to the classical
inference, hence resulting in a statistically more powerful and robust
inference. For the more detailed technical description, please refer to the
supplementary material.

Relationship of post-rTMS and pre-rTMS connectivity with
emotional health
We used PEB for the association analysis between behavioral scores and
connectivity by defining the connectivity as the response variable and scores
as the regressor of interest. A PEB was defined to find the association
between connectivity and emotional health scores in the post-rTMS group.
The association analysis was conducted on both active and sham groups
separately. In these PEB analyses only those DCM connections were
considered which showed connectivity differences between pre- and post-
rTMS in active group.
We also performed the association analysis of the effective connectivity

of the entire cohort of pre-rTMS group (i.e., combined active and sham
groups) with the baseline behavioral scores of the entire cohort.

RESULTS
At the group level connectivity and association analyses, the
reported results are only those connections whose posterior
probability (pp) >0.95. In the mean connectivity matrices,
the positive and negative signs show excitatory and inhibitory
connections respectively while in the difference connectivity
matrices, the positive and negative sign represent the increase
and decrease in the connectivity. Below, we only report results
for the active group; sham group results are reported in the
supplementary material.

Table 1. MNI Coordinates of the centers of spheres of ROIs.

ROI x y Z Network

PCC 0 −43 23 DMN

mPFC 0 62 5 DMN

lHP −21 −22 −16 DMN

rHP 24 −19 −16 DMN

lAMG −18 −4 −16 SN

rAMG 18 −4 −16 SN

dACC 0 32 23 SN

lAI −39 14 2 SN

rAI 39 17 2 SN

lDLPFC −48 32 14 EN

rDLPFC 30 53 29 EN

Fig. 1 Methods overview. Flowchart depicting the pipeline of analysis methods.
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Behavioral analysis
The difference between the emotional health scores of active group
pre- and post-rTMS were statistically significant (p= 0.0114; pre-
rTMS - mean= 57.82, st. dev= 9.36, post-rTMS - mean= 73.09, st.
dev= 16.60) showing emotional health improvement post-rTMS,
while that of sham group were not statistically significant
(p= 0.5126; pre-rTMS - mean= 70.40, st. dev= 16.61, post-rTMS -
mean= 70.85, st. dev= 15.95). Please see supplementary informa-
tion for analysis on executive function assessment.

Connectivity difference between post rTMS and pre rTMS in
active group
Effective connectivity differences, in the active group, before and
after the application of rTMS are shown in Fig. 2. The brain networks
were visualized with the BrainNet Viewer [58]. The change in
effective connectivity (increase or decrease) and the valence of
connections (excitation or inhibition; reported using the mean
connectivity shown in Supplementary Fig. S2) are reported in Table 2.
The excitatory influence of the lDLPFC was reduced on mPFC and

dACC post rTMS as compared to pre rTMS. mPFC, which is the main
hub node of DMN, was influenced by lDLPFC, dACC and rAI. The
connectivity from lDLPFC to mPFC was reduced while connectivity
from dACC to mPFC and rAI to mPFC was increased. dACC is also
affecting lAI through increased inhibition. The dACC was influenced
by PCC in the form of increased inhibition. Also, the excitatory
connection from rHP to PCC was decreased. Four of the nodes
namely mPFC, lAI and bilateral HP also had self-connections. In DCM,
self-connections are always inhibitory; after rTMS, the self-inhibition
of these regions increased except lHP and lAI (as mentioned in
Table 2), making them more resistant to the incoming influences
from other regions. Overall, we found decreased strength of
excitatory connections and increased strength of inhibitory connec-
tions among extrinsic connections. All parameters are reported in
Supplementary Table S4.

Connectivity difference between post-rTMS and pre-rTMS in
sham group
The connectivity differences between pre- and post-rTMS were
also found in sham group. There were a large number of
connections which showed differences in post-rTMS in the sham
group as compared to the active group (Supplementary Fig. S3).
There were 8 common connections in active and sham groups
showing differences in post-rTMS (5 between-regions and 3 self-
connections) as shown in Supplementary Table S5. Among
the common connections, the excitatory dACC to mPFC and rHP

to PCC connections were reduced while in active group, they
represent enhance inhibitory connections post-rTMS. The inhibi-
tory connectivity from lDLPFC to mPFC and dACC increased while
in active group, they were the reduced excitatory connections
in post-rTMS condition. Interestingly, the strength of all the
excitatory and inhibitory connections decreased and increased
respectively as it did in the active group. These connectivity
patterns perhaps indicate the placebo effect that the overall
excitatory influence decreased while the overall inhibitory
influence increased between the regions after sham treatment.

Association of post-rTMS and pre-rTMS effective connectivity
with emotional health
In the post-rTMS active group association analysis, using PEB,
between effective connectivity and the emotional health scores,
resulted in two connections surviving the threshold of pp > 0.95
(Fig. 3). We found dACC to mPFC to be negatively associated and
dACC to lAI was positively associated with the behavioral scores.
Same analysis performed for post-rTMS sham group yielded no
association of emotional health scores with any connection.
The association analysis of pre-rTMS connectivity with emo-

tional health scores was performed (Supplementary Fig. S4). The
analysis revealed 21 connections before the treatment while there

Fig. 2 Effective connectivity changes after treatment with rTMS. a The connectivity matrix representing the difference between pre-rTMS
and post-rTMS connectivity in active group. The green gradient illustrates increase while purple gradient depicts decrease in connectivity.
b The brain diagram of the connectivity difference between pre-rTMS and post-rTMS in active group. Nodes represent the brain regions,
edges represent the effective connectivity, green and purple arrows show increase and decrease in connectivity while solid and dashed lines
represent excitatory and inhibitory connections respectively. All the connection here are in units of Hertz (Hz), except the self-connections
which are log-scaled. All the connections reported here survived the threshold of posterior probability >0.95 amounting to a strong evidence.

Table 2. Effective connectivity in active group (post rTMS – pre rTMS).

From To Excitatory (+)
Inhibitory (−)

Increased (↑)
Decreased (↓)

PCC dACC − ↑

rHP PCC − ↑

dACC mPFC − ↑

dACC lAI − ↑

rAMG rDLPFC + ↓

rAI mPFC − ↑

lAI rHP − ↑

lDLPFC mPFC + ↓

lDLPFC dACC + ↓

mPFC mPFC − ↑

lAI lAI − ↓

lHP lHP − ↓

rHP rHP − ↑
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were only 2 connections after the treatment (active group only)
that are associated with the emotional health scores. We found
dACC to mPFC to be positively associated with behavioral scores
at the pre-rTMS condition.

DISCUSSION
This is the first study that employed effective connectivity analysis
after rTMS treatment in veterans with mild TBI. The analysis was
performed using spectral DCM over a cortico-limbic network
comprising 11 regions of interest that are most vulnerable to the
injury. The regions include core hubs of anterior and posterior
DMN i.e. mPFC and PCC respectively, medial temporal lobe
(hippocampus), SN (bilateral AMG, dACC, bilateral AI), and
executive network (bilateral DLPFC). These are the regions that
are mostly discussed with respect to emotional processing. The
purpose of our study was to discover underlying neural
mechanisms of the emotional health improvement in veterans
with TBI after providing rTMS therapy. The effective connectivity
changes in active and sham group post-rTMS were analyzed. The
connectivity changes found in the sham group were suspected
due to the placebo effect which was further clarified by finding no
associativity between the connections and emotional health data.
Therefore, our focus is mainly on the active group effective
connectivity changes and their possible interpretations.
It has been previously shown that the rTMS when delivered to

lDLPFC, induces antidepressant effects in patients by altering the
connectivity of cortico-limbic regions [59–61]. In the current study,
it was hypothesized that the lDLPFC influences dACC by
enhancing the inhibition after rTMS. Previous studies have shown
that there was diminished functional connectivity between dACC
and DLPFC during late-life depression which could not resolve
using medication [62] while TMS was able to alter the activity of
ACC when applied to DLPFC in healthy or depressed subjects
[63–66]. The structural changes in ACC are also known to
accompany TMS application on lDLPFC [67]. In a study with
healthy participants, only the connectivity of the network
containing dACC among 20 resting-state networks, was modu-
lated by applying rTMS on lDLPFC [59] and the network
comprised regions associated with depression. The dysfunction
of prefrontal cortical regions account for the psychiatric
disorders related to mood dysregulation [68, 69]. Moreover, it
is known that DLPFC performs lateralized functioning during
depression in the form of hyperactivity of right DLPFC and
hypoactivity of left DLPFC [62, 70]. In our study, the inhibition of

excitatory connection from rAMG to rDLPFC after rTMS high-
lights the importance of the inhibitory influence on rDLPFC
which may affect emotional balance.
The amygdala is the subcortical limbic region known for its

functions in emotion regulation and hence its connectivity has been
widely studied during stress and depression which are common
psychological disorders after TBI. Studies have shown that amygdala
activity increases during emotional responses, including stress and
anxiety disorder and rTMS is known to be effective in reducing the
effect of these disorders. In chronic TBI, comorbid with depression,
increased bilateral amygdala functional connectivity with several
regions was reported [27]; also in acute TBI, increased amygdala
connectivity with other brain regions was found [21]. We found
decreased excitation from right amygdala to right DLPFC after rTMS
which may reflect the overcoming of the increased effectivity
connectivity in TBI patients as is also evident in the previous research
[71] where trauma-exposed patients had increased effective
connectivity from right amygdala to right DLPFC. Usually, it is
expected that mPFC would control the amygdala activity via a top-
down mechanism but in our case, there was no difference in the
connectivity frommPFC to amygdala before and after applying rTMS
which can be interpreted as no change in fear related emotion
regulation involving amygdala after neuromodulation therapy.
In case of resting state, the role of salience network (SN) is

broadly defined in interoception or self-awareness. dACC and AI
are the parts of the SN which is known to guide behavior by
integrating information from internal and external stimuli [72].
Anterior insula is a critical region for emotional awareness and
self-reflection [73, 74] within SN. The right AI becomes activated
during encoding of negative emotions [73, 75] which are energy
consuming while left AI becomes activated during encoding of
both negative and positive emotions [73]. The coactivation of AI
and dACC is crucial for the processing of emotional functions
[75, 76] and anterior insula is found to be functionally connected
with anterior cingulate in the resting state as well [77]. Both
regions form the input and output mechanism for the functional
system producing subjective feelings [76]. The dACC performs a
response initiation function for the integrated sensory inputs
coming from AI. In major depressive disorder, the functional
connectivity between AI and ACC is correlated with the severity
level [78]. The activity of AI increased in anxious individuals [79]
and the activity of ACC was increased in mTBI veterans [25].
According to our results, there is decreased excitation from dACC
and PCC to lAI and dACC respectively which reflects the decreased
excitatory influence on lAI and dACC post TBI after applying

Fig. 3 Association between post-rTMS effective connectivity and emotional health. a The association matrix between post-rTMS
connectivity of active group and emotional health scores. The purple gradient indicates negative association while green gradient shows
positive association. b The brain diagram of the association between post-rTMS effective connectivity of active group and emotional health.
Green and Purple arrows illustrate the positive and negative association respectively. All the associations reported here survived the threshold
of posterior probability >0.95 amounting to a strong evidence.
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rTMS. Moreover, it suggests the presence of emotional awareness
circuit in the subjects including the causal connection from rAI to
mPFC. Furthermore, AI not only performs the sensory integration
but also integration of bottom-up interoceptive information and
top-down predictions during predictive coding of self-awareness
[73], therefore, the increased connection from rAI to mPFC may
indicate the improvement in the process of passing on the error
signals in predictive coding of self-awareness.
In depression and anxiety, usually the symptoms are the result of

negative or exaggerated self-referential processes. mPFC is a major
hub of DMN which is usually activated during self-referential
processes such as mentalizing and autobiographical thinking
[80, 81]. DMN is engaged during internally oriented cognition such
as the self-referential process, recalling the past, planning the future,
and pondering upon others’ selves. It comprises interacting
subsystems including anterior and posterior subsystems of mPFC
and PCC respectively, and MTL subsystems [82]. This network is
known to be activated during resting-state and deactivated during
task performance [28, 83]. PCC and HP both play an active role in
episodic memory processing and their interaction is critical for new
memory formation and memory retrieval. Since, PCC is a major hub
of DMN which is activated during internally-oriented tasks there-
fore, during memory encoding process that is encoding of external
stimuli, the activity of DMN regions, including PCC, reduces while it
increases during retrieval process which is internally oriented while
the activity of hippocampus increases in both encoding and
retrieval processes [84]. Though, hippocampus is usually considered
to be part of DMN but during episodic encoding, it was found to
have increased activity which differentiates it from other DMN
regions and hence can be considered as a separate network during
memory formation [84]. The two phases of episodic memory;
encoding (i.e., forming of new memories) and recognition (i.e.
retrieval of old memories) involves temporal lobes of left and right
hemispheres respectively [85–87]. In MCI patients study, PCC
activity was related with hippocampus activity during successful
encoding and recognition of episodic memory [88]. In TBI subjects,
the functional connectivity between HP and PCC was weaker than
normal subjects [89, 90]. The connectivity between PCC and
hippocampus is important for episodic memory processes. We
found increased inhibitory effect of rHP over PCC post-rTMS
compared to the pre-rTMS TBI patients. The directed connectivity
from PCC to hippocampus was found to impair the episodic
memory encoding [91], based on which we speculate that
directionality for episodic memory function should be in the other
direction as we have reported. Therefore, the directed connections
in our analysis including the influence of rHP over PCC may also
demonstrate the memory-related enhancement after rTMS which
would eventually improve mental health. The posterior part of the
DMN including PCC was found to have increased activity in TBI
subjects [22]. In a previous study, the resting state functional
connectivity of PCC with lDLPFC, dACC and bilateral insular cortex
was found to be increased in chronic TBI [92]. Our study revealed
increased inhibitory connectivity from PCC to dACC. Both regions,
being the hubs of DMN and SN respectively, have significance in TBI.
Coordination across networks, specifically DMN and SN, is essential
not only for effective cognitive function [93] but also for efficient
affective processing [94, 95]. It is previously shown that TBI results in
aberrant interactions between the DMN and SN [96]. The increased
functional connectivity between dACC and PCC during affective
interference in depressive patients may signify limitations in
switching between large-scale networks; when emotionally com-
pelling but irrelevant to the task information is identified, depressed
individuals may be unable to change their focus from internal to
external world [94].
Overall, the influence of various brain regions to either increase

inhibition or decrease excitation on dACC, AI, PCC and mPFC after
rTMS suggests that there was an irregular self-referential behavior
which includes over-thinking about the trauma that they had in

the past. We suggest that the self-referential behavior was
improved by using rTMS as a consequence of the compensation
of the emotional circuit. Alternatively, it may be suggested that
the removal of unwanted thoughts due to the trauma as an after-
effect of neuromodulation therapy would result in mood
improvement and emotional balance.
This hypothesis was further strengthened by a finding that the

association between emotional health scores and the effective
connectivity parameters post rTMS in active group provide
evidence that the connections from dACC to mPFC and dACC to
lAI were related to the improvement in emotional health. The
connection from dACC to mPFC is negatively associated with the
emotional health scores which signify that the diminished
inhibitory effect of dACC to mPFC will yield better emotional
health which is in accordance with the results of another study
which reports that the cognitive control is inversely proportional
to the dACC and mPFC functional connectivity [97]. In our analysis,
it could be translated as controlling the urge by the participants to
be influenced by negative emotions would enhance the
emotional health. There was a positive association of dACC to
lAI connection with emotional health scores and as discussed
above, their connectivity is of vital importance for emotional
regulation. The difference between the emotional health scores of
active group pre- and post-rTMS were statistically significant with
greater mean value for post-rTMS subjects showing emotional
health improvement post rTMS, while that of sham subjects were
not statistically significant. Moreover, there was no association of
any effective connection in the sham group with emotional health
data which elaborate the point made earlier that although there
were connectivity changes in sham group after rTMS but they did
not have any effect on emotional well-being. The association
analysis of pre-rTMS connectivity with emotional health scores
provided some interesting results. The analysis revealed 21
connections before the treatment while there were only 2
connections after the treatment (active group only) that are
associated with the emotional health scores. Among the 21
connections, the connectivity from dACC to mPFC is common with
the association analysis of the post-rTMS active group. The notable
difference in this specific connection is that at the baseline the
association was positive while after rTMS application, the same
connectivity turned into a negative association with the emotional
scores. The post-rTMS association analysis additionally highlighted
the significance of the connectivity from dACC to lAI. Previous
research has shown that rTMS modulates ACC connectivity with
other brain regions when applied on lDLPFC resulting in reduced
depression [98]. The association analysis also revealed that a
number of connections important for emotional health were
reduced after the therapeutic treatment of rTMS. We would like to
point out that we only associated the effective connectivity with
the emotional health scores at pre- and post-rTMS conditions. This
is because the post- vs pre-rTMS changes in effective connectivity
were estimated at the group level only hence precluding any
analysis where we can associate the change in effective
connectivity with the change in emotional health scores in post
-vs pre-rTMS conditions. While this analysis of associating change
in connectivity and behavioral scores would be useful, as it makes
use of data from both pre and post conditions, however our
simplified analysis of using only pre-rTMS and post r-TMS
measures has the advantage of simpler interpretation.

CONCLUSION
Our findings uncover the neural mechanisms underlying the
improvement in emotional well-being in TBI due to application of
neuromodulation. The main effect of rTMS is to reduce emotional
disorders and hence consequently it may improve cognitive and
executive functions. When rTMS was applied to lDLPFC, it helped
in the emotional health improvement but failed to influence
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executive function (details on executive function in supplemen-
tary information). One of the reasons could be the target location
of rTMS or the stimulation parameters. The limitation of this study
includes the smaller dataset with only 32 subjects which were
further divided into active and sham where all females were
randomized into active treatment group. Therefore, there was no
female participant in the sham group which may result in biased
results. The inferred effective connectivity from this study needs to
be further validated with a larger and balanced dataset.
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