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Abstract HER-2/neu (also known as HER2 or c-erb-B2)
is a 185-kDa protein receptor with tyrosine kinase
activity and extensive homology to the epidermal growth
factor (EGF) receptor. HER-2/neu is expressed in many
epithelial tumors and known to be overexpressed in
approximately 20–25% of all ovarian and breast can-
cers, 35–45% of all pancreatic adenocarcinomas, and up
to 90% of colorectal carcinomas. HER-2/neu overex-
pression represents a marker of poor prognosis. HER-2/
neu-positive tumor cells are potentially good targets for
tumor-reactive cytotoxic T lymphocytes which have
been utilized in immunotherapeutic trials. In addition,
the ‘‘humanized’’ monoclonal antibody Herceptin has
been tested in several clinical trials and proved to be an
effective adjuvant therapy for HER-2/neu-positive breast
and ovarian cancers. Vaccinations aiming at generating
T-cell responses are being examined in both experi-
mental and clinical trials. Natural immunity at the level
of T and B cells has been observed in patients with
HER-2/neu-positive tumors confirming the immunoge-
nicity of HER-2/neu and encouraging vaccination trials
with HER-2 protein–derived subunits or synthetic pep-
tides. This review summarizes recent data from patients
with various types of HER-2/neu–overexpressing can-
cers carrying different HLA alleles and exhibiting pre-
existent immunity to HER-2/neu–derived synthetic
peptides. It also discusses potential advantages of the
various vaccination approaches to immunotherapy tar-
geting the HER-2/neu molecule.
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Introduction

Tumor cells may express unique protein structures or
molecules shared with normal cells that can be recog-
nized by the immune system. Tumor-specific immunity
has been demonstrated both in murine tumor models and
by clinical responses in cancer patients after vaccination
or following passive immunotherapy with tumor-infil-
trating lymphocytes. Recent progress in our under-
standing of the generation of peptides derived from
intracellular proteins and their presentation at the cell
surface in the context of MHC class I and class II alleles
has led to the identification of several tumor antigens
recognized by tumor-specific T cells. The identification of
both MHC class I and class II–restricted tumor antigens
provides new opportunities for the development of
therapeutic strategies against cancer. These tumor anti-
gens have been classified into several categories including
differentiation antigens, tissue-specific antigens, mutated
antigens, and overexpressed antigens [89]. HER-2/neu, a
member of this last category, is a transmembrane gly-
coprotein consisting of a large extracellular domain, a
short hydrophobic transmembrane domain, and a cyto-
plasmic intracellular domain containing both a kinase
domain and a carboxyl terminal domain that is autop-
hosphorylated upon receptor activation [94]. The HER-
2/neu gene, present as a single copy in normal epithelial
cells, is amplified by gene amplification in numerous
malignant cell types, and its overexpression may con-
tribute to disease initiation and progression [94].

The identification of human epithelial cancer antigens
[89] has facilitated the in vitro generation of HER-2/
neu–reactive cytotoxic T lymphocytes (CTLs). Although
the in vitro induction of tumor-reactive CTLs is a pro-
cedure that can be performed in a clinical setting there
are still some concerns about its application in terms of
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effective cancer immunotherapy. For example, HER-2/
neu–specific CTLs can be detected in breast cancer pa-
tients but in most cases do not prevent disease pro-
gression [16, 24, 49, 97]. A possible explanation for this
observation may be that HER-2/neu as a self-antigen
induces active tolerance mediated by the deletion of
clones recognizing immunodominantly presented anti-
genic epitopes. However, protein molecules mostly
contain subdominant peptides not capable of inducing
tolerance and of therefore being immunogenic [73].
Overexpression of HER-2/neu may result in high levels
of subdominant peptides presented by MHC molecules
thereby initiating an immune response [8]. Indeed, re-
ports from experimental models and clinical trials con-
firm that HER-2/neu can be immunogenic and generate
antibody production and activation of peptide-specific
CTLs and T helper (TH) cells [40]. HER-2/neu could
thus be considered as a candidate molecule for vacci-
nation studies in patients with HER-2/neu–overex-
pressing tumors although in this case there might be a
concern for induction of adverse autoimmune reactions.
Clinical data, however, argue against this possibility [18,
19].

Numerous anti-erb-B2 monoclonal antibodies have
been isolated and some of them are able to inhibit
growth of HER-2/neu-positive (+) tumors [95]. One such
antibody, Herceptin, is now being used in the clinic
against metastatic breast cancer with HER-2/neu over-
expression with favorable results [95]. Clinical results
with Herceptin have stimulated interest in developing
vaccination strategies to elicit T cell– and B cell–medi-
ated HER-2/neu–specific responses. Patients with HER-
2/neu+ tumors displaying natural T-cell immunity to
HER-2/neu–derived peptides and also having high
HER-2/neu–specific IgG titers in their sera may be the
best candidates for such immunization protocols. It is
anticipated that a better understanding of the actitivies
of HER-2/neu–specific T lymphocytes (including both
CTLs and THs) as well as of anti-HER-2/neu mono-
clonal antibodies will aid passive immunotherapies
improving the outcome of clinical trials [27].

The biology of HER receptors

The HER family consists of four genes encoding four
homologous HER receptors [65]. These receptors are
located on the cell membrane in a variety of tissues. The
receptors interact with various growth-factor ligands,
which have a common EGF-like motif of approximately
50 amino acids [1]. The HER receptors (designated
HER1, HER2, HER3, and HER4) show a similar
structure, consisiting of a cysteine-rich extracellular li-
gand-binding domain, a lipophilic transmembrane part,
and an intracellular signal-transducing tyrosine kinase
domain which contains a regulatory carboxyl-terminal
segment [94]. In contrast to the other HER receptors,
HER3 lacks certain residues in the catalytic domain and
therefore has a weak kinase activity [34]. HER receptors

exist as monomers and their activation usually depends
on the presence of their ligands [2]. Upon ligand binding,
the four different receptors associate with each other to
form ten different dimers, which may be homodimers or
heterodimers [3]. Dimers are usually more stable than
monomeric receptors. HER1 binds to several ligands
including EGF, transforming growth factor a, amphi-
regulin, heparin-binding EGF-like growth factor, beta-
cellulin, and epiregulin [94]. In contrast to HER1, no
ligand has as yet been identified for HER2. HER3 and
HER4 bind to neuregulins which comprise a family of
structurally diverse peptides [3].

HER receptor ligands possess a high-affinity site that
binds directly to HER1, HER3, or HER4 and a low-
affinity site that recruits HER2 as a heterodimerization
partner. Thus HER2 functions as a coreceptor for many
ligands and is usually transactivated by EGF-like li-
gands, resulting in the formation of HER1-HER2
heterodimers whereas neuregulins induce the formation
of HER2-HER3 and HER2-HER4 heterodimers [94].
Heterodimers are characterized by a slower rate of li-
gand dissociation than homodimers and therefore gen-
erate more potent transducing signals [3]. Moreover,
heterodimers containing HER2 undergo a slower rate of
ligand-induced endocytosis compared to other HER
receptors and thus have a particularly high signaling
potency [35]. The HER2-HER3 heterodimer is the most
potent mitogenic combination and is the predominant
heterodimer in carcinoma cells.

HER receptor–mediated signaling

In human breast and ovarian cancer cells, overexpres-
sion of HER-2/neu increases basal receptor tyrosine
phosphorylation which correlates with effects on cellular
transformation in a dose-dependent manner [12]. Spe-
cific tyrosine sites in the carboxyl part of HER-2/neu
have been identified which may be important for HER-
2/neu signaling. Importantly, some studies have sug-
gested that deletion of these sites does not entirely
compromise the ability of HER-2/neu to transform cells
or to activate downstream signaling molecules [65]. In
general, which sites are autophosphorylated and hence
which signaling proteins are engaged is determined by
the nature of the ligand and the heterodimeric partner.
Phosphorylation events lead to activation of multiple
second messengers. Many downstream signaling mole-
cules complex with activated receptor tyrosine kinases
(RTK) via src homology 2 (SH2) domains [45]. SH2
domains are present in a number of cellular proteins
involved in signal transduction and molecules which
function as adaptors for important protein-protein
interactions [45]. Many SH2 domain–containing pro-
teins also have src homology 3 (SH3) domains which are
also involved in protein-protein interactions [60]. A
number of substrates for the HER2 tyrosine kinase
containing SH2 and SH3 domains, have been identified
in human breast and ovarian cancer. There are three
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major intracellular signaling pathways that occur and
culminate in transcription of nuclear genes. These in-
clude the ras/mitogen–activated protein kinase, the
phosphatidylinositol-3 kinase route, and the phospholi-
pase C-c. The immediate early nuclear transcription
genes including c-fos, c-jun, and EGR1 are rapidly up-
regulated. In breast cancer cell lines, expression of c-fos,
EGR1, and the early response gene c-myc have been
found to be induced by anti-HER2 monoclonal anti-
bodies [23, 78]. When HER2 is normally expressed (i.e.,
not overexpressed), ligands binding to HER receptors
form only a few HER2 heterodimers and the HER-2/
neu–mediated signaling is weak, resulting in normal cell
growth. In addition, heterodimeric receptors not
including HER2 also provide weak but essential signals
for normal cell growth.

Preexistent immunity to HER-2/neu

HER-2/neu has been considered as a potential target for
immunotherapy although it has been assumed that pa-
tients would be immunologically tolerant to this non-
mutated self-protein. However, Disis et al. [14, 17] have
shown that some breast cancer patients with HER-2/neu
tumors have preexistent T- and B-cell–mediated immu-
nity to the HER-2/neu protein. It is important to note
that cancer patients exhibiting natural antibody and
T-cell immunity to HER-2/neu do not develop autoim-
mune responses, suggesting that HER-2/neu–specific
antibodies and T cells generated by virtue of HER-2/neu
overexpression do not recognize basal HER-2/neu
expression on normal epithelial cells.

Existent antibody immunity to the oncogenic protein
has been detailed in patients with breast and ovarian
cancer at early stages [17], suggesting that such au-
toantibodies are induced by the native molecule in a
specific manner, based on immune mechanisms similar
to those responsible for generating antibodies to foreign
proteins, and they do not simply reflect an increased
tumor load (which characterizes advanced stages of the
disease). Antibody responses have been detected to
whole protein and to both the intracellular and extra-
cellular domains. Responses varied between patients,
with some patients responding to either the intracellular
or the extracellular domains and some responding to
both. Usually 10–15% of these patients have high titer
(>1:1,000) antibodies in their sera whereas the overall
percentage of HER-2/neu IgG-positive patients with
breast and ovarian cancer has been reported to be up to
50–55% [91]. Antibodies to HER-2/neu with a titer
>1:1,000 have been also detected in patients with colon
cancer (14%) [91] and prostate cancer (15.5%) [53].
Usually detection of antibodies to HER-2/neu correlates
with HER-2/neu overexpression in patients� primary
tumors. Progression of disease apparently suppresses
antibody production since only 7% of stage III/IV
ovarian and breast cancer patients had detectable HER-
2/neu–specific IgG [91].

Existent T-cell immunity to HER-2/neu has been also
detected in patients overexpressing this oncoprotein [14,
18]. This suggests that tolerance to HER-2/neu has been
circumvented in patients whose tumors overexpress
HER-2/neu. Natural T-cell–mediated immune responses
to self-proteins should be directed against subdominant
determinants because dominantly processed self-epi-
topes should be recognized by high-affinity clones which
under normal circumstances are tolerated in the thymus
[73]. Overexpression of a self-protein may lead to accu-
mulation of subdominant epitopes on the cell surface of
a tumor cell, which can be either directly or indirectly
presented (e.g., via dendritic cells [DCs]) to the immune
system enabling the generation of cellular immune re-
sponses [57]. In vivo peptide vaccinations or in vitro
repeated restimulations with peptide-pulsed autologous
DCs have also been successfully used for enabling the
immune system to develop anti-self responses. There are
several reports demonstrating increased frequencies of
peripheral blood T lymphocytes from healthy donors
and nonimmunized patients naturally responding to
melanoma- and prostate cancer–associated peptides [37,
48, 63, 71]. Disis et al. [18] reported that 11% of patients
with advanced stage breast and ovarian cancer had
preexistent TH cell immunity to HER-2/neumeasured as
specific proliferation in response to stimulation with the
proteins� extracellular or intracellular domains (ECD
and ICD, respectively). In other reports [19, 41, 42] the
vast majority of HLA-A2 patients immunized with
peptides derived from potential ‘‘helper’’ epitopes of the
HER-2/neu protein containing within their sequences
HLA-A2-binding ‘‘cytotoxic’’ epitopes, developed both
HER-2/neu peptide (TH and CTL) and protein (ECD
and ICD) specific T-cell immune responses. However, of
these patients only a few (up to13%) had preexistent
immune responses to some of these HER-2/neu–derived
peptides which included p369–377 and p689–697.

In those reports, in addition to measuring prolifera-
tive responses, preexistent immunity was also detected
by sensitizing patients� T cells with peptide-pulsed
autologous peripheral blood mononuclear cells
(PBMCs) in the presence of IL-2 in short-term cultures
followed by enumeration of peptide-specific T cells that
secrete IFN-c in ELISpot assays. By developing a more
sensitive in vitro sensitization protocol (i.e., stimulation
was performed with patients� peptide-pulsed DCs in the
presence of IL-7 and IL-12) we were able to demonstrate
a significantly higher percentage (25%) of HLA-A2
patients with preexistent T-cell immunity to p369–377
[80]. Since this peptide also binds to HLA-A3 and HLA-
A26, we also examined patients carrying these alleles for
p369–377–specific cell precursor frequencies. We found
that 30% (3 out of 9) and 60% (6 out of 10) HLA-A26
and HLA-A3 cancer patients, respectively, responded
with increased precursor frequencies (range 1:26,500 to
1:72,150) to this particular HER-2/neu peptide [80].
Such preexistent, T-cell responses were detected in
HER-2/neu+ patients with various types of cancer,
including breast, ovarian, colorectal, lung, and prostate
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(Table 1). Furthermore, in patients with the same types
of cancer overexpressing HER-2/neu we could also de-
tect increased T-cell precursor frequencies to HER-2/
neu–derived and HLA-A2-restricted cytotoxic peptides
p435–443, p665–673, p689–697, p777–785, and p952–
960 [81] (Table 2). Patients� PBMCs with increased
peptide-specific T-cell precursor frequencies could
efficiently lyse autologous DCs pulsed with the same
HER-2/neu peptide and the autologous HER-2/neu–
overexpressing tumor cells, suggesting that these peptides
are naturally processed and expressed on tumor cells [81].

The detection of preexistent T-cell immunity to HER-
2/neu–derived peptides measured either as proliferation
and IFN-c secretion or lysis of HER-2/neu+ autologous
tumor cells, suggests that HER-2/neu is an immunogenic
protein, and active immunization including helper and
cytotoxic peptide-epitopes may hold promise. Regimens
aiming at costimulation of humoral immunity (i.e., by

mixing B-cell epitopes from the ECD with the CTL plus
TH epitopes, or by immunizing with longer HER-2/neu
peptides containing all three epitopes in their sequences)
may be more effective. As an alternative, passive
immunotherapy by administating anti-HER-2/neu
monoclonal antibody (mAb) (i.e., Herceptin) combined
with active immunotherapeutic regimens could be
effective against HER-2/neu+ cancers.

HER-2/neu–derived immunogenic peptides

As a general rule, CD8+ CTLs recognize small peptides
(8–10 mers) in the context of MHC class I molecules
whereas CD4+ TH cells recognize longer peptides (with
10–25 amino acid residues) presented in the cleft of
MHC class II molecules [26]. MHC class I and class II
proteins function as peptide receptors, with each MHC
haplotype optimized to present a large number of
structurally different peptides at the cell surface. Some of
the peptide residues interact with the MHC class I or
class II groove and thus act as anchor residues, thereby
defining binding motifs specific for different MHC al-
leles. Such anchor residues can be used for defining
within potential MHC-binding peptides the sequence of
a certain protein. For MHC class I and class II mole-
cules the different peptide specificities are described as
allele-specific motifs [21, 22, 64]. Thus, numerous dif-
ferent peptides are capable of binding to a given MHC
haplotype and represent a natural peptide library.

Proteolytic degradation of intracellular proteins, is
mediated by the proteasome complex in the cytosol. The
generated peptides are then translocated into the endo-
plasmic reticulum (ER) by the transporter associated
with antigen processing localized on the ER membrane.
Loading of peptides onto the MHC class I heavy chain
with the assistance of chaperones (calnexin, calreticulin,
or tapasin) leads to the correct assembly while the b2-
microglobulin and the trimolecular complex via the
Golgi apparatus is transported to the cell surface for
recognition by CD8+ T cells [84]. Exogenous proteins
are processed by APCs through receptor-mediated
endocytosis, phagocytosis, or pinocytosis. Proteins are
then degraded in endosomes and lysosomes to a heter-
ogenous population of peptides through the action of
various proteases responsible for antigen processing.
Peptides entering endocytic pathways are loaded onto
class II molecules within the specialized lysosomal-like
MHC class II compartments, and the MHC-peptide
complex migrates to the cell surface for recognition by
CD4+ TH cells [28, 84, 87]. Using an approach known
as ‘‘reverse immunology’’ it is possible to define, with the
assistance of algorithms, protein sequences containing
anchor residues for binding to certain MHC class I and
class II alleles [44, 68]. Synthetic peptides containing
those sequences are then used in vitro for generating
peptide-specific CTLs or TH lines and clones. If such
peptide-specific cells do not recognize tumor cells
expressing the whole protein plus the appropriate allele,

Table 1 Preexistent immunity to peptide HER-2/neu (369–377) in
patients with HER-2/neu+ tumors. Tetanus toxoid–specific CTL
precursor frequencies (PFs) in the same patients (range 1:2,500 to
1:10,800). Peptide (369–377)-specific CTL PFs in patients with
HER-2/neu) tumors (<1:85,000) and in healthy individuals
(<1:102,700)

Type of cancer HLA-allelesa

HLA-A2 HLA-A3 HLA-A26

Breast 1:26,000b 1:33,500 1:57,900
1:33,000 1:39,800
1:37,100 1:57,900
1:39,800

Colorectal 1:39,900
Lung 1:45,600 1:45,600
Ovarian 1:72,150
Prostate 1:35,500

aPatients carrying one of the indicated alleles exhibited increased
peptide-specific CTL precursor frequencies (PF)
bIndicates frequencies of peptide-specific CTL precursors (each
sequence corresponds to a single patient tested)

Table 2 Preexistent immunity to HLA-A2-restricted HER-2/neu–
derived peptides representing CTL epitopes. Tetanus toxoid–spe-
cific CTL precursor frequencies (PFs) in the same patients (range
1:2,000–1:9,800). Range of peptide-specific mean CTL PFs of the
various peptides in patients with HER-2/neu) tumors (1:98,500 to
1:176,400) and in healthy individuals (1:153,000 to 1:348,000)

Type of
cancer

HER-2/neu peptides

p435–443 p665–673 p689–697 p777–785 p952–960

Breast 1:13,500 1:12,900 1:16,700 1:11,900 1:4,000
1:13,300 1:17,500 1:14,700

1:18,200
Colorectal 1:14,500 1:13,500

1:19,200 1:15,200
Lung 1:13,900 1:13,300 1:8,200

1:9,800
Ovarian 1:11,100 1:11,900 1:13,500 1:6,000

1:15,600 1:14,900 1:9,900
Prostate 1:17,500 1:14,900 1:13,600
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it is apparent that the particular peptide is not naturally
processed and presented. Indeed, not all of the putative
MHC class I– and class II–binding peptides from a
protein are generated in vivo, and especialy in the case of
TH peptides it is not easy to predict which peptides will
be naturally processed. As an alternative, we and others
[6, 7, 31, 47, 52, 56], were able to generate specific T cells
by utilizing intact autologous tumor cells (ATCs), total
ATC lysates, or eluates from MHC class I or class II
molecules expressed on ATCs. Target cells pulsed with
tumor protein–derived synthetic peptides were then used
to stimulate these ATC-specific T cells and to identify
tumor peptide-specific T-cell reactivity. In contrast to
the reverse immunology approach, this method has the
advantage that the peptides identified are naturally
processed and expressed by the ATCs. These techniques
have been used to identify several immunogenic peptides
of the HER-2/neu oncoprotein that are naturally pro-
cessed and presented. These are listed in Table 3 and
several of those are discussed below.

Peptide HER-2 (p369–377) was originally identified
by Fisk et al. [24] as an immunodominant HLA-A2-
binding epitope recognized by tumor-associated lym-
phocytes of ovarian cancer. Later on, p369–377 was also
found to be expressed by several types of HLA-A2+

tumors, including renal cell carcinoma [9], breast carci-
noma [42], and melanoma cells [68]. Rongcun et al. [68]
was able to generate in vitro T-cell lines and clones from
ascitic fluids of HLA-A2+ patients with epithelial
ovarian cancer recognizing HER-2 peptides (p435–443),
(p665–673), (p689–697), and (p952–960) expressed on a
variety of tumor cell lines including ovarian, colon and
breast carcinomas, and melanomas. The HER-2 (p689–
697) was also found to be recognized by gastric cancer–
specific CTLs [46]. More recently, we have found that
besides classical CTLs, p369–377, p665–673, and p689–
697 can elicit NKT cells specifically recognizing their

autologous HLA-A2+ HER-2/neu+ ovarian tumors [7].
Peptide HER-2 (p754–762) was shown to induce CTLs
from healthy donor–derived PBMCs that were capable
of killing the colon tumor cell line SW403 expressing
HLA-A3 and HER-2/neu [37]. Additional MHC-bind-
ing studies with the most common HLA molecules
belonging to the HLA-A3 superfamily (HLA-A*1101,
HLA-A*3101, HLA-A*3301, and HLA-A*6801) dem-
onstrated that p754–762 was able to bind to four of
these five alleles [37]. Eberlein and coworkers [61] iden-
tified HER-2 peptide p654–662 from the transmembrane
region of this protein as a common epitope presented by
various HLA-A27 tumor types, including breast, ovar-
ian, pancreatic, and non–small lung cancer. HER-2
peptides p5–13, p48–56, and p1023–1032 were demon-
strated to trigger CTL responses in both HLA-A2+

humans and HLA-A2 transgenic mice. Such CTLs lysed
HLA-A2+ HER-2/neu+ tumor cells of different origins
(breast, colon, lung, and renal cancer) irrespective of the
expression levels of HER-2/neu [69]. Shiku and collab-
orators [76] have recently identified two HER-2
peptides, p63–71 and p780–788, capable of inducing
HLA-A24-restricted CTL responses against various
targets also including HLA-24+ HER-2/neu+ tumor cell
lines.

HER-2/neu peptides recognized in the context of MHC
class II molecules

Despite the emphasis on CTL-mediated immune re-
sponses, increasing evidence from both human and
animal studies has suggested that optimal cancer vac-
cines require the participation of both CD4+ and CD8+

T cells [6]. The essential role of CD4+ T cells in anti-
tumor immunity was first shown in animal models,
where these cells were clearly demonstrated to provide
all necessary stimuli for the induction and maintenance
of antitumor CD8+ T cells [13, 96]. Reports from cell-
based vaccine models against MHC class II-negative
tumors [66] indicated that tumor antigens released at the
tumor site are taken up by macrophages, processed, and
presented to CD4+ T cells, which in response, produce
and secrete lymphokines that activate tumor-specific
CTLs. Moreover, MHC class II knockout mice or mice
depleted of CD4+ T cells were no longer capable of
generating CTL responses against an adenovirus E18
protein epitope, whereas wild-type mice developed
helper-dependent CTLs to that particular epitope after
cross-priming by antigen-presenting cells (APCs) [72].

The identification of antigens recognized by CD4+ T
cells on human tumors has placed strong emphasis on
the role of CD4+ T cells in antitumor immunity. Using
peptide-binding prediction algorithms, MHC class I–
restricted tumor antigens—including melanoma antigens
Melan-A/MART-1, gp100, and tyrosinase; tissue-spe-
cific antigen MAGE-3; and cancer-testis antigen
NY-ESO-1—were demonstrated to contain MHC class
II–restricted epitopes recognized by CD4+ T cells [30,

Table 3 Immunogenic HER-2/neu epitopes recognized by CTLs

Peptide HLA-restricting allele Reference

HER 5–13 HLA-A2 [36]
HER 8–16 HLA-A24 [36]
HER 48–56 HLA-A2 [38]
HER 63–71 HLA-A24 [36]
HER 106–114 HLA-A2 [46]
HER 369–377 HLA-A2 [24]
HER 435–443 HLA-A2 [36]
HER 654–662 HLA-A2 [97]
HER 665–673 HLA-A2 [68]
HER 689–697 HLA-A2 [68]
HER 754–762 HLA-A3 [38]

HLA-A11
HLA-A33

HER 773–782 HLA-A2 [49]
HER 780–788 HLA-A24 [36]
HER 785–794 HLA-A2 [68]
HER 789–797 HLA-A2 [24]
HER 799–807 HLA-A2 [24]
HER 952–961 HLA-A2 [68]
HER 1023–1032 HLA-A2 [69]
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90]. Recently, a genetic approach was developed that
enabled the cloning of genes coding for mutated MHC
class II–restricted antigens including CDC27, triose-
phosphate isomerase (TPI), and low-density-lipid
receptor fusion protein (reviewed in [89]). TPI was also
identified by a biochemical approach [89].

There is now also evidence of the existence of MHC
class II–restricted T cell responses to HER-2/neu: CD4+

T helper cells from HER-2/neu+ breast and ovarian
cancer patients can proliferate and produce lymphokines
in response to stimulation with HER-2/neu recombinant
protein or synthetic peptides corresponding to immu-
nodominant regions of HER-2/neu such as HER-2 (396–
406), HER-2 (776–788), and HER-2 (884–899) [5, 15, 25,
85]. Some of these patients indicated preexistent immu-
nity to these peptides in that they responded moderately
after a short-term stimulation period [25, 43]. Most re-
cently, we have shown that HER-2 (883–899) can be
recognized by healthy donor CD4+ T cells in the context
of four different HLA-DR alleles (i.e., DR1, DR4,
DR52, and DR53) indicating a high degree of promis-
cuity in histocompatibility [62]. Disis and collaborators
[18, 19, 41] have identified putative T-helper epitopes of
HER-2/neu that also contained CTL-specific HLA-A2
binding motifs. Vaccination of breast cancer patients
with these peptides increased HER-2/neu peptide-spe-
cific CTL precursor frequencies. In those studies, re-
sponses mediated by HER-2/neu peptide-reactive CD4+

T cells were defined on the basis of CD4+ T-cell capacity
to respond upon recognition of HER-2 peptide-pulsed
APCs or DCs pulsed with HER-2/neu recombinant
protein, whereas evidence for the capacity of peptide-
specific CD4+ T cells to directly recognize HER-2/neu+

tumor cells has been lacking. In our recent reports [62,
79] we were able to show that HER-2/neu peptides p776–
788 and p884–899 specific CD4+ T-cell clones from a
healthy donor could recognize tumor cells from
patients with metastatic breast, colorectal, and pancre-
atic cancer in the context of at least three alleles,
namely, HLA-DRB5*0101, HLA-DRB1*0701, and
HLA-DRB5*0405. The finding that this peptide is pre-
sented in the context of three HLA-DR alleles is
advantageous since (1) it may induce higher frequency of
clones recognizing it and thus a more massive antitumor
response; and (2) it offers a broad population coverage.
MHC class II–presented epitopes from HER-2/neu are
listed in Table 4.

Current therapies

Effect of anti-HER-2/neu mAb 4D5
(Herceptin or TrastuzuMab) in clinical trials

The mAb 4D5 was initially shown to inhibit tumor
growth in SCID mice carrying HER-2/neu+ tumors
and to significantly prolong mouse survival [59, 75].
The humanized form of 4D5, termed Herceptin or
TrastuzuMab, contains the complementarity-determin-
ing regions of the murine mAb together with the hu-
man IgG1 constant regions [11]. Herceptin was
demonstrated to have similar in vitro and in vivo ef-
fects as its murine counterpart [83]. In xenograft
models, Herceptin showed a dose-dependent antitumor
activity [77]. The use of Herceptin in clinical trials was
recently approved by the FDA. Treatment of advanced
stage HER-2/neu+ breast cancer patients with Her-
ceptin as monotherapy resulted in a response rate of
approximately 20% [70, 74]. Improved therapeutic
efficacy was achieved by using Herceptin in combina-
tion with chemotherapy [70, 74]. Although the clinical
results with Herceptin have been encouraging, a large
number of patients failed to respond to treatment and
all relapsed.

Immunization of cancer patients
with HER-2/neu peptide-based vaccines

Vaccines targeting the HER-2/neu protein may have
wide application and utility in the prevention of disease
exacerbation in different types of cancer. Generally
speaking, cancer vaccines can be formulated using either
intact cancer cells or peptides derived from tumor-
associated antigens (TAAs). Cancer vaccines utilizing
whole tumor cells have the advantage of providing a
patients� immune system with all TAAs presented in the
context of various MHC alleles. However, they suffer
from the fact that due to the heterogeneity of tumor
cells, even among patients with the same type of cancer
and due to the imprecise knowledge of each tumor cell
characteristics, they are not suitable for evaluating
immunological responses. On the other hand, vaccina-
tion with synthetic peptides offers the advantage of
generating defined immune responses applicable to a
broad population of patients carrying the appropriate
MHC alleles. However, peptide-based vaccinations can
be useless if tumor cells down-regulate their MHC alleles
or, even worse, that particular TAA. The design of
multiepitope vaccines consisting of peptides from several
TAAs presented by various MHC alleles may circum-
vent this problem.

So far, HER-2/neu peptide p369–377 administered in
incomplete Freund�s adjuvant (IFA) or GM-CSF has
been used in most published clinical trials. All the trials
have demonstrated no adverse reactions from treatment
but have also shown only modest effectiveness. In one

Table 4 Immunogenic HER-2/neu epitopes recognized by TH

Peptide HLA-restricting allele Reference

HER 62–76 DR4/15, DR51, DR53, DQ6/7 [43]
HER 605–619 DR4/15, DR51, DR53, DQ6/7 [43]
HER 765–783 DR4/15, DR51, DR53, DQ6/7 [43]
HER 776–788 DR51, DR7, DR4 [79]
HER 777–789 DR4 [85]
HER 822–836 DR1/11, DR51, DR52, DQ5/7 [43]
HER 883–899 DR1/11, DR4, DR51, DR52,

DR53, DQ6/7
[43]

HER 884–899 DR4 [62]
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study [98], vaccination with p369–377 in IFA generated
in vivo peptide-specific CTLs which were, however,
unable to recognize HER-2/neu+ tumor cell lines.
Murray et al. [55] reported that administration of p369–
377 with GM-CSF resulted in positive DTH responses
in vivo and significant proliferative responses to this
peptide in vitro in most of the patients included in the
vaccination study. There were no clinical responses.
Using a similar protocol, Knutson et al. [42] showed that
vaccination with p369–377 plus GM-CSF results in in-
creased precursor frequencies of peptide-specific CTLs
which, however, are of low magnitude and short-lived,
not being detectable 5 months after the final vaccina-
tion.

DCs pulsed with p369–377 and also p654–662 pep-
tides were used to immunize patients with breast or
ovarian cancer [10]. After three vaccinations, peptide-
specific CTLs producing IFN-c and being capable of
lysing HER-2/neu–expressing tumor cells were gener-
ated. Of the six patients immunized one showed stable
disease.

Disis and collaborators in two other studies [18, 19]
used longer HER-2/neu peptides corresponding to
putative TH epitopes, also containing encompassed
HLA-A2 binding motifs, to immunize patients with
breast or ovarian cancer. In most cases, peptide-spe-
cific proliferative responses could be detected which
were occasionally also directed against the ECD or
ICD of the protein. There was also a notable increase
in the peptide-specific CTL precursor frequencies.
Cytotoxicity or clinical responses to treatment were not
reported.

The above-mentioned clinical studies have shown
that it is quite possible to induce T-cell responses against
HER-2/neu peptides in cancer patients, suggesting that
peptide immunization may be a means of overcoming
tolerance directed at immunodominant epitopes. De-
spite the induction of peptide-specific T-cell responses
in vivo, no clinical responses have been reported. Thus,
the fact that a HER-2/neu peptide, or in general a TAA-
derived peptide, elicits tumor-specific immune responses
does not necessarily mean that this response is sufficient
to reduce tumor load. Theoretically, to do so, a tumor
vaccine should be optimized by including multiple pep-
tide epitopes capable of eliciting strong T-cell responses.
A limitation to the use of multiepitope vaccines is the
necessity of matching patients� HLA haplotype with al-
lele-specific peptides. This means that broad application
will require multiply different vaccines. Peptide-based
vaccines generally do not elicit antibody responses,
which are important for mounting effective anti-HER-2/
neu responses. Thus the combination of active immuni-
zation with the infusion of anti-HER-2/neu antibodies
(i.e., Herceptin) may induce better clinical results. Pro-
tein- or protein subunit–based vaccines encompassing
multiple helper and cytotoxic sequences and also stim-
ulating antibody production, offer a good alternative for
providing an effective response against HER-2/neu–
expressing tumors.

Immunotherapy with cytotoxic lymphocytes
engineered to express chimeric receptors recognizing
HER-2/neu

Chimeric receptors facilitate the generation of antigen-
specific effector cells independently of the availability of
T cells carrying a suitable natural T-cell receptor (TCR),
and allow the bypassing of MHC-restricted recognition
of peptide antigens as a requirement for the initiation of
cytolytic effector functions. This might help to overcome
some of the limitations inherent to adoptive transfer of
tumor-infiltrating lymphocytes such as heterogeneity of
effector cell populations and poorly defined target
specificity. Chimeric antigen receptors are composed of
a single-chain antibody fragment (scFv) fused to sig-
naling components (f chain) of the TCR-CD3 complex
[50, 54, 58] or to the c chain of the Fc receptors for IgG
[20, 33, 67] or IgE [32, 92]. Introduction of the chimeric
genes into T cells enable them to respond in an MHC-
independent fashion to an antigen-specific trigger via
these receptors by cytokine production [50, 54, 58] and
tumor cell lysis [20, 33, 92]. Chimeric receptors recog-
nizing HER-2/neu+ tumor cells have been reported by
Moritz et al. [54] and Altenschmidt et al. [4], who linked
the f chain of the TCR with a scFv derived from a mAb
directed against the human ErbB-2 receptor [93]. The
scFv (ErbB-2)/f fusion genes were stably expressed in
murine T lymphocytes which subsequently could rec-
ognize and lyse either mouse cell lines transfected to
express the human ErbB-2 receptor [4, 54] or the human
breast cancer MDA-MB453 cell line constitutively
expressing the same receptor [54]. This chimeric con-
struct was recently also used for redirecting a human
NK cell line against HER-2/neu+ tumors [86].

Most recently [29, 51], we constructed two novel
HER-2/neu–recognizing chimeric receptors by fusing a
scFv derived from an antihuman HER-2/neu mAb pro-
duced by the HB8696 hybridoma with the c chain of the
Fc(c)RIII or f chain of the TCR. Such chimeric genes
were stably transduced into the murine MD.45 CTL (H-
2b) hybridoma cell line that could specifically recognize
and lyse in vitro HER-2/neu–expressing human tumor
cell lines from four different types of cancer (i.e., breast,
ovarian, renal, and colorectal). The same cell lines were
highly aggressive in vivo in that they formed solid tumors
in short periods of time when inoculated in SCID mice.
Injection of transduced MD.45 CTLs into these mice
significantly prolonged their survival. In a syngeneic
mouse-tumor model, the grafted MD.45 CTL effectors
protected C57BL.6 (H-2b) mice from the growth of syn-
geneic leukemic ALC tumor cells transfected to express
humanHER-2/neu [51]. In addition, our data [29, 51] and
those from Uherek et al. [86] suggest that employing re-
targeted cytotoxic cell lines for adoptive transfer in clin-
ical trials might help to overcome some of the current
limitations (i.e., requirement for efficient transduction of
patient-derived effector cells and expansion in quantities
sufficient for therapy [82, 88]) and could result in the
development of more generally applicable cell therapeu-
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tics. These data hold promise for the use of our scFv
(anti-HER-2/neu)/c chimeric receptor in gene-therapy
approaches to cancer treatment.

Conclusions

HER-2/neu is a compelling cancer vaccine candidate
because it is overexpressed on cancer cells relative to
normal tissues. Several immunogenic peptides from the
HER-2/neu sequence have been identified and success-
fully used for generating specific T-cell responses in vitro
and in vivo. Future work will show whether such HER-
2/neu–specific T cells are relevant to tumor eradication
in vivo and which will be the optimal vaccination pro-
tocol for generating and mobilizing such T cells. An-
other issue that must be examined is whether active
immunization should be applied after standard surgical
therapy and chemotherapeutic regimens.
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