Skip to main content
. 2024 Mar 20;10:e1857. doi: 10.7717/peerj-cs.1857

Table 2. A detailed comparison of before and after feature selection across different evaluation metrics between the proposed method and other classifiers.

Values separated by “/” indicate “without/with” feature selection.

Model Sensitivity Specificity Precision F1-Score Accuracy (%) Brier score AUC score
XGBoost 0.28 / 1 0.84 / 0.95 0.80 / 0.97 0.41 / 0.98 53.27 / 98.18 0.479 / 0.023 0.74 / 0.99
Random Forest 0.74 / 0.81 0.61 / 0.75 0.81 / 0.86 0.76 / 0.82 70.72 / 78.54 0.197 / 0.146 0.73 / 0.86
Decision Tree 0.71 / 0.79 0.41 / 0.36 0.66 / 0.68 0.68 / 0.72 60.54 / 62.90 0.392 / 0.372 0.57 / 0.57
Support Vector Machine 0.81 / 1 0.73 / 0.83 0.84 / 0.92 0.81 / 0.96 78.36 / 94.36 0.155 / 0.053 0.84 / 0.97
Naïve Bayes 0.77 / 1 0.31 / 0.83 0.64 / 0.92 0.68 / 0.96 60.90 / 94.36 0.392 / 0.056 0.52 / 0.98
Logistic Regression 0.88 / 1 0.68 / 0.83 0.82 / 0.92 0.84 / 0.96 80.36 / 94.36 0.143 / 0.047 0.82 / 0.98

Notes.

Values separated by ”/” indicate “without/with” feature selection.