Table 2. A detailed comparison of before and after feature selection across different evaluation metrics between the proposed method and other classifiers.
Model | Sensitivity | Specificity | Precision | F1-Score | Accuracy (%) | Brier score | AUC score |
---|---|---|---|---|---|---|---|
XGBoost | 0.28 / 1 | 0.84 / 0.95 | 0.80 / 0.97 | 0.41 / 0.98 | 53.27 / 98.18 | 0.479 / 0.023 | 0.74 / 0.99 |
Random Forest | 0.74 / 0.81 | 0.61 / 0.75 | 0.81 / 0.86 | 0.76 / 0.82 | 70.72 / 78.54 | 0.197 / 0.146 | 0.73 / 0.86 |
Decision Tree | 0.71 / 0.79 | 0.41 / 0.36 | 0.66 / 0.68 | 0.68 / 0.72 | 60.54 / 62.90 | 0.392 / 0.372 | 0.57 / 0.57 |
Support Vector Machine | 0.81 / 1 | 0.73 / 0.83 | 0.84 / 0.92 | 0.81 / 0.96 | 78.36 / 94.36 | 0.155 / 0.053 | 0.84 / 0.97 |
Naïve Bayes | 0.77 / 1 | 0.31 / 0.83 | 0.64 / 0.92 | 0.68 / 0.96 | 60.90 / 94.36 | 0.392 / 0.056 | 0.52 / 0.98 |
Logistic Regression | 0.88 / 1 | 0.68 / 0.83 | 0.82 / 0.92 | 0.84 / 0.96 | 80.36 / 94.36 | 0.143 / 0.047 | 0.82 / 0.98 |
Notes.
Values separated by ”/” indicate “without/with” feature selection.