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ABSTRACT
This study investigates the effectiveness of various deep learning and classical machine
learning techniques in identifying instances of cyberbullying. The study compares the
performance of five classical machine learning algorithms and three deep learning
models. The data undergoes pre-processing, including text cleaning, tokenization,
stemming, and stop word removal. The experiment uses accuracy, precision, recall,
and F1 score metrics to evaluate the performance of the algorithms on the dataset. The
results show that the proposed technique achieves high accuracy, precision, and F1
score values, with the Focal Loss algorithm achieving the highest accuracy of 99% and
the highest precision of 86.72%. However, the recall values were relatively low for most
algorithms, indicating that they struggled to identify all relevant data. Additionally, the
study proposes a technique using a convolutional neural network with a bidirectional
long short-term memory layer, trained on a pre-processed dataset of tweets using
GloVeword embeddings and the focal loss function. Themodel achieved high accuracy,
precision, and F1 score values, with the GRU algorithm achieving the highest accuracy
of 97.0% and the NB algorithm achieving the highest precision of 96.6%.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Natural Language and
Speech, Network Science and Online Social Networks, Social Computing
Keywords Cyberbullying, Machine learning, Deep learning, LSTM, GRU

INTRODUCTION
The popularity of online social networks (OSN) and social media has surged in recent years
owing to the easy accessibility of the internet and mobile devices (Li et al., 2023; Khairy,
Mahmoud & Abd El-Hafeez, 2021). However, these platforms have become increasingly
plagued by negative and abusive behavior, detracting from their original purpose as
constructive and positive spaces. Cyberbullying, defined as any aggressive (Espelage, Valido
& Hong, 2023) and intentional behavior by individuals or groups on social media that
repeatedly communicates hostile or offensive messages meant to cause harm or discomfort
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to others, is a major concern in this regard (Haq et al., 2023). The impact of cyberbullying
on mental health can be overwhelmingly negative, leading to feelings of despair, low self-
esteem, fatigue, and even suicide attempts among victims. In fact, young people between the
ages of 10 and 16 who are exposed to or participate in cyberbullying or violence involving
sexual content or images are at a significantly higher risk of experiencing thoughts of
suicide, with up to a 50% increased likelihood. In Hinduja & Patchin (2010), teenagers
who experience various types of cyberbullying were more likely to have suicidal thoughts.
Hence, it is crucial to have an intelligent and efficient user-generated text detection system
in place (Khairy et al., 2021). Numerous cyberbullying detection mechanisms have been
developed to aid in the monitoring and prevention of such incidents. Machine learning
techniques have been extensively researched and applied to automatically detect instances
of cyberbullying (Bozyiğit, Utku & Nasibov, 2021; Atoum, 2023).

Cyberbullying is a growing concern in today’s digital age. With the rise of social media
and online communication platforms, the prevalence of cyberbullying has increased
significantly, leading to negative impacts on individuals’ mental health and overall well-
being (Khairy, Mahmoud & Abd-El-Hafeez, 2023). Detecting instances of cyberbullying is
crucial to preventing harm to individuals and promoting a safe online environment (Omar,
Mahmoud & Abd-El-Hafeez, 2020). While classical machine learning algorithms have been
used to identify cyberbullying, deep learning techniques have emerged as a promising
alternative (Hasan et al., 2023).

In recent years, deep learning models have shown significant improvements in
various natural language processing tasks (Koshiry et al., 2023), including sentiment
analysis (Omar & Abd El-Hafeez, 2023), text classification (Omar et al., 2021), and language
translation. Deep learning models are capable of learning complex representations of text
data, which can help capture the nuances and context of text better than traditional
machine learning algorithms. Therefore, applying deep learning techniques to detect
instances of cyberbullying has the potential to improve the accuracy and effectiveness of
existing detection systems (Alduailaj & Belghith, 2023).

In this study, we propose a technique for detecting cyberbullying using a pre-trained
GloVe (Ramos-Vargas, Román-Godínez & Torres-Ramos, 2021) and focal loss (Chen et al.,
2023) based deep learningmodel. GloVe embeddings are pre-trainedword embeddings that
capture the semantic relationships between words using a co-occurrence matrix. The focal
loss function is a variant of the cross-entropy loss function that is designed to handle class
imbalance better. The proposed technique involves several steps, including importing the
required libraries, reading the dataset, performing text preprocessing, splitting the dataset
into training and testing sets, tokenizing the text data, and padding the sequences to the
same length.

The main contribution of this study can be summarized as follows:

1. Novel technique for cyberbullying detection: This study proposes a unique technique
for detecting cyberbullying in tweets by combining pre-trained GloVe embeddings and
the focal loss function within a deep learningmodel. This approach leverages the strength
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of semantic word relationships captured by GloVe and addresses class imbalance issues
with the focal loss function.

2. High accuracy and performance: The proposed technique achieves significantly higher
accuracy, precision, recall, and F1 score compared to other traditional machine learning
models like Naive Bayes, logistic regression, and support vectormachines, demonstrating
its effectiveness in identifying cyberbullying.

3. Comparison with deep learning models: The performance of the proposed technique
is also compared to various deep learning models like long short-term memory (LSTM),
bidirectional long short-term memory (Bi-LSTM), and gated recurrent unit (GRU).
While Bi-LSTM achieves slightly higher accuracy, the proposed technique demonstrates
comparable performance with faster training and testing times, suggesting its potential
for real-time deployment.

4. Class imbalance mitigation:The use of the focal loss function specifically addresses the
class imbalance issue often present in cyberbullying datasets, where positive (bullying)
examples are outnumbered by negative ones. This leads to improved precision and recall
for identifying true cyberbullying instances.

5. Pre-trained GloVe embeddings: These capture the semantic relationships between
words, allowing the model to understand the context and nuances of text, a crucial
aspect for effectively identifying cyberbullying.

6. Focal loss function: This addresses the inherent class imbalance issue in cyberbullying
datasets, where positive (bullying) examples are outnumbered by negative ones. This
leads to improved precision and recall, accurately capturing true cyberbullying instances.

7. Deep learning architecture: We employ a specifically chosen architecture suitable for
text analysis, further enhancing the model’s ability to identify cyberbullying patterns.

We emphasize that this combined approach has not been widely explored in existing
literature for cyberbullying detection on Twitter. It goes beyond simply applying deep
learning to the problem and focuses on addressing specific challenges inherent to the
domain.

The subsequent sections of this article are structured as follows: ‘Background’ provides an
overview of cyberbullying, encompassing its definition, machine learning approaches, and
deep learning models. ‘Related Work’ delves into related work in cyberbullying detection.
‘Methodology’ outlines the methodology employed for this study, while ‘Experimental
Results’ details the experiments conducted and the results obtained. Hyperparameter
values of the proposed method is discussed in ‘Hyperparameter Tuning’, followed by the
presentation of the Discussion and Limitations in ‘Discussion and Limitations’. Lastly,
‘Conclusion and Future work’ encapsulates the study’s conclusions and outlines avenues
for future work.

BACKGROUND
In this section, we present a brief background regarding cyberbullying and the importance
for detecting it, machine learning approaches and deep learning models.
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Cyberbullying
Cyberbullying is a type of online harassment that is usually perpetrated by individuals or
groups through digital platforms to intimidate, threaten, or cause harm to others (Khairy,
Mahmoud & Abd El-Hafeez, 2021; Omar et al., 2021). This form of bullying involves the
use of electronic communication tools, such as social media, text messages, emails, or
forums, with the intention of humiliating, embarrassing, or bullying someone (Feinberg &
Robey, 2009). Cyberbullying encompasses various forms, such as name-calling, spreading
rumors or falsehoods, sharing humiliating photos or videos, making threats, and creating
fake profiles to impersonate or ridicule someone. Unlike traditional bullying, which is
usually confined to physical settings, cyberbullying can occur anytime and anywhere.
Furthermore, the anonymity provided by the internet can make it challenging to identify
the perpetrator (Sabbeh & Fasihuddin, 2023).

The consequences of cyberbullying can be grave and long-lasting, especially for young
people. Victims may experience fear, anxiety, and depression, and may withdraw from
social activities or even from school. In extreme cases, cyberbullying can contribute to
self-harm, suicide, or violence.

Detecting cyberbullying is crucial for several reasons, which include:

1. Early intervention: The early detection of cyberbullying can help prevent it from
escalating and becoming more severe. Early intervention can also assist the victim in
coping with the situation and accessing support.

2. Protection: Detecting cyberbullying can help safeguard victims from further harm.
If cyberbullying is detected, measures can be taken to remove the harmful content and
prevent further abuse.

3. Accountability: Cyberbullying is a type of abuse, and those who engage in it should
be held accountable for their actions. Detection can help identify the person responsible
for the abuse and hold them accountable for their actions.

4. Prevention: Detecting cyberbullying can help prevent future incidents. By identifying
patterns and risk factors, prevention strategies can be developed and implemented to
reduce the incidence of cyberbullying.

Machine learning
Machine learning (ML) algorithms analyze data to discern intricate patterns and
autonomously make decisions and predictions. With applications ranging from facial
and speech recognition to weather forecasting and recommender systems, ML offers
diverse solutions. ML models fine-tune parameters for improved performance, enabling
autonomous decision-making after training without constant reprogramming. This
transformative technology holds the potential to revolutionize various industries and
address complex problems, including its role in combating cyberbullying (Du & Swamy,
2014). When dealing with complex tasks, especially those involving coding, such as
cyberbullying detection, machine learning (ML) is an essential tool. It is worth noting that
there are two main approaches to ML: supervised and unsupervised learning.
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Table 1 The differences betweenmachine learning and deep.

Criteria Machine learning Deep learning

Approach to learning Based on statistical algorithms and models Based on artificial neural networks
Dataset size Typically used for smaller datasets Particularly suited for processing large datasets
Data type Can handle both structured and unstructured data Best suited for unstructured data, such as images, audio,

and text
Feature engineering Requires feature engineering, or the manual selection

and extraction of relevant features from the data
Can automatically learn relevant features through multiple
layers of neural networks

Hardware requirements Can be trained on a CPU Requires specialized hardware, such as GPUs, for training
and inference

Training time Generally faster to train than deep learning models Deep learning models can take longer to train due to the
increased complexity of the neural networks

Applications Can be used for a wide range of applications, including
classification, regression, and clustering

Primarily used for applications such as image
recognition, speech recognition, and natural language
processing

Data requirements Generally requires less data to achieve good performance Requires large amounts of data to achieve good
performance

Interpretability Tends to be more interpretable, as the models are often
based on simpler algorithms

Can be less interpretable, as the models can be highly
complex and difficult to understand

Model size Can work well with small to medium-sized models Can handle very large models with many layers
Efficiency Can be more efficient in terms of memory and

computational requirements
Can be more memory-intensive and computationally
expensive

Performance Can achieve good performance even with less complex
models

Can achieve state-of-the-art performance with highly
complex models

There are many machine learning classification models but, in our study, we used
five models (multinomial NB, logistic regression, SVC, decision tree and random forest
classifier).

Deep learning
Deep learning models have transformed the landscape of machine learning, demonstrating
remarkable outcomes across diverse applications such as speech recognition, image
classification, and natural language processing. This study will employ well-established
deep learning models for sequential data processing, including LSTM, GRU, and
Bi-LSTM (Marcellina, 2022).

The differences between machine learning and deep learning presented in a Table 1 can
be summarized as follows:

These are general differences between the two approaches, and there may be specific
cases where one approach is more appropriate than the other, depending on the problem
at hand.

RELATED WORK
The awareness of cyberbullying is increased inmany countries due to its effects explained in
this study. Accordingly, many researchers (Bozyiğit, Utku & Nasibov, 2021; Atoums, 2023)
presented studies using machine learning techniques to detect cyberbullying automatically.
Nevertheless, most of the research in this field were conducted for the English language.
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Figure 1 Cyberbullying detection model.
Full-size DOI: 10.7717/peerjcs.1961/fig-1

Additionally, the conducted studies generally used text mining techniques similar to
the studies of sentiment analysis. Modha et al. (2020) focused on the classification of
cyberbullying, a harmful online behavior that can cause distress and harm to individuals.
They conducted binary classification experiments on tweets with a bullying perspective to
determine if the user was being cyberbullied or not. The study reported an 81% accuracy
rate in binary classification experiments.

Freund & Schapire (1997) have made an effort to categorize whether or not tweets
are racist in nature. They gathered tweets from two categories (racist and non-racist),
categorizing them using a Naive Bayes classifier. The binary classification had a 76%
accuracy rate on average. Several techniques have been used to identify hate speech. Fortuna
& Nunes (2018) have provided a search method to choose papers on detecting hate speech
from the internet. Results and a number of the characteristics of the numerous highly
cited papers have been presented by the authors. Zhang et al. (2016) aimed to use deep
learning techniques to create a robust, universal cyberbullying detection algorithm. They
built a convolutional neural network (CNN) model using the word pronunciations from
the input documents as its features. The social media posts gathered from Twitter and
Formspring.me were used to evaluate the CNN model. According to the accuracy ratings,
pronunciation-based CNN works better than the standard CNN using randomly generated
word embedding.

METHODOLOGY
The main objective of this research is to assess and compare the effectiveness of machine
learning and deep learning algorithms in detecting cyberbullying on social networks. The
research methodology involves several steps, as depicted in Fig. 1.

Firstly, data was gathered from various social networks to establish a dataset for analysis.
Secondly, pre-processing techniques were employed to enhance the quality of the data and
eliminate any irrelevant or redundant information. Thirdly, feature extraction and word
embedding techniques were utilized to identify relevant features and represent the data in
a format that can be processed by machine learning algorithms.
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Table 2 The used datasets.

Dataset Source Size Cyberbullying Non-cyberbullying

DataSet1 Twitter 13,466 1,970 11,496
DataSet2 Kaggle 8,005 2,607 5,398

Afterwards, various classical machine learning algorithms and deep learning models
were implemented on the pre-processed data to classify instances of cyberbullying. The
classical machine learning algorithms used in this study include multinomial NB, logistic
regression (LR), support vector classifier (SVC), decision tree (DT), and random forest
classifier (RF). The deep learning models used in this study include long short-terms model
(LSTM), bidirectional long short-term memory (Bi-LSTM), and gated recurrent units
(GRU).

Finally, the performance of these algorithms was evaluated using various metrics such
as accuracy, precision, recall, and F1 score. These metrics provide a quantitative measure
of the effectiveness of different algorithms in detecting cyberbullying on social networks.

This research aims to compare the performance of classical machine learning and
deep learning algorithms in detecting cyberbullying on social networks by employing a
methodology that involves data collection, pre-processing, feature extraction, classification,
and evaluation metrics. The results of this study will offer valuable insights into the
effectiveness of different algorithms in detecting cyberbullying, thereby contributing to
the development of more effective methods for detecting and preventing cyberbullying on
social networks.

Data set
The study utilized two distinct datasets sourced from different social media platforms,
namely Twitter and Kaggle. The datasets were publicly available and were obtained from
Kaggle (https://www.kaggle.com/datasets/saurabhshahane/cyberbullying-dataset) (Shahane,
2023).

Table 2 presents details about the two datasets employed in this study. Dataset1 was
sourced from Twitter and contained 13,466 instances, out of which 1,970 were classified as
cyberbullying and 11,496 were classified as non-cyberbullying. Dataset2 was obtained from
Kaggle and consisted of 8,005 instances, with 2,607 instances classified as cyberbullying
and 5,398 instances classified as non-cyberbullying. The table displays the size of each
dataset and the number of instances categorized as cyberbullying and non-cyberbullying.
This information is essential in comprehending the composition and nature of the datasets
used in this research.

Addressing concerns about cherry-picking:

• Public availability:Wewant to reiterate that both datasets used in our study are publicly
available and easily accessible. Dataset1 was sourced directly fromTwitter, while Dataset2
was obtained from the open-source platform Kaggle. We provided the exact links for
transparency and reproducibility.
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• Relevance and rationale:Wechose these datasets specifically because they addressed our
research question: detecting cyberbullying on Twitter. Dataset1 directly captures real-
world Twitter data with labeled cyberbullying and non-cyberbullying instances, while
Dataset2 offered a broader, potentially diverse Twitter-related dataset for comparison.
• Non-exhaustive nature: We acknowledge that relying solely on two datasets has
limitations. However, exploring a variety of datasets was beyond the scope of this initial
study. We intend to investigate further in future work using additional and diverse
datasets to enhance generalizability.

Data preprocessing
To prepare the data for analysis, standard data preprocessing techniques were employed.
These techniques are crucial in improving the quality and relevance of the data and include
removing stop words, normalization, and stemming. Stop words are commonly used words
in a language such as ‘‘the’’ or ‘‘and’’, which do not carry significant meaning and can be
eliminated without affecting the overall understanding of the text. Normalization involves
converting all text to a standard format, such as converting all text to lowercase. Stemming
is the process of reducing words to their root form, for example, ‘‘jumping’’ and ‘‘jumped’’
are stemmed to ‘‘jump’’.

Furthermore, the process of converting a sequence of characters into a sequence of
tokens, known as tokenization or lexical analysis, was applied. This process involves
breaking down the text into individual words or tokens. Each group of text was then
converted into a series of tokens, which were then vectorized into a collection of integers
using techniques such as one-hot encoding or word embeddings. This vectorization
technique is critical in enabling machine learning algorithms to process and analyze the
text data effectively.

Feature extraction
This study employed feature extraction techniques to convert the text data into a
numerical format suitable for processing by machine learning algorithms. For classical
machine learning algorithms, the TF-IDF (Term Frequency-Inverse Document Frequency)
technique was utilized for feature extraction. TF-IDF is a commonly applied approach that
assigns aweight to each term in a document based on its frequencywithin the document and
inverse frequency across all documents. These resulting weights indicate the significance of
each term in the document and serve as features for the machine learning algorithms (Du
et al., 2023).

In this study, word embedding techniques were utilized for feature extraction in the deep
learning models. Word embedding enables the generation of numerical representations
of text data that capture the semantic meaning of words in a continuous vector space.
This approach proves valuable in capturing contextual information and the relationships
between words, which aids in distinguishing words with similarmeanings. For this purpose,
a one-hot representation was employed to represent all the words in the dataset as vectors.
These vector representations were then utilized as input for the embedding layer of all the
deep learning models in the study.
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Algorithms
Classical machine learning
Multinomial Naïve Bayes. The Multinomial Naïve Bayes classifier is a probabilistic
algorithm that is frequently utilized in natural language processing tasks, including
text classification. It is founded on Bayes’ theorem and assumes that the features are
conditionally independent given the class label. The equations for Multinomial Naïve
Bayes (Chebil et al., 2023) can be expressed as follows:

The equations for Multinomial Naïve Bayes can be expressed as:
• Prior probability:

P(c)=Nc/N (1)

where P(c) represents the prior probability of class c, Nc denotes the number of instances
of class c in the training data, and N is the total number of training instances.
• Likelihood probability:

P(xijc)= (Nxc+α)/(Nc+αd) (2)

where P(xi|c) denotes the likelihood probability of feature xi given class c, Nxc represents
the number of instances of class c that contain feature xi, Nc is the total number of instances
of class c, α is the smoothing parameter (usually set to 1), and d is the total number of
distinct features in the training data.
• Posterior probability:

P(cjd)=P(c)∗
∏

P(xijc) (3)

where P(c|d) represents the posterior probability of class c given the document d, P(c) is
the prior probability of class c, and

∏
P(xi|c) is the product of the likelihood probabilities

of all features xi given class c. The Multinomial Naïve Bayes classifier assigns the class label
with the highest posterior probability to a new instance.

The Multinomial Naïve Bayes classifier is a probabilistic algorithm used in natural
language processing tasks, such as text classification. It calculates the prior probability
of each class, representing the proportion of training instances that belong to that class.
Additionally, it computes the likelihood probability of each feature given the class, which
captures the probability of observing the feature given the class label. The likelihood
probability is calculated using a smoothing parameter, which helps to prevent zero
probabilities for features that were not observed in the training data. Finally, the classifier
uses the prior and likelihood probabilities to compute the posterior probability of each
class for a given instance and assigns the class with the highest probability to the instance.
The Multinomial Naïve Bayes classifier assumes that the features are independent given
the class, which simplifies the computation and makes it efficient for large datasets (Xu, Li
& Wang, 2017).

Logistic regression. Logistic regression is a commonly employed classification algorithm,
particularly suitable for two-class classification problems. It operates by mapping predicted
values to probabilities using a logistic sigmoid function. This function transforms any
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real value into another value within the range of 0 and 1. By doing so, logistic regression
provides a probabilistic interpretation of its predictions, enabling the estimation of the
likelihood of a given sample belonging to a particular class (Wright, 1995).

The sigmoid function is represented by Eq. (2):

S(z)= 1/(1+e(−z)) (4)

In this equation, S(z) represents the output, which lies between 0 and 1. The input to the
function is denoted as z, and e represents the base of the natural logarithm. To convert the
output values into discrete classes, a threshold value is chosen. Values above the threshold
are classified into class 1, while values below the threshold are classified into the second
class. Equations (3) and (4) illustrate this mapping process.

P ≥ 0.5;class= 1 (5)

P < 0.5;class= 0 (6)

Support vector machine (SVM). SVM, short for support vectormachine, is a highly popular
and extensively employed classifier in machine learning. It operates by identifying a
hyperplane within anN-dimensional space, where N represents the number of features (Wu
& Zhou, 2006). From the numerous potential hyperplanes available, SVM selects the one
with the largest margin. This approach aims to maximize the separation between data
points, enhancing the precision of future classifications. The equation representing the
optimal hyperplane can be expressed as follows:

w ·x+b= 0 (7)

where w is a vector perpendicular to the hyperplane (called the weight vector), x is the
feature vector of an instance, and b is the bias term that shifts the hyperplane away from
the origin.

The goal of SVM is tomaximize themargin, which is the distance between the hyperplane
and the closest data points of each class (called support vectors). The margin is given by:

margin= 2/||w|| (8)

where ||w|| is the Euclidean norm of the weight vector.

Decision tree. The decision tree is a supervised learning method suitable for both
classification and regression tasks, although it is commonly used for classification. It
employs a tree-like structure, where internal nodes correspond to dataset features, branches
represent decision rules, and leaf nodes represent outcomes. Decision tree learners rely
on labeled data, making them supervised learners. The classification algorithm of decision
trees follows a divide-and-conquer approach. The tree comprises arcs and leaves, where
each leaf denotes a classification class, and each arc represents a feature examined from the
training data (Myles et al., 2004).
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Figure 2 Pseudocode of decision tree algorithm.
Full-size DOI: 10.7717/peerjcs.1961/fig-2

Figure 2 presents the pseudocode outlining the decision tree algorithm. This algorithm
constructs the tree in a top-down manner through recursive steps. At each step, the
algorithm determines the feature that maximizes information gain, which quantifies how
effectively the feature separates the classes. The chosen feature becomes the root node of a
new subtree, and the data is divided based on its values. This recursive process is repeated
for each partition until a stopping criterion is met, such as reaching a minimum number of
instances in a leaf node or achieving a desired level of purity in the leaf nodes. The resulting
tree can be employed to classify new instances by traversing the tree from the root to a leaf
node and assigning the corresponding class label (Constâncio et al., 2023).

Decision trees have several advantages, including ease of interpretation, ability to handle
both categorical and continuous data, and ability to handle missing values. Additionally,
decision trees can capture non-linear relationships between features and can handle
interactions between features. However, decision trees can be prone to overfitting, where
the tree captures noise in the training data and does not generalize well to new data. To
address this issue, techniques such as pruning, regularization, and ensemble methods can
be employed. Overall, the decision tree algorithm is a powerful and interpretable method
for solving classification problems and can be an effective tool in detecting instances of
cyberbullying on social networks (Hambali et al., 2019).

Random forest. Random forests are for supervised machine learning, where there is a
labeled target variable. It is an improvement of the decision tree (Biau & Scornet, 2016).
During the training phase of a random forest algorithm, each tree is trained on a random
dataset, which is derived from the main training set using a statistical method called
bootstrapping. Bootstrapping involves randomly selecting instances from the training set
with replacement to create multiple subsets of data. The random forest algorithm uses
these subsets to train each decision tree in the ensemble. This process is known as bagging,
which stands for ‘‘bootstrap aggregating’’.
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After training, the random forest algorithm generates predictions by averaging the
predictions obtained from each decision tree in the ensemble. This averaging technique
helps to reduce the variance of the predictions and improves the overall accuracy of
the model. Additionally, the random forest algorithm can estimate the importance of
each feature in the dataset, which can be used to identify the most relevant features for
detecting instances of cyberbullying on social networks (Kilpatrick, Ćwiek & Kawahara,
2023). Figure 3 shows the random forests classifier algorithm

Deep learning algorithms

Long short-term memory (LSTM). Long short-term memory (LSTM) is a type of recurrent
neural network (RNN) that is specifically designed to address the vanishing gradient
problem frequently encountered in traditional RNNs. The vanishing gradient problem
arises when gradients become excessively small as they propagate through the network,
making it challenging for the network to learn long-term dependencies. LSTM overcomes
this issue by introducing a memory cell that can store information over time and a set of
gates that can regulate the flow of data into and out of the cell. The gates include sigmoid
activation functions that determine whether to allow information into the cell, whether to
forget it, and whether to output it Rehman et al. (2023).

LSTM has been successfully employed in various applications, including speech
recognition, language translation, and image captioning. However, LSTM can be
computationally expensive and may require a large number of parameters to be trained,
making it challenging to train on large datasets. Despite these challenges, LSTM is a powerful
tool for processing sequential data, and its ability to learn long-term dependencies makes
it particularly useful for natural language processing and text classification tasks (Durrani
et al., 2023).

The architecture of an LSTM network consists of multiple memory cells, which are
connected to each other using recurrent connections. The gates in each cell regulate
the flow of information, allowing the network to selectively process and store relevant
information over long time periods. During training, the LSTM network updates its
parameters using backpropagation through time, which involves computing the gradients
of the loss function with respect to the parameters at each time step and propagating them
backward through the network. This enables the network to learn the optimal parameters
for storing and processing sequential data.

In recent years, various modifications to the LSTM architecture have been proposed to
improve its performance and reduce its computational complexity. These modifications
include the use of attention mechanisms, which allow the network to selectively focus on
relevant parts of the input sequence, and the use of convolutional layers, which can capture
local dependencies in the input sequence. Additionally, techniques such as weight pruning
and quantization can be used to reduce the number of parameters in the network, making
it more efficient to train and deploy on resource-constrained devices (Yu et al., 2019).

LSTM network and traditional LSTM network steps are shown in Fig. 4 (Hu et al.,
2020).
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Figure 3 Random forests classifier algorithm.
Full-size DOI: 10.7717/peerjcs.1961/fig-3
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Figure 4 LSTM network and traditional LSTM network steps.
Full-size DOI: 10.7717/peerjcs.1961/fig-4

Bidirectional LSTM (Bi-LSTM). The bidirectional long short-term memory (Bi-LSTM)
neural network architecture is a variation of the long short-term memory (LSTM) model
specifically designed to capture contextual information from both the past and future in an
input sequence. It achieves this by processing the sequence in two directions: forward, from
the beginning to the end, and backward, from the end to the beginning. To accomplish this,
Bi-LSTM incorporates two separate hidden layers, one for each direction. This bidirectional
approach proves particularly valuable in tasks that heavily rely on understanding the context
of the input sequence.

By considering both past and future information, Bi-LSTM provides a comprehensive
representation of the input, making it well-suited for tasks such as speech recognition and
language translation. In speech recognition, Bi-LSTM aids in disambiguating words with
multiple possible pronunciations based on the surrounding context. Similarly, in language
translation, Bi-LSTM ensures the generation of grammatically correct and contextually
appropriate translations. The bidirectional nature of Bi-LSTM allows it to effectively
leverage the full context of the input sequence, enabling improved performance in various
natural language processing tasks (Ghanem, Erbay & Bakour, 2023).
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Figure 5 The diagram illustrates the flow of information in a bidirectional LSTM (Bi-LSTM).
Full-size DOI: 10.7717/peerjcs.1961/fig-5

Although Bi-LSTM offers advantages in capturing bidirectional context, it can be
computationally expensive and require a large number of trainable parameters, posing
challenges when training on large datasets. To address these issues, several modifications
to the Bi-LSTM architecture and training techniques have been proposed. Modifications
include the use of recurrent dropout to prevent overfitting and layer normalization to
improve training stability. Techniques like weight pruning and quantization can reduce
the number of parameters, making Bi-LSTM more efficient for training and deployment
on resource-constrained devices. The architecture of a Bi-LSTM network consists of two
LSTM layers, processing the input sequence in opposite directions. The outputs of both
layers are concatenated to form the final network output. During training, the parameters
of the Bi-LSTM network are updated using backpropagation through time, which involves
computing gradients of the loss function at each time step and propagating them backward
through the network (Azumah et al., 2023).

Recent advancements in Bi-LSTM include the incorporation of attention mechanisms,
allowing the network to selectively focus on relevant parts of the input sequence.
Convolutional layers have also been combined with Bi-LSTM to capture local dependencies
within the sequence.

Furthermore, it is worth noting that the effectiveness of Bi-LSTM can vary depending
on the task’s requirements for bidirectional processing. It is important to mention that all
the deep learning models used in this study incorporate an embedding layer and a dense
layer. Figure 5 illustrates the information flow in a bidirectional LSTM (Bi-LSTM), which
utilizes both forward and backward layers to process input sequences. This type of network
is commonly employed in sequence-to-sequence tasks, including text classification, speech
recognition, and forecasting.

By processing the input sequence in both directions, the Bi-LSTM can capture not only
the current context but also the past and future context. This capability enables the model
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to capture complex dependencies within the input sequence, resulting in more accurate
predictions. The bidirectional nature of the Bi-LSTM allows it to leverage a broader range
of information, enhancing its ability to understand and represent the sequential data
effectively (Ray, Rajeswar & Chaudhury, 2015; GeeksforGeeks, 2023).

Gated recurrent unit (GRU). GRU is a type of RNN that is similar to LSTM but has fewer
parameters and is therefore faster and easier to train. Like LSTM, GRU also introduces a
set of gates that can control the flow of information into and out of the network. However,
GRU has only two gates, a reset gate and an update gate, whereas LSTM has three gates. The
reset gate in GRU determines how much of the previous hidden state should be forgotten,
while the update gate determines how much of the current input should be added to
the current hidden state. GRU has been shown to achieve similar or better performance
than LSTM on many tasks, including language modeling, speech recognition, and image
captioning (Zhang, Robinson & Tepper, 2018). Figure 6 shows the gated recurrent unit
(GRU) and LSTM architecture (Darmawahyuni et al., 2019; Phi, 2020).

The proposed technique
The proposed technique performs text classification using a convolutional neural network
(CNN) with a bidirectional long short-term memory (LSTM) layer. The model is trained
on a dataset of tweets that have been preprocessed using various NLP techniques. The
GloVe word embeddings are used to represent the text data, and the focal loss function
is used as the loss function during training. The focal loss is a variant of the standard
cross-entropy loss that is designed to address the problem of class imbalance in binary
classification tasks. In typical cross-entropy loss, the model can become overwhelmed by
the dominant class during training, leading to suboptimal performance, especially when
dealing with imbalanced datasets. The focal loss aims to reduce the impact of well-classified
examples and focuses more on hard, misclassified examples, thereby improving themodel’s
ability to handle imbalanced data and improve overall accuracy.
The focal loss function is defined as follows (Cinar, Cetin Atalay & Cetin, 2023):

For each example in the training set, let:
y_true be the true label (0 or 1)
y_pred be the predicted probability of the positive class (between 0 and 1)
The focal loss is computed as:

focal_loss=−α_t ∗ (1−p_t )γ ∗ log (p_t ) (9)

where:

• α_t is a dynamically adjusted weighting factor that depends on the true label y_true. It
helps to give higher importance to the minority class (positive class) examples. α_t is
defined as α for positive examples (y_true= 1) and (1 - α) for negative examples (y_true
= 0).
• p_t is the predicted probability for the true class, i.e., p_t = y_pred if y_true = 1, and
p_t = 1 - y_pred if y_true = 0.
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Figure 6 The gated recurrent unit (GRU) algorithm.
Full-size DOI: 10.7717/peerjcs.1961/fig-6

• γ is a tunable focusing parameter that controls the rate at which the loss decreases for
well-classified examples. A higher value of γ means the loss decreases more slowly for
well-classified examples, emphasizing the impact of hard, misclassified examples.

The focal loss is capable of handling class imbalance more effectively than traditional
cross-entropy loss. By reducing the impact of well-classified examples, the focal loss can
improve the model’s ability to learn from challenging examples, which is particularly
beneficial when dealing with imbalanced datasets.

The main steps and pre-trained ‘glove.6B.100d.txt’ and focal loss can be summarized as
follows:

1. Import the required libraries, including pandas, numpy, tensorflow, and scikit-learn.
Also, import Tokenizer and pad_sequences from the Keras preprocessing module, and
import some functions from the NLTK library for text preprocessing.

2. Read the dataset from a CSV file using pandas. The dataset contains two columns: ‘Text’
and ‘oh_label’, where ‘Text’ is the tweet text and ‘oh_label’ is the one-hot encoded label
of the tweet.

3. Perform text preprocessing on the ‘Text’ column of the dataset. This includes removing
stop words and stemming the remaining words using the ISRIStemmer from the NLTK
library. The resulting preprocessed sentences are stored in a new DataFrame.

4. Remove any rows that contain missing values from the DataFrame.
5. Remove any duplicate rows from the DataFrame.
6. Split the dataset into training and testing sets using the train_test_split function from
scikit-learn. The testing set will be 20% of the total dataset.
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7. Tokenize the text data using the Tokenizer class from Keras. This converts the text into
sequences of integers, where each integer represents a unique word in the vocabulary.

8. Pad the sequences to the same length using the pad_sequences function from Keras.
This ensures that all sequences have the same length, which is required for input into
the neural network.

9. Load pre-trained GloVe word embeddings from a text file. The file ‘glove.6B.100d.txt’
contains word vectors for a vocabulary of 400,000 words trained on 6 billion tokens.

10. Create an embeddingmatrix thatmaps eachword in the vocabulary to its corresponding
word vector in the GloVe embeddings.

11. Define the model architecture using the Sequential API fromKeras. Themodel consists
of an embedding layer, a 1D convolutional layer, a max pooling layer, a bidirectional
LSTM layer, a dense layer, a dropout layer, and a final dense layer with a sigmoid
activation function.

12. Compile the model using the Adam optimizer with a learning rate of 0.001 and the
focal loss function. The focal loss function is defined as a nested function that takes in
the true labels and predicted probabilities as inputs and returns the focal loss.

13. Train the model using the fit method of the model object. The training data and labels
are passed as inputs, along with the number of epochs, batch size, and validation split.

14. Evaluate the model on the testing set using the predict method of the model object. The
predicted probabilities are rounded to the nearest integer to obtain binary predictions.

15. Calculate various evaluation metrics, including the confusion matrix, classification
report, accuracy, precision, recall, and F1 score.

16. Calculate the false positive rate, true positive rate, and area under the ROC curve
(AUC) and plot the ROC curve using the roc_curve and auc functions from scikit-learn
and the matplotlib library.

Figure 7 shows the pseudocode of the proposed technique.
The role of the proposed methodology and its performance advantages can be

summarized as follows:
Clarifying the role of the proposed methodology
• We have added a dedicated section explicitly highlighting the key contributions of the
proposed technique:
• Combined use ofGloVe embeddings and Focal Loss: Emphasizing that this combination,
while not widely explored in cyberbullying detection, effectively leverages semantic
relationships between words (GloVe) and addresses class imbalance (focal loss), leading
to superior performance.
• Specific deep learning architecture: We have described the chosen architecture’s
suitability for text analysis and cyberbullying detection, further enhancing its ability
to identify patterns.

El Koshiry et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1961 18/33

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1961


Figure 7 The pseudocode of the proposed technique.
Full-size DOI: 10.7717/peerjcs.1961/fig-7

Quantifying performance advantages

• We have expanded the comparison table to include additional metrics, particularly
the F1 score, which balances precision and recall, providing a more comprehensive
evaluation.
• We have added a discussion section directly comparing the proposed technique’s
performance to existing results on the Twitter and Kaggle datasets, highlighting its
superior accuracy, precision, recall, and F1 scores.
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Addressing generalizability
•Wehave acknowledged the potential limitations of using specific datasets and discussed

the importance of further evaluation on diverse datasets to assess generalizability.

Evaluation metrics
While classification accuracy is often a primary metric in cyberbullying detection, it can be
misleading in the presence of imbalanced class distributions (Khairy et al., 2023). To obtain
a more reliable assessment, we complement accuracy with additional metrics specifically
designed to handle such scenarios: precision, recall, and F1 score.

Where:

• Accuracy: Measures the overall proportion of correct predictions (both cyberbullying
and non-cyberbullying).
• Precision: Measures the proportion of cyberbullying predictions that were actually
correct.
• Recall:Measures the proportion of all actual cyberbullying instances that were correctly
identified.
• F1 score: Combines precision and recall, providing a balanced measure of performance.

The equations for all the metrics are presented as follows (Ali & O’Sullivan, 2020):

Accuracy=
TP+TN

TP+TN+FP+FN
(10)

Precision=
TP

(TP+FP)
(11)

Recall=
TP

(TP+FN)
(12)

F1_Score=
(2×Precision×Recall)
(Precision+Recall)

. (13)

EXPERIMENTAL RESULTS
To initiate our analysis on the two datasets, we utilized five conventional machine learning
algorithms, which were multinomial NB, logistic regression, support vector classifier
(SVC), decision tree, and random forest classifier. We further introduced three deep
learning models, namely long short-term memory (LSTM), bidirectional long short-term
memory (Bi-LSTM), and gated recurrent units (GRU). These models are compared with
our proposed technique. The models’ performance was evaluated using diverse evaluation
metrics, including accuracy, precision, recall, and F1 score. The goal was to provide a
comprehensive evaluation of the models’ efficiency in detecting instances of cyberbullying
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Table 3 Experimental results for Twitter dataset.

Twitter Machine learning Deep learning Proposed technique

Dataset NB LR SVC DT RF LSTM Bi-LSTM GRU Focal loss

Accuracy 85.3 90.7 92 90.3 90.6 90.7 91.8 91.3 99.00
Precision 85.1 80.3 81.5 69.8 83.6 67,5 72.06 73.3 86.72
Recall 5.6 52.5 61.9 65.6 48.4 71.8 72.8 65.2 74.67
F1 Score 10.4 63.5 70.4 67.6 61.3 69.9 72.4 69.0 73.88
Training time (s) 0.02 1.2 44.6 7.5 13.5 526.43 906.32 612.24 516.784
Testing time (s) 0.11 0.16 5.3 0.11 0.4 4.67 8.64 5.27 4.814

Notes.
The best performing results are shown in bold.

Table 4 Experimental results for machine learning and deep learning algorithms for Kaggle dataset.

Kaggle Machine learning Deep learning Proposed technique

Dataset NB LR SVM DT RF LSTM Bi-LSTM GRU Focal loss

Accuracy 71.2 85.2 81.2 73.6 77.1 77.1 80.5 76.4 97.00
Precision 96.6 76.6 79.7 58.1 82.4 65.6 69.5 60.4 92.72
Recall 12.3 52.4 52.9 54.4 33.4 63.9 64.7 75.3 78.88
F1 Score 18.6 62.2 63.6 65.2 47.6 64.7 67.0 67.0 85.54
Training time (s) 0.03 2.07 12.53 7.8 23.41 4114.3 6626.75 4163.93 614.735
Testing time (s) 0.01 0.23 5.16 0.20 0.46 13.53 42.09 11.52 4.238

Notes.
The best performing results are shown in bold.

Figure 8 Experimental results for machine learning and deep learning algorithms for Twitter dataset.
Full-size DOI: 10.7717/peerjcs.1961/fig-8

on social media platforms. Tables 3 and 4 and Figs. 8 and 9 display the results of these
assessments.

As shown in Table 3 and Fig. 8, the accuracy, precision, recall, and F1 score metrics were
used to evaluate the performance of the algorithms on the Twitter dataset. The detailed
analysis highlighting the strengths of Focal Loss, particularly in comparison with deep
learning algorithms can be summarized as follows:
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Figure 9 Experimental results for machine learning and deep learning algorithms for Kaggle dataset.
Full-size DOI: 10.7717/peerjcs.1961/fig-9

Accuracy:
• Focal Loss achieved 99.00% accuracy, surpassing all other models, including deep

learning algorithms. This suggests its superior ability to distinguish between classes and
make correct predictions.

Precision:
• While LR holds the highest precision, Focal Loss’s 86.72% precision remains

remarkably high, indicating its strength in minimizing false positives. This is crucial
in domains where false alarms carry significant costs.

Recall:
• Focal Loss achieves a respectable 74.67% recall, not far behind LSTM and Bi-LSTM.

This demonstrates its effectiveness in identifying true positives, essential in scenarios where
missing crucial cases is unacceptable.

F1 Score:
• While Bi-LSTM edges out Focal Loss in F1 score, Focal Loss’s 73.88% remains

commendable, reflecting a balanced performance in terms of precision and recall.
Training time:
• Focal Loss’s training time (516.784 s) is comparable to deep learning algorithms,

suggesting it doesn’t introduce undue computational burdens despite its superior accuracy.
Testing time:
• Focal Loss excels in testing time (4.814 s), outperforming LSTM, Bi-LSTM, and GRU.

This implies its efficiency in real-world applications, delivering swift predictions without
compromising accuracy.

Key takeaways:
• Accuracy champion: Focal Loss stands out with its unparalleled 99.00% accuracy,

suggesting its exceptional ability to make correct predictions.
Balanced precision and recall: It maintains a strong balance between precision and

recall, suitable for tasks requiring both high accuracy and sensitivity to true positives.
Efficient testing: Its swift testing time makes it a practical choice for real-time

applications.
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Competitive training time: While its training time is longer than traditional models, it
aligns with deep learning algorithms, suggesting it is not computationally prohibitive.

Focal Loss emerges as a compelling choice, particularly when accuracy is paramount. It
delivers remarkable accuracy, often surpassing deep learning algorithms, while maintaining
competitive training and testing times. Its ability to balance precision and recall further
strengthens its position as a versatile and powerful model.

As shown in Table 4 and Fig. 9, the detailed analysis of the model performances,
highlighting key takeaways and emphasizing the strengths of the proposed Focal Loss
technique can be summarized as follows:

Accuracy:

• Focal Loss stands out with 97.00% accuracy, significantly outperforming all other
models, demonstrating its superior ability to make correct predictions.
• Some deep learning models (LSTM, Bi-LSTM) achieve moderate accuracy, but Focal
Loss surpasses them.

Precision:

• Focal Loss achieved impressive 92.72% precision, indicating its strength in minimizing
false positives, a crucial factor in cost-sensitive domains.
• LR and RF also exhibit high precision, but Focal Loss maintains a clear advantage.

Recall:

• Focal Loss’s recall of 78.88% is respectable, effectively identifying true positives while
balancing false negatives.
• Bi-LSTM and GRU have slightly higher recall, but Focal Loss maintains a strong overall
performance.

F1 Score:

• Focal Loss achieves a commendable F1 score of 85.54%, reflecting a well-balanced
performance between precision and recall.
• LSTM, Bi-LSTM, and GRU offer similar F1 scores, but Focal Loss edges them out.

Training time:

• Deep learning models generally require longer training times compared to traditional
machine learning algorithms.
• Focal Loss’s training time is notably shorter than LSTM, Bi-LSTM, and GRU, making
it more computationally efficient.

Testing time:

• Focal Loss excels in testing time, outperforming all deep learning models, suggesting its
suitability for real-time applications.
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Figure 10 Average accuracy of all machine learning algorithms.
Full-size DOI: 10.7717/peerjcs.1961/fig-10

Key takeaways:

• Focal Loss demonstrates exceptional accuracy, often surpassing both traditionalmachine
learning and deep learning algorithms.
• It strikes a strong balance between precision and recall, making it versatile for various
tasks.
• It offers competitive training and testing times, particularly compared to deep learning
models.

Focal Loss emerges as a powerful technique, delivering outstanding accuracy without
compromising efficiency. Its performance surpasses traditional machine learning
algorithms and often outperforms deep learning models, establishing itself as a compelling
choice for tasks demanding high accuracy and balanced precision–recall trade-offs.

Figures 10 and 11 depict the average accuracy of all algorithms used for the two datasets.
The accuracy losses of the three deep learning models are presented in Figs. 12 and 13
Figures 14 and 15 provide a visual representation of the algorithms’ performance in terms

of training and prediction time. These figures highlight the trade-off between accuracy
and computational resources, with deep learning models generally requiring more time
for training and prediction, while classical machine learning algorithms may have faster
training and testing times, but may not achieve the same level of accuracy as deep learning
models.

The results obtained suggest that classical machine learning models may be a better
option than deep learning models when the amount of data available for training is limited.
However, the choice of classifier ultimately depends on the dataset being used and the
specific requirements of the task. It is important to carefully consider the characteristics of
the dataset, such as the size, complexity, and nature of the data, before selecting a machine
learning approach. For instance, if the dataset is small or the features are relatively simple,
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Figure 11 Average accuracy of all deep learning algorithms.
Full-size DOI: 10.7717/peerjcs.1961/fig-11

Figure 12 Accuracy loss of (A) LSTM, (B) Bi-LSTM and (C) GRUmodels for Dataset1.
Full-size DOI: 10.7717/peerjcs.1961/fig-12

Figure 13 Accuracy loss of (A) LSTM, (B) Bi-LSTM and (C) GRUmodels for Dataset2.
Full-size DOI: 10.7717/peerjcs.1961/fig-13
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Figure 14 Training-prediction time for classical machine learning algorithms.
Full-size DOI: 10.7717/peerjcs.1961/fig-14

Figure 15 Training-prediction time for deep learning algorithms.
Full-size DOI: 10.7717/peerjcs.1961/fig-15

classical machine learning algorithms may be more appropriate. On the other hand, if
the dataset is large and complex, deep learning models may provide better performance.
Therefore, selecting the appropriate machine learning approach involves balancing the
trade-offs between accuracy, computational resources, and the characteristics of the dataset.

HYPERPARAMETER TUNING
The performance of machine learning models is significantly influenced by the careful
selection of hyperparameters. These adjustable settings control various aspects of the
model architecture, learning process, and optimization. Table 5 outlines the specific
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Table 5 The hyperparameter values employed of our findings.

Hyperparameter Value Description

num_words 10,000 Maximum number of words to keep based on word
frequency.

oov_token <OOV> Token to represent out-of-vocabulary words.
maxlen 100 Maximum length of sequences (padded/truncated).
embedding_dim 100 Dimensionality of the word embeddings.
input_dim num_words Size of the vocabulary.
output_dim 100 Dimensionality of the output space.
trainable False Whether the embedding layer is trainable.
filters 128 Number of filters in the convolutional layer.
kernel_size 5 Size of the convolutional kernel.
pool_size 4 Size of the max pooling window.
units 64 Number of units in the LSTM and dense layers.
dropout_rate 0.5 Fraction of input units to drop for dropout.
lr 0.001 Learning rate for the Adam optimizer.
batch_size 32 Number of samples per gradient update during training.
epochs 10 Number of epochs for training.

Notes.
The best performing results are shown in bold.

hyperparameter values employed in this study, ensuring transparency and reproducibility
of our findings. It provides a comprehensive overview of the key parameters that shaped
model training and behavior, enabling a deeper understanding of the experimental setup
and potential avenues for further exploration or optimization.

Key insights from the table:

• Tokenization and sequence length: The model considers a vocabulary of 10,000 most
frequent words, with out-of-vocabulary words represented as <OOV>. Text sequences
are truncated or padded to a maximum length of 100 words, ensuring consistent input
dimensions for the model.
• Embedding layer: Word embeddings capture semantic relationships between words,
crucial for text understanding. The model employs 100-dimensional pre-trained
embeddings, kept non-trainable to leverage prior knowledge and reduce computational
overhead.
• Convolutional layer: The convolutional layer extracts local features from the embedded
sequences, using 128 filters with a kernel size of 5.
• Recurrent layer: The LSTM layer processes sequences of information, capturing long-
range dependencies within the text. It uses 64 units to model these relationships.
• Regularization: Dropout with a rate of 0.5 is applied to prevent overfitting, randomly
dropping connections between neurons during training.
• Optimizer and training: The Adam optimizer efficiently updates model weights, using
a learning rate of 0.001. Training proceeds for 50 epochs, with 32 samples processed per
update.
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DISCUSSION AND LIMITATIONS
While our proposed technique for detecting cyberbullying using pre-trained GloVe
embeddings and the focal loss function has shown promising results, there are potential
limitations that should be acknowledged. These limitations can help guide future research
efforts and improvements in this area.

1. Generalizability: The proposed technique may have limitations in terms of
generalizability to different domains or platforms. The effectiveness of the model
heavily relies on the quality and relevance of the pre-trained GloVe embeddings, which
are trained on a specific corpus. If the target data differs significantly from the training
data used for GloVe embeddings, the performance of the model may be impacted.

2. Data bias: The performance of any cyberbullying detection model is influenced by the
quality and representativeness of the training data. If the training data contains biases or
lacks diversity, the model may be less effective in capturing the nuances and variations
of cyberbullying instances in real-world scenarios. Addressing data bias and ensuring a
diverse and balanced dataset is crucial for improving the model’s performance.

3. Class imbalance: While the focal loss function helps mitigate the challenges posed by
class imbalance, it may not completely overcome the issue, especially in cases where the
class distribution is highly imbalanced. Balancing the dataset or exploring alternative
methods to handle class imbalance, such as data augmentation or sampling techniques,
could further improve the model’s performance.

4. Interpretability: Deep learning models, including the proposed approach, are often
considered black-box models due to their complex architectures. Interpreting the
decision-making process of the model and identifying the specific features or words
that contribute to cyberbullying detection can be challenging. Developing techniques
to enhance the interpretability of the model’s predictions would be valuable for
understanding the underlying factors driving the detection process.

5. Computational complexity: The use of deep learning models, particularly LSTM,
Bi-LSTM, and GRU, introduces significant computational complexity compared to
traditional machine learning algorithms. The training and testing times for these models
are considerably higher, which could limit their practicality in real-time or resource-
constrained environments. Exploring techniques to optimize the computational
efficiency without compromising the model’s performance would be beneficial.

CONCLUSION AND FUTURE WORK
This study aimed to compare the performance of classical machine learning algorithms
and deep learning models in identifying instances of cyberbullying. The data underwent
pre-processing, and performance was evaluated using accuracy, precision, recall, and F1
score metrics. The results showed that the proposed technique achieved high accuracy,
precision, and F1 score values, with the Focal Loss algorithm achieving the highest accuracy
of 99% and the highest precision of 86.72%. However, recall values were relatively low for
most algorithms, indicating that they struggled to identify all relevant data. The proposed
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technique used a convolutional neural network with a bidirectional long short-term
memory layer, trained on a pre-processed dataset of tweets using GloVe word embeddings
and the focal loss function, achieving high accuracy, precision, and F1 score values. The
GRU algorithm achieved the highest accuracy of 97.0%, and the NB algorithm achieved
the highest precision of 96.6%. The false positive rate, true positive rate, and area under
the ROC curve were also calculated.

Future work could involve incorporating different deep learning models, developing
improved tools for reporting and tracking cyberbullying, greater collaboration between
social media platforms and law enforcement, and continued education and resources for
addressing cyberbullying.
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