Table 3. Experimental results for Twitter dataset.
| Machine learning | Deep learning | Proposed technique | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Dataset | NB | LR | SVC | DT | RF | LSTM | Bi-LSTM | GRU | Focal loss |
| Accuracy | 85.3 | 90.7 | 92 | 90.3 | 90.6 | 90.7 | 91.8 | 91.3 | 99.00 |
| Precision | 85.1 | 80.3 | 81.5 | 69.8 | 83.6 | 67,5 | 72.06 | 73.3 | 86.72 |
| Recall | 5.6 | 52.5 | 61.9 | 65.6 | 48.4 | 71.8 | 72.8 | 65.2 | 74.67 |
| F1 Score | 10.4 | 63.5 | 70.4 | 67.6 | 61.3 | 69.9 | 72.4 | 69.0 | 73.88 |
| Training time (s) | 0.02 | 1.2 | 44.6 | 7.5 | 13.5 | 526.43 | 906.32 | 612.24 | 516.784 |
| Testing time (s) | 0.11 | 0.16 | 5.3 | 0.11 | 0.4 | 4.67 | 8.64 | 5.27 | 4.814 |
Notes.
The best performing results are shown in bold.