|
Result: Prediction of delamination size. |
|
Input: Sensor features with ground truth
. |
|
Output: Stacking ensemble E. |
|
1 Step 1: Develop base-level models CLF on E
|
|
2 Perform n-fold cross-validation on base level models |
| 3 clf1 = svr (mp, np) |
| 4 clf2 = ExtraTreeRegressor (mp, np) |
| 5 clf3 = GradientBoostingRegressor (mp, np) |
| 6 clf4 = AdaBoostRegressor (mp, np) |
| 7 clf5 = DecisionTreeRegressor (mp, np) |
| 8 Step 2: Construct the level-on data M
|
| 9
|
| 10
= {clf1(mp), clf2(mp), clf3(mp), clf4(mp), clf5(mp)} |
| 11 Return E comprising of CLF models |