Skip to main content
. 2024 Mar 27;10:e1955. doi: 10.7717/peerj-cs.1955

Algorithm 6. Stacking ensemble model.

Result: Prediction of delamination size.
Input: Sensor features with ground truth (mp,np)p=1x.
Output: Stacking ensemble E.
1 Step 1: Develop base-level models CLF on E
2 Perform n-fold cross-validation on base level models
3      clf1 = svr (mp, np)
4      clf2 = ExtraTreeRegressor (mp, np)
5      clf3 = GradientBoostingRegressor (mp, np)
6      clf4 = AdaBoostRegressor (mp, np)
7      clf5 = DecisionTreeRegressor (mp, np)
8 Step 2: Construct the level-on data M
9      M={m^p,np}p=1x,where
10      m^p = {clf1(mp), clf2(mp), clf3(mp), clf4(mp), clf5(mp)}
11 Return E comprising of CLF models