Skip to main content
. 2024 Apr 17;10:e1991. doi: 10.7717/peerj-cs.1991

Table 1. Parameters of each layer in CNN-GMM.

Layer name Number of filters Size of feature map Size of kernel Stride
1. Grouped convolution 1 3 groups with 4 filters in each 222 * 222 * 12 [3 3] [1 1]
ReLU + Batch normalization
2. Grouped convolution 2 12 groups with 4 filters in each 220 * 220 * 48 [3 3] [1 1]
ReLU + Batch normalization
Max pooling 1 108 * 108 * 48 [5 5] [2 2]
3. Grouped convolution 3 48 groups with 4 filters in each 106 * 106 * 192 [3 3] [1 1]
Relu + Batch normalization
4. Grouped convolution 4 192 groups with 4 filters in each 104 * 104 * 768 [3 3] [1 1]
ReLU + Batch normalization
Max pooling 2 51 * 51 * 768 [3 3] [2 2]
5. Grouped convolution 5 786 groups with 2 filters in each 49 * 49 * 1,536 [3 3] [1 1]
ReLU + Batch normalization
6. Grouped convolution 6 1,536 groups with 2 filters in each 47 * 47 * 3,072 [3 3] [1 1]
ReLU + Batch normalization
Max pooling 3 23 * 23 * 3,072 [3 3] [2 2]
7. Grouped convolution 7 3,072 groups with 1 filter in each 21 * 21 * 3,072 [3 3] [1 1]
ReLU + Batch normalization
8. Grouped convolution 8 3,072 groups with 1 filter in each 19 * 19 * 3,072 [3 3] [1 1]
ReLU + Batch normalization
Max pooling 4 9 * 9 * 3,072 [3 3] [2 2]
9. Fully connected layer 1 * 400
Dropout (0.4) + Batch normalization
10. GMM fully connected layer 1 * 400
Batch normalization
11. GMM fully connected layer 1 * 250
Batch normalization
12. GMM fully connected layer 1 * 2
SoftMax layer
Classification layer