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ABSTRACT
Kidney disease is a devastating condition affecting millions of people worldwide, where over 
100,000 patients in the United States alone remain waiting for a lifesaving organ transplant. 
Concomitant with a surge in personalized medicine, single-gene mutations, and polygenic risk 
alleles have been brought to the forefront as core causes of a spectrum of renal disorders. With the 
increasing prevalence of kidney disease, it is imperative to make substantial strides in the field of 
kidney genetics. Nephrons, the core functional units of the kidney, are epithelial tubules that act as 
gatekeepers of body homeostasis by absorbing and secreting ions, water, and small molecules to 
filter the blood. Each nephron contains a series of proximal and distal segments with explicit 
metabolic functions. The embryonic zebrafish provides an ideal platform to systematically dissect 
the genetic cues governing kidney development. Here, we review the use of zebrafish to discover 
nephrogenesis genes.
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1. Introduction: a cellular tour of the human 
kidney

In humans, the metanephric kidneys are a pair of 
vital organs that are situated in the back of the 
abdomen and nestled beneath the ribcage on each 
side of the spine.1 The kidney is responsible for 
performing numerous physiological tasks such as 
ion homeostasis, maintenance of acid–base bal
ance, regulation of blood pressure, hormone pro
duction, and clearance of toxins, among others.1,2 

On average, each adult human kidney is comprised 
of approximately 1 million microscopic functional 
units called nephrons.3 The nephron consists of 
two core compartments, the renal corpuscle 
(blood filter) and an epithelial tubule, which con
nects to a collecting duct.4 Broadly, blood flows 
through the afferent arteriole into the glomerulus, 
which encases tiny capillaries that act as 
a molecular sieve. The resulting fluid, or filtrate, 
undergoes transit through the tubule and plumbs 
into a highly arborized collecting system for waste 
excretion. The multipartite anatomy of the nephron 
allows for stepwise modification of the filtrate, 
where essential nutrients are reabsorbed, and 
waste products are concentrated (or retained) to 

produce urine. Nephrons are surrounded by renal 
stroma, which provide a supportive framework by 
synthesizing extracellular matrix and growth fac
tors. The renal stroma is a heterogenous interstitial 
population that consists of resident fibroblasts, vas
culature, immune cells, and other cell types yet to 
be resolved,4 whose developmental origins are 
under ongoing study.5 In the following introduc
tory sections, we discuss the unique functions of 
each nephron region in more detail.

1.1. Glomerulus: the head of the nephron

As mentioned previously, the nephron is 
a functional unit of the kidney and depends on 
a diverse inventory of differentiated cells to per
form specialized physiological tasks.4 Situated at 
the proximal end of the nephron, the glomerulus 
is a sphere-shaped filtering structure that serves as 
the first point of entry via an afferent arteriole.6,7 

The glomerulus encases a tuft of capillaries that 
drain into an efferent arteriole. Capillaries are 
comprised of endothelial cells that have fenestra
tions, approximately 70–100 nm in diameter, to 
allow the movement of larger molecules without 
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membrane transporters. A collection of mesangial 
cells provides a supportive matrix around the 
glomerular microvasculature by secreting soluble 
factors. Mesangial cells send essential signals to 
podocytes, which are cells with interdigitating foot 
processes that are situated on the glomerular 
basement membrane, where they enwrap capil
laries to form the slit diaphragm. Cell surface 
proteins like Nephrin (NPHS1) and Podocin 
(NPHS2) help to create the slit diaphragm, 
which serves to prevent passage of macromole
cules, like plasma proteins. Insults to the slit dia
phragm results in progressive glomerular disease 
and proteinuria, whereas damaged podocytes are 
believed to have a limited regenerative capacity.8 

Interestingly, parietal epithelial cells, which line 
the glomerular capsule, are believed to play 
a reparative role upon acute injury. Lineage tra
cing experiments performed in mice suggest par
ietal epithelial cells differentiate into podocytes 
and can ameliorate proteinuria and preserve 
renal function, though this remains a highly scru
tinized and controversial topic.9–13

1.2. Proximal tubules: the major site of 
reabsorption

After passage through the glomerulus, the filtrate 
then transits to the nephron tubule, which in 
humans is compartmentalized into a series of prox
imal, intermediate (or loop of Henle), and distal 
segments which join to a collecting duct.14 Each 
segment expresses a unique molecular signature 
defined by distinct solute transporters and tight 
junction proteins.15 The proximal convoluted 
tubule (PCT or S1-S2 segments) and the proximal 
straight tubule (PST, which most closely corre
sponds to the S3 segment) perform the bulk of the 
reabsorption activities and undergo transepithelial 
transport of glucose, solutes, amino acids, and low 
molecular weight proteins.16,17 Collectively, proxi
mal tubule cells also play a major role in regulating 
acid–base balance by reabsorption of 
bicarbonate.16,17 Another role unique to the prox
imal tubules involves glucose reabsorption via 
sodium-glucose cotransporters (SGLT).16,17 

Specifically, the PCT expresses SGLT2, and the 
PST expresses SGLT1, which are encoded by 

SLC5A2 and SLC5A1, respectively.18–21 In terms 
of ultrastructure, the PCT cells have a wider brush 
borders, denser microvilli, and more endocytic 
vesicles as compared to PST cells.16,17

1.3. Loop of Henle: initiating a concentration 
gradient

Directly downstream of the PST is the loop of 
Henle, which functions to initiate an osmotic gra
dient via a countercurrent multiplication 
mechanism.22,23 The loop of Henle is subdivided 
into three regions: the thin descending limb, thin 
ascending limb, and thick ascending limb (TAL), 
also referred to as the distal straight tubule.22,23 The 
thin limbs are mutually known as the intermediate 
segment, are identified by aquaporin-1 expression, 
and perform transport of Na+, urea, and water.24 In 
contrast, the TAL is impermeable to water and 
expresses apical channel proteins that transport 
Na+, Cl-, and K+ ions. Interestingly, the TAL is 
believed to contain two subtypes of cells: 1) rough 
surfaced cells (R cells) that exhibit high apical K+ 
conductance and weak basolateral Cl- conduc
tance 2) smooth surfaced cells (S cells) that exhibit 
low apical K+ conductance and high basolateral Cl- 
conductance.23 To this point, NKCC2 (Na-K-Cl 
cotransporter) is present on the apical surface of 
both R and S cells, however KCNJ1 (K+ channel) 
expression appears absent in S cells.23 Our current 
understanding of the cellular heterogeneity of the 
TAL remains extremely limited and additional stu
dies are needed to dissect unique molecular pheno
types and functions that further define these cell 
types.

1.4. Distal tubule: fine tuning the filtrate and 
drainage to the collecting duct

Adjoining the loop of Henle is the distal tubule that 
functions to fine tune the filtrate by balancing Na+, 
K+, Ca2+, and Mg2+.25 The distal tubule is parti
tioned into two segments: the distal convoluted 
tubule (DCT) and connecting tubule (CNT).25 

The DCT reabsorbs Na+ mainly by employing the 
apical channel protein NCC, which is encoded by 
the SLC12A3 gene. Further, the DCT cells have 
abundant mitochondria, extensive basolateral 
infoldings, apically shifted nuclei, and high 
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Na+K+ATPase activity as compared to the CNT 
cells, which are less metabolically involved.25 Both 
the DCT and CNT respond to secretion of the 
steroid hormone aldosterone by mineralocorticoid 
receptors.

The distal tubule attaches to the collecting duct 
(CD) and is responsible for water reabsorption and 
helps maintain acid–base balance by action of 
interspersed intercalated cells and principal cells. 
Intercalated cells are present in both the CNT and 
CD, reabsorb small amounts of residual bicarbo
nate, and excrete ammonium. Defining ultrastruc
tural features of these cells include copious 
mitochondria, irregular apical microvilli, and 
absence of a central cilium.26 Principal cells of the 
collecting duct epithelium constitutively express 
water channels, AQP2 and AQP3, which aid in 
urine concentration.27,28 Taken together, the 
nephron exhibits tremendous cellular and func
tional diversity. With the advent of single-cell 
sequencing technologies, we will continue to elabo
rate a greater understanding of the molecular sig
natures and significance of these different nephron 
cell types.

2. Developmental origins: congenital anomalies 
of the kidney and urinary tract

Congenital anomalies of the kidney and urinary 
tract (CAKUT) occur in 1 in 500 births, lead to 
poor clinical outcomes, and are at the root of pedia
tric end-stage renal disease.29–33 To this end, it is of 
utmost importance to fully understand the biologi
cal mechanisms underlying these conditions. 
CAKUT can manifest as an assortment of renal 
tract malformations of the kidney, ureter, bladder, 
and urethra and exhibit a broad spectrum of phe
notypes often with variable penetrance. Perhaps the 
most severe class of these disorders is renal agen
esis, which entails the complete absence of one or 
both kidneys upon birth. Another subtype encom
passes renal hypoplasia where a reduced number of 
nephrons are formed during embryonic develop
ment commonly resulting in decreased kidney 
mass. Mild renal hypoplasia can still pose a threat 
later in adult life, as reduced nephron endowment 
predisposes patients to hypertension and chronic 
kidney disease.34

CAKUT may emerge as isolated incidents via de 
novo mutations or as part of a familial syndrome 
with extrarenal phenotypes such as neurodevelop
mental and cardiovascular defects.35 Despite the 
diverse spectrum of these renal anomalies, they all 
stem from one commonality: faulty or absent 
nephron function due to dysregulation of develop
mental gene networks, which involve transcription 
factors, signaling molecules, and growth factors. 
There are sequential steps fueled by genetic pro
grams to facilitate nephrogenesis such as ureteric 
bud induction, mesenchymal-to-epithelial transi
tion (MET), renal branching morphogenesis, and 
nephron segment patterning and elongation.36,37 

Previous studies in mice indicate perturbing any 
of these processes can mirror clinical features 
observed in CAKUT.38 To date, more than 50 
CAKUT-causing genes have been identified.39,40 

Although it is well-known single-gene mutations 
can initiate renal pathogenesis, overall poor geno
type–phenotype correlation likely points to the 
involvement of multiple factors or modifier genes.

Only a handful of studies have screened large 
patient cohorts to identify specific mutations linked 
to CAKUT. A 2014 study conducted by Hwang 
et al.35 utilized a targeted sequencing approach 
and identified 33 novel monogenic lesions asso
ciated with isolated pediatric CAKUT, where 
lesions in SALL1, HNF1B, and PAX2 loci were 
most prevalent. However, more recent investiga
tions have focused on how genetic landscape and 
copy number variation (CNV) influence kidney 
anomalies. CNV contributes to genetic diversity in 
the human population but can produce negative 
outcomes by altering gene dosage triggering spora
dic traits and complex diseases.41 One research 
group surveyed approximately 3,000 CAKUT 
cases across the phenotype spectrum for CNVs 
that intersect genes by performing whole-genome 
genotyping of peripheral blood samples. Their dele
tion mapping and prioritization analyses revealed 
TBX6 as the chief genetic driver in CAKUT 
patients exhibiting heterozygous 16p11.2 microde
letion syndrome, where an allelic series of TBX6 
mutant mice was generated to provide functional 
validation, though it should be noted that mice 
show phenotypes when mutations or deletions 
occur in both Tbx6 alleles.39 Further, a 2020 inves
tigation employed a chromosomal microarray 
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analysis strategy which identified six novel patho
genic CNVs upon cord blood testing of fetal 
CAKUT patients.42 Single nucleotide polymorph
ism arrays revealed CNVs within HNF1B and 
CLDN16 gene regions. Interestingly, in this study, 
the highest incidence of CNVs occurred in fetuses 
with polycystic kidney dysplasia.42 Collectively, 
these studies indicate that multiple genetic factors 
contribute to disease complexity and provide evi
dence that CNVs and genetic predisposition play 
a significant role in CAKUT pathogenesis. There is 
also an increasing appreciation of the impact from 
various environmental factors.43 An ongoing chal
lenge in the discovery of novel CAKUT-causing 
genes is the difficulties posed by genotype–pheno
type heterogeneity and the high frequency of spora
dic cases. To combat these issues, future large-scale 
genomics studies paired with functional assessment 
of vertebrate models holds promise in identifying 
genetic drivers of CAKUT.

3. The zebrafish pronephros: a window into 
genetic regulation of embryonic kidney 
development

Within the past decade, the zebrafish has ascended 
as a valuable model system to study nephron onto
geny, function, and model kidney diseases.44–60 The 
structure of the zebrafish pronephros encompasses 
two parallel tubules that fuse with a glomerulus at 
the midline.61 In addition to a simple two-nephron 
anatomical layout, embryonic zebrafish are opti
cally transparent and develop rapidly ex utero, 
which enhances the ability to visualize cellular 
changes.62,63 By comparison, mammals undergo 
internal embryonic development and contain thou
sands of nephrons arranged in a complex tissue 
architecture, which can present significant chal
lenges to studying kidney organogenesis.64,65 The 
zebrafish pronephros tubule is epithelialized and 
partitioned into distinct proximal and distal seg
ments by 24-h post fertilization (hpf).66,67 

Subsequent morphogenesis leads to the formation 
of a single glomerulus at the midline connected to 
the bilateral nephron tubules.The glomerulus 
begins active filtration by approximately 48 
hpf,46,68–75 and further morphogenesis events tran
spire to drive progressive coiling of the proximal 
tubules, which occurs through a combination of 

distal tubule proliferation and rostrally directed 
collective cell migration.76–78 In addition, the seg
mental organization of the pronephros displays 
considerable conservation with higher vertebrates 
(Figure 1).79–81 Beginning at the rostral end, the 
pronephros is subdivided into the following terri
tories: podocytes (P), neck segment (N), proximal 
convoluted tubule (PCT), proximal straight tubule 
(PST), distal early tubule (DE), distal late tubule 
(DL), and pronephric duct (PD).79–81 The PD 
extends into a specialized opening called the cloaca 
(C) for waste excretion.79–81 Pronephric segment 
domains are occupied by distinct cohorts of mono
ciliated transporter cells that differentially express 
ion channel and tight junction genes66,67, as well as 
interspersed multiciliated cells (MCCs) with dis
tinct gene signatures82–85. The solute transporter 
signatures that define the different tubule segments 
within the zebrafish pronephros exhibit consider
able overlap with mammalian nephron segment 
markers.79–81

3.1. Conserved segment properties of the zebrafish 
pronephric tubule

The zebrafish PCT and PST share many attributes 
with mammalian proximal tubules.80,86–93 For 
example, the cells of the pronephric PCT apically 
project densely packed microvilli forming a well- 
defined brush border and actively endocytose trace
able dextran conjugates.86–89 Additionally, the 
expression of megalin/lrp2, cubilin/cubn, and 
slc20a1a are synonymous to mammalian proximal 
tubule markers.80,86–89 The mammalian PCT, or 
S1-S2 segment, expresses Lrp2, Cubn, and Slc20a1, 
which encode transmembrane proteins that facil
itate bulk reabsorption at this site.4,92 From 3 to 5  
days post fertilization (dpf), the zebrafish PCT 
undergoes coiling morphogenesis, which mimics 
the convolutions present in mammalian proximal 
tubules.45 The embryonic zebrafish PCT and PST 
both express slc5a1, which produces a sodium/glu
cose cotransporter protein (SGLT).91,94 This 
slightly deviates from mammalian nephrons, 
where two members of the SGLT family (Slc5a1 
and Slc5a2) are differentially expressed in the PST 
and PCT, respectively. The pronephric PST is also 
demarcated by trpm7 and slc13a3 genes.80 In mam
mals, the PST expresses Slc13a3, however TRPM7 
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along with TRPM6 are enriched in the DCT and 
modulate Mg2+ homeostasis.95

The pronephric DE segment is analogous to the 
mammalian TAL, which is known as the ‘diluting 
segment’ that decreases the osmolarity of the 

filtrate by playing a major role in Na+ 
reabsorption.1,23 The DE is characterized by 
a conserved suite of solute transport genes: 
slc12a1, kcnj1a.1, and clcnk, which correspond to 
mammalian Slc12a1, Kcnj1, and Clcnk.80 These DE/ 

Figure 1. Nephron segmentation is conserved across vertebrate species. (a) Schematic of adult human kidney (left) and segmented 
nephron (right). Circle insets depicts a proximal tubule cell (above, gray) and thick ascending limb cell (below, teal) with specialized 
solute transport proteins (orange, purple) on the apical surfaces. (b) Developing mouse at embryonic day 17.5 and color-coded 
nephron segment compartments. (c) 24 hpf zebrafish embryo and color-coded pronephros segment compartments. Matching 
segment colors indicate the current working model of analogous structures between mammals and zebrafish. Abbreviations: PCT =  
proximal convoluted tubule, PST = proximal straight tubule, TAL = thick ascending limb, DE = distal early segment, MD = macula 
densa, CS = Corpuscle of Stannius, DCT = distal convoluted tubule, DL = distal late segment, CD = collecting duct, PD = pronephric 
duct, C = cloaca. Schematics adapted in part from.79.
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TAL genes code for apically docked ion channels 
that transport Na+, K+, and Cl-, respectively. The 
DL segment expresses clcnk and slc12a3 and paral
lels the mammalian DCT, which participates in fine 
tuning Na+ and Cl- absorption.25,80 However, the 
DL also expresses c-ret and gata3, which are mar
kers restricted to the collecting duct epithelium in 
mammals.80 This difference is due to species diver
gence, as zebrafish are freshwater creatures that 
have no requirement for concentrating urine.

The DL curves around the yolk sac extension and 
merges with a short strip of tubule that is defined as 
the PD which opens to the external environment 
via the C.80 Although there have only been a small 
number of studies examining PD and 
C development,96–99 there is evidence that they 
share similar properties to mammalian CD 
epithelium.80 The renal CD is typified by 
a distinct assemblage of tight junction proteins, 
which enforce epithelial barrier function and con
stitute paracellular anion channels.100,101 One of 
such tight junction genes enriched in the CD is 
Cldn8, which is a member of the Claudin family 
and is believed to perform both pore and barrier- 
forming functions.100,101 In the developing zebra
fish pronephros, cldn8 localization gradually 
restricts the DL, PD, and C by 24 hpf and shows 
diffuse expression in the DE and PST.67 The PD 
and C also strongly express occludin tetraspan 
membrane genes olcna and oclnb.67 Consistent 
with this expression pattern, human OCLN mapped 
to developing ureteric epithelium indicating a likely 
barrier function role in CD tissue (GUDMAP 
RID:165ZNM). Additionally, the zebrafish 
C expresses aqp3, and the mammalian homolog 
AQP3 marks principal cells within the CD.80,102 

AQP3 localizes to the basolateral membranes and 
transports water, glycerol, and H2O2.

3.2. Divergent features of the zebrafish pronephros

Although there are many parallels between the zeb
rafish pronephros and mammalian nephrons, key 
differences do exist. For example, the zebrafish 
pronephros tubules are associated with teleost- 
specific endocrine glands situated between the DE 
and DL segments, which are known as the 
Corpuscles of Stannius (CS).80,103–106 This specia
lized cluster of cells buds off the pronephros by 

a gland extrusion mechanism, expresses stanniocal
cin 1 (stc1), and functions to maintain calcium and 
phosphate homeostasis.80,103–106 To date, it is 
unclear if there is a mammalian equivalent of the 
teleost CS. Further, the zebrafish pronephros con
tains multiciliated cells (MCCs), which are inter
spersed in a “salt and pepper” fashion throughout 
the tubule.82–85 MCCs mainly occupy the PST 
region, express markers such as odf3b and cetn2, 
and employ numerous motile cilia to propel fluid 
through the tubule.82–85 They form in response to 
a steadily expanding list of factors including Gmnc, 
Mcidas, Etv5a, Etv4, E2f5, Ppargc1a, prostaglandin 
signaling, and others.82–85,107–116 Interestingly, 
MCCs have been reported anecdotally in human 
fetal kidney tissue, but future studies are needed to 
confirm their presence and significance during 
renal development. The zebrafish pronephros also 
lacks the thin limbs of the Loop of Henle, 
a connecting tubule segment, and various collecting 
duct markers.80,81 As mentioned earlier, these var
iations are consistent with the physiological needs 
of this freshwater species; therefore, the pronephros 
does not possess these segments and certain trans
porters because water conservation is not requisite. 
Despite these differences, the similarities in the 
overall nephron structure, segment attributes, and 
genetic profile of the pronephros are conserved 
with higher vertebrates, making the embryonic zeb
rafish a powerful system to study nephron 
development.

4. Tools for experimental study in the zebrafish 
model

Sophisticated molecular tools and protocols have 
been formulated to study gene function in the 
zebrafish.54,117,118 Further, there continue to be 
exciting advances.119,120 In the following sections, 
we provide an overview of several major experi
mental paradigms, which have been crucial for 
delineating mechanisms of organogenesis.

4.1. Chemical and genetic screening strategies in 
embryonic zebrafish

Forward chemical genetic screening is an approach 
where small-molecule libraries are applied to pin
point molecular pathways that perturb a biological 
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process of interest.121,122 Zebrafish have long been 
employed as an in vivo vertebrate system to per
form high-throughput chemical screens and have 
the capacity to test greater than 10,000 different 
compounds. The first screen conducted to identify 
chemicals that affect developmental processes in 
zebrafish was carried out in 96-well plates.123 

Since then, hundreds of compounds have been 
identified to have conserved biological functions 
in fish and humans.124 Zebrafish exhibit 
a constellation of features that make them amen
able to high volume chemical and genetic manip
ulations. For example, one mating pair can produce 
greater than 100 embryos. In addition to high 
fecundity, zebrafish embryos are relatively small, 
approximately 5 mm in length, and most organs 
are formed within 24 hours. Once embryos are 
arrayed in a 96-well plate, small molecules can be 
added directly to the water and can readily pene
trate the chorion and embryonic skin. Chemical 
treatments in zebrafish allow temporal control, as 
the drug can be added to the system at a chosen 
timepoint during embryonic development. 
Compared to cell culture-based screens, zebrafish 
offer a more comprehensive assessment by investi
gating the effects compounds have on a whole 
organism. Regarding drug activity, zebrafish 
mimic mammalian pharmacokinetic properties: 
absorption, distribution, metabolism, excretion, 
and toxicity (ADMET). In particular, screening 
libraries of known bioactive compounds is an 
approach widely used in zebrafish to conduct 
rapid genetic pathway analysis, as each of the 
small molecules tested has known mechanisms of 
action. Another advantage of the ‘known bioactives 
screening strategy’ is many of these drugs are FDA 
approved and could potentially be repurposed and 
fast-tracked through the clinical trial phases.

In addition to chemical screens, another route to 
reveal novel genes and pathways required for devel
opmental processes is forward genetic screens. 
Significantly, the zebrafish genome contains homo
logs to approximately 70% of protein-coding 
human genes, therefore these organisms can facil
itate the discovery of conserved biological 
mechanisms.125 Large-scale genetic screens in zeb
rafish have been implemented successfully and 
identified thousands of genes implicated in 
embryonic development. In 1996, Boston and 

Tübingen groups reported exciting genome-wide 
mutagenesis screens conducted in zebrafish where 
the teams of researchers found embryonic pheno
types spanning differentiation, patterning, and 
organ defects.126,127 Forward genetic screens 
involve isolating carriers of modified alleles that 
exhibit phenotypes of interest and subsequent map
ping and/or sequencing approaches to identify the 
causative mutation. The standard chemical to 
induce heritable mutagenic lesions is ethylnitro
sourea (ENU). When male zebrafish are exposed 
to this mutagen, hundreds of point mutations are 
generated in the spermatogonia.128 The mutagen
ized male is crossed to a wild-type female, and the 
F1 generation is raised to sexual maturity, which is 
a process that takes approximately 3 months. Here, 
each F1 individual typically possesses one genetic 
lesion that will cause an embryonic phenotype.118

Many investigators have employed a haploid 
screen approach, which is an accelerated pipeline 
that does not require raising F2 and F3 generations 
to isolate recessive mutant alleles. To generate hap
loid embryos, eggs are harvested from F1 females 
and fertilized in vitro by treatment with ultraviolet 
inactivated sperm.129 Because the paternal DNA is 
crosslinked, the sperm is unable to contribute 
viable DNA, but initiates events necessary for zygo
tic development. In the case of a recessive allele, the 
haploid progeny will consist of roughly 50% mutant 
animals; thus, this elevated penetrance enhances 
the detection of phenotypes.129 Haploid embryos 
can survive for several days and have a similar 
morphology to diploid embryos. While haploid 
embryos have been documented to often display 
a shorter body axis, their body plans nevertheless 
enable assessment of numerous organs, such as the 
pronephros.129 Upon detection of a haploid pheno
type, the F1 female founder can be outcrossed to 
a wild-type male to generate a stable mutant line for 
further functional analysis.

Zebrafish are an accessible system to perform 
forward chemical and genetic screens because pro
cesses such as gastrulation and organogenesis can 
be directly observed with a basic stereomicroscope. 
In addition to examining live phenotypes, screen 
readouts can also consist of examining fixed 
embryos using whole mount in situ hybridization 
(WISH) or immunofluorescence to detect defects 
in a specific cell population or tissue.130–133
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Over the years, a battery of zebrafish screens 
have revealed novel regulators of kidney develop
ment. In 2004, a forward genetic screen was con
ducted using an insertional mutagenesis strategy, 
where a pseudo-typed retrovirus served as the 
mutagen. The goal of this screen was to identify 
genes that initiate pronephric cyst formation, 
which is a phenotype that parallels human poly
cystic kidney disease (PKD). Because zebrafish 
embryos are transparent, kidney cysts can readily 
be visualized in the glomerular region between 2 
and 5 dpf. Upon analysis of mutant zebrafish, 10 
cilia-associated genes were linked to renal 
cystogenesis.134 In 2005, a zebrafish ENU muta
genesis screen was performed to isolate alleles 
contributing to developmental defects. From this 
screen, the kto mutant was isolated that harbors 
a lesion in the trap230 locus and displays abnor
mal development of the brain, neural crest, and 
kidney.135

Later, the advent of whole-exome sequencing 
technologies expedited the ability to perform large- 
scale genotyping of ENU-induced mutations in 
zebrafish. Ryan et al. (2013) utilized a publicly 
available Next-Generation Sequencing software 
processor, SNPtrack, to identify coding and splice 
site mutations that cause kidney cyst 
phenotypes.136 Using this pipeline, four genes 
were rapidly identified that contribute to embryo
nic cystogenesis consisting of ift172, lrrc6, kif3a, 
and dync2h1.

A following study conducted an ENU F3 forward 
genetic screen and isolated zebrafish mutants that 
exhibited congenital edema.79 Among the lines 
identified was the lightbulb mutant, which harbors 
a lesion in the retinoic acid (RA) biosynthesis gene 
aldehyde dehydrogenase 1a2 (aldh1a2) and exhibits 
proximal-distal segment patterning defects consis
tent with reduced RA levels.79–81 Subsequent clon
ing of the zeppelin mutant from this screen79 by 
whole-genome sequencing analysis identified 
a mutation in breast cancer 2, early onset 
(brca2).73 Upon examination for kidney defects, 
zeppelin displayed a loss of podocytes and elevated 
interrenal cells, which are akin to the mammalian 
adrenal gland.73 This study indicated for the first 
time that the well-known tumor suppressor gene, 
brca2, is an essential component for glomerular 
development.73

Regarding chemical screen execution in zebra
fish, manual approaches as well as automated ima
ging technology have been used to discover 
compounds that affect nephron development.137– 

144 For example, in 2013 a pilot drug screen was 
performed utilizing the Tg(wt1b:EGFP) line that 
fluorescently labels podocytes and proximal 
tubules. Transgenic animals were positioned dor
sally in microtiter plates for consistent live imaging 
of the pronephros. From this screen, acetamino
phen, NSAIDS, and ACE inhibitors provoked 
gross morphological abnormalities of the 
pronephros.138 Interestingly, a portion of the che
mical screen ‘hits’ had been previously documented 
to exert adverse effects during human gestation, 
causing fetopathies and renal pathologies.138

Using a similar smart screening microscopy 
strategy, Pandey et al. (2019) profiled the effect of 
1280 approved drugs from the Prestwick library on 
pronephric cyst development in ift172 deficient 
zebrafish.140 In this study, high-throughput image 
acquisition allowed the analysis of more than 
20,000 zebrafish embryos for pronephric altera
tions. It is possible that automated zebrafish screen
ing approaches may fast-track the discovery of 
compounds that alleviate PKD. In line with this 
idea, Metzner et al. (2020) conducted a chemical 
screen on pkd2 mutant zebrafish.143 This group 
selected the Spectrum library, which contains 
2000 known bioactive compounds and FDA- 
approved drugs. After drug treatments, the degree 
of dorsal tail curvature was recorded via an auto
mated 96-well plate microscope, which is 
a hallmark of ciliopathies in zebrafish. This screen 
identified 13 compounds that significantly altered 
the pkd2 mutant curvature phenotype. One hit of 
interest consisted of a COX-2 inhibitor, diclofenac, 
which repressed tail curvature. Further, this screen 
brought to light that AR-independent androgen 
signaling and ALK5 are likely drivers of PKD 
progression.

In addition to automated live imaging of zebra
fish, analysis of pronephric tissue in fixed samples 
by WISH can offer a more specific phenotype read
out. For example, a 2016 study designed a chemical 
genetic screen to identify novel regulators of 
nephron patterning.137,144 A total of 480 com
pounds from the ICCB Known Bioactives library 
were tested for effects on pronephric development. 
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After treatment, embryos were processed for multi
plex WISH analysis, which involved the application 
of molecular probes that label alternating segments 
of the pronephros consisting of wt1b, slc20a1a, and 
slc12a1. After surveying the expression of these 
markers, the researchers found 16.25% of chemicals 
elicited nephron defects. A workup of several novel 
pathways from this screen has revealed that pros
taglandin signaling, the transcriptional co-activator 
encoded by ppargc1a, and estrogen signaling all 
have discrete roles in regulating the nephron seg
ment fate trajectory.144–146

In a separate study, the same ICCB Known 
Bioactive library was tested to define effectors of 
MCC development in the zebrafish pronephros.111 

The screen design involved processing treated ani
mals for WISH and utilizing odf3b riboprobe to 
score differentiating MCCs.111 It was determined 
that prostaglandin signaling promotes MCC onto
geny during pronephric development by influen
cing renal tubular cell fate choice, as well as 
promotes ciliogenesis consistent with findings of 
Jin and colleagues who previously demonstrated 
the effects of prostaglandin signaling on ciliary 
outgrowth.111,147 Upon further dissection of this 
pathway, the investigators established novel roles 
for prostaglandin synthesis components cox1 and 
cox2 in MCC specification and ciliary 
outgrowth.111 These chemical and genetic screen 
examples demonstrate the utility of the zebrafish 
pronephros in uncovering novel regulators of kid
ney development. In the future, combining chemi
cal screening and emerging genetic engineering 
strategies, like CRISPR, in zebrafish could be 
employed to interrogate pharmacogenetic mechan
isms and pursue personalized treatment options for 
kidney patients.

4.2. Classical reverse genetics in zebrafish: 
crispants, morphants, and misexpression

In recent years, CRISPR-Cas9 (clustered regularly 
interspaced short palindromic repeats) technology 
has been adapted from a bacterial defense mechan
ism and applied to various model systems to make 
precise genome edits. The Cas9 protein can be 
guided to a specific site by a single guide RNA 
(sgRNA) and facilitates binding to the DNA at 
a protospacer adjacent motif (PAM). The Cas9 

endonuclease is then able to uniquely cleave the 
DNA at a single site, causing a double-strand 
break and triggering endogenous repair mechan
isms. Here, either homology-directed repair or 
nonhomologous end joining (NHEJ) results in 
sequence alterations that can disrupt the function 
of the gene of interest.148 CRISPR-based 
approaches to create knockout and knock-in zebra
fish models have revolutionized the field. A popular 
tactic to study loss of function in zebrafish is the 
generation of F0 CRISPR mutants otherwise known 
as ‘crispants.’ This method was first described by 
Jao et al. (2013) and typically entails the microin
jection of a concoction containing Cas9 protein and 
multiple in vitro synthesized sgRNAs into the one- 
cell stage.149 The delivery of various sgRNA 
sequences that target different locations in the 
same gene induces robust biallelic disruptions, 
and null phenotypes can be readily observed in 
the founder generation. The resulting F0 crispants 
are mosaic in nature, as this strategy relies on the 
NHEJ repair mechanism and generates random 
indels. Furthermore, the CRISPR-Cas9 system is 
not 100% efficient; therefore crispants can contain 
a mixture of wild-type and edited cells. Despite 
heterogeneity, F0 crispants can faithfully recapitu
late true loss of function phenotypes.150 With the 
optimization of crispant technology and ability to 
multiplex sgRNAs, reverse genetic screening in zeb
rafish has been conducted by various groups in 
a high throughput manner to identify regulators 
of developmental processes.151,152 Additionally, F0 
animals contain both somatic and germ-line muta
tions, thus they can be grown to sexual maturity 
and crossed to produce isogenic F1 heterozygotes. 
A stable F2 knockout line can then be generated for 
the in-depth analysis of gene function.153 This pro
cess spans approximately 9 months from the initial 
injection of the F0 generation to the generation of 
a stable F2 CRISPR mutant zebrafish line.154

A molecular tool that has traditionally been the 
main option to knockdown gene function in zebra
fish are antisense morpholino oligonucleotides 
(MO).155,156 MOs are typically 25 nucleotides in 
length and are a synthetic derivative of DNA with 
a few structural alterations. For example, instead of 
containing the standard deoxyribose ring and phos
phodiester bonds, MOs possess a six-membered 
morpholine ring and a nonionic 
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phosphorodiamidate linkage instead. Upon micro
injection into the one-cell stage, the overall neutral 
charge and molecular small size facilitates diffusion 
throughout the developing embryo. MOs are 
designed to bind to a specific mRNA sequence, and 
either block translation or splicing resulting in the 
disruption of gene function. Because the effect of 
MOs is transient and does not alter the DNA 
sequence, this technique is comparable to cell culture 
knockdown methods such as small interfering RNAs 
(siRNAs) and short hairpin RNA (shRNAs). MO- 
injected animals (morphants) often phenocopy cor
responding mutants, therefore MOs are widely used 
for genetic studies. However, MO use in zebrafish 
has been documented to display more severe pheno
types than mutants for several reasons: 1) MOs can 
have off-target effects, 2) translation-blocking MOs 
can target maternally deposited transcripts, 3) the 
mutant being examined is hypomorphic in nature, 4) 
genetic compensation can occur in mutants but not 
morphants. Because of these caveats, the zebrafish 
community has built general guidelines for employ
ing MOs as knockdown reagents in research 
studies.157

Another rapid method to interrogate gene 
function is the injection of synthetic capped 
mRNA (cRNA) at the one-cell stage158. This 
transient pulse of cRNA induces global overex
pression of a gene product and allows the inves
tigator to probe for gain of function phenotypes. 
Because cRNA can easily degrade and may not 
diffuse evenly, this can lead to an uneven dis
tribution throughout the developing embryo. 
However, cRNA injection is widely used in res
cue experiments to validate loss of function 
phenotypes.158 Perhaps a superior method to 
overexpress a gene product is applying the heat 
shock 70 promoter (hsp70) in transgenic zebra
fish. The hsp70 promoter is approximately 1.5 
kilobases and is responsive to the heat shock 
transcription factor (HSF), which is naturally 
produced upon physiological stressors. This 
strategy enables temporal control, as raising 
embryonic body temperature to 38.0°C activates 
the hsp70 promoter and drives global transcrip
tion of multiple transgene copies.159,160 The 
ectopic expression of downstream gene product 
can be visualized as soon as 30 minutes post heat 
exposure.161 Although this wave of expression is 

transient, embryos can be subjected to serial heat 
shock treatments to amplify transgene expres
sion for experimental purposes.162 Taken 
together, the ease of genetic manipulation of 
zebrafish embryos paired with other previously 
discussed attributes makes them prime models 
for the discovery of novel nephrogenesis 
regulators.

5. Vertebrate kidney development: a 
nephron-centric perspective

During vertebrate embryogenesis, the kidney is 
derived from the intermediate mesoderm (IM), 
which is a narrow bilateral band of cells situated 
between the paraxial and lateral plate 
mesoderm4,5,36,37. In mammals, the IM begins to 
express Pax8 and Pax2, indicating renal lineage com
mitment. Further, Pax8 and Pax2 have redundant 
functions, as doubly deficient mouse embryos are 
unable to form later nephric structures.163 In 
Xenopus and zebrafish, pax8 expression precedes 
pax2/pax2a in the IM. Xenopus loss of function stu
dies indicate pax8 functions earlier to establish the 
pronephric anlage, and pax2 is required for tubule 
differentiation.164 In line with these observations, zeb
rafish pax2a mutants exhibit defects in tubule differ
entiation and cloacal morphogenesis.165 Interestingly, 
pax2a mutants correctly initiate pax8 transcription, 
but are unable to maintain this expression over the 
course of pronephric development, suggesting 
a genetic intersection of these two factors.166 

Regulation of renal progenitor fate choice is also 
mediated by the transcription factor odd skipped 
related 1 (osr1) as well as antagonistic interplay 
between Osr1 and the bHLH transcription factor 
Hand2.75,167–172 Further, osr1 expression is necessary 
for the survival of progenitor cells and the proper 
establishment of the podocyte lineage.75,173

After IM specification, vertebrates undergo simi
lar successive waves of kidney genesis. Mammalian 
kidney development entails the reiterative genera
tion and degradation of three main kidney forms: 
pronephros, mesonephros, and metanephros.36,37,174 

Here, the pronephros and mesonephros are transient 
structures without renal function or limited func
tion. In contrast, the mammalian metanephros is 
functional and the most architecturally complex 
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and final kidney form. In comparison, vertebrates 
such as amphibians and fish undergo two phases of 
renal development, where the mesonephros serves as 
the definitive version.36,37,174 During embryonic and 
larval life, the pronephros is functional in frogs and 
fish unlike the mammalian pronephros, which is 
a vestigial structure.36,37,174 Although the anatomical 
organization and level of complexity vary across 
kidney forms, each retains nephrons as core struc
tural units. Because nephrons are a unifying element 
across vertebrate species, much can be learned about 
kidney development by employing model organisms 
like mice, Xenopus, and zebrafish.14,81

6. Nephron morphogenesis: parallels between 
mammals and zebrafish

Humans and mice cease to form new nephrons 
at birth or shortly after, and in general, mam
malian kidneys exhibit limited regenerative 
capacity.174 In comparison, following prone
phros development the zebrafish develop 
a second mesonephros kidney form in the first 
1–2 months, in which new nephrons form and 
connect to the existing pronephros.175–177 While 
this process is robust during these months, it 
never completely ceases and so-called ‘neone
phrogenesis’ occurs at a slow rate.175–177 This 
kidney feature is thought to support the ongoing 
adult growth of zebrafish. Furthermore, in 
response to acute kidney injury, the rate of neo
nephrogenesis is enhanced, presumably to offset 
the loss of damaged tissue due to the presence of 
self-renewing renal progenitors.175,176,178 These 
adult kidney properties are also shared with 
many other fish species,179–182 and even some 
mammals such as the spiny mouse.183

Interestingly, the zebrafish renal progenitor pool 
exhibits a number of parallels with the Six2+ cap 
mesenchyme (CM) cells that give rise to nascent 
nephrons during mammalian metanephros kidney 
development (Figure 2). During the organogenesis 
of this third kidney form in mammals, two distinct 
progenitor compartments, the metanephric 
mesenchyme (MM) and ureteric bud (UB) epithe
lium, undergo reciprocal inductive signaling. The 
MM secretes Gdnf and Fgf10 molecules that initiate 

UB outgrowth and invasion.184 As a result, the UB 
produces BMP7 and FGF2 to promote MM survival 
and condensation, forming a cap of Six2+ Cited1+ 
cells.184 Throughout renal development, signals 
from the CM support dichotomous branching and 
differentiation of the UB into a highly arborized 
collecting duct system.185

The current working models of nephrogenesis 
involve the induction of nephron formation is 
driven by Wnt9b signals from the UB that stabi
lize β-catenin, which instructs the CM to form 
pretubular aggregates (PTA) below the ureteric 
branch tips.186 Wnt4 activation then triggers 
PTAs to undergo a mesenchymal-to-epithelial 
transition to establish renal vesicles (RV).186 The 
RV appears as a spherical epithelial structure that 
undergoes rapid polarization and de novo lumen 
formation, and similar events transpire during 
mesonephros development.175–177 The zebrafish 
genes, wnt9a and wnt9b, appear to play conserved 
roles in neonephrogenesis within the mesone
phros, and are upregulated upon kidney 
injury.187 Disruption of Wnt/frizzled signaling in 
the adult zebrafish kidney leads to the inability to 
form polarized rosette structures resembling 
RVs.187 After epithelialization and polarization, 
the RV elongates along the proximodistal axis 
and progresses through a series of morphogenetic 
events consisting of comma-shaped body (CSV), 
S-shaped body (SSB), and mature nephron tubule 
formation. Taken together, neonephrogenesis in 
fish closely echoes the morphogenetic steps of 
mammalian metanephric development 
(Figure 2).52

Throughout tubule morphogenesis, dynamic cell– 
cell interactions facilitated by the regional expression 
of cadherins, laminins, kinesins, and integrin mole
cules regulate nephron elongation and maturation. 
For example, in the developing mammalian SSB, 
K-cadherin expression restricts to the proximal 
domains, E-cadherin expression restricts to the distal 
domain, and the intermediate region (presumptive 
LOH) co-expresses these factors.188 Because adhesion 
proteins are differentially expressed across the axes of 
developing nephrons, it is speculated that these factors 
help establish regional boundaries and physically 
separate different nephron segment populations.189 

In zebrafish, the pronephric tubule is defined by 
cdh17 expression, which is orthologous to human 
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CDH17. Unlike mammalian CDH17, zebrafish cdh17 
maintains tubule integrity during pronephric duct 
development.190 Comparable to mammalian 
nephrons, the zebrafish pronephros also expresses 
epithelial cell adhesion molecule, EpCAM, during 
development. Upon profiling zebrafish DL tubules, 

this transmembrane glycoprotein was found to con
trol differentiation programs such as transmembrane 
transporter activity and cilium morphogenesis.191

During the RV to SSB transition, nephron mor
phogenesis is accompanied by the spatiotemporal 
expression of transcription factors that pattern the 

Figure 2. Mammalian nephrogenesis (top) and adult zebrafish neonephrogenesis (bottom) involve similar morphogenetic events. (a) 
During mammalian kidney development, the MM is derived from the IM. Upon UB (yellow) invasion, the MM (dark green) condenses to 
form the CM, a renal progenitor population. These progenitors receive signals to self-renew (dark green) or differentiate (light green). 
Cells receiving differentiation signals are organized into an epithelialized RV. Upon further maturation, these cells form the CSB, then 
an SSB, and finally the N. Concurrently, the UB undergoes progressive branching to form the CD system (yellow). (b) Adult zebrafish 
possess the unique ability to generate new nephrons during adulthood. Neonephrogenesis in the zebrafish kidney mimics the cellular 
dynamics of mammalian nephrogenesis. RPs (green) cluster to create a PTA, which polarizes and undergoes epithelialization. This 
structure changes morphology and forms a CSB, SSB, and eventually a mature N structure. IM: Intermediate mesoderm; MM: 
Metanephric mesenchyme; UB: Ureteric bud; CM: Cap mesenchyme; RV: Renal vesicle; CSB: Comma-shaped body; SSB: S-shaped 
body; N: Nephron; CD: Collecting duct; Renal Progenitor: RP; PTA: Pre-tubular aggregate; G: Glomerulus. Schematics adapted from.52.
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nephron into the specialized segments discussed in 
detail earlier. These transcription factor cues are 
necessary for the specification and terminal differ
entiation of distinct nephron cell types. Recent stu
dies have employed immunolabeling and single-cell 
RNA sequencing strategies to catalog conserved 
and divergent transcription factor programs of 
mouse and human nephron development.192–196 

Overall, these studies suggest similar molecular 
processes orchestrate nephron patterning and 
downstream differentiation of unique segment 
identities.197 Notably, many of these transcription 
factors exhibit conserved localization patterns and 
function among vertebrate species.14

7. Lessons from lower vertebrates in nephron 
segment development

The formation of nephron segments during 
embryonic development is required for proper 
renal function. Genetic programs that control the 
expression of unique solute transporters, tight junc
tion proteins, adhesion molecules, and other cellu
lar features are ultimately responsible for the 
segment-specific modification of the filtrate. 
While there have been significant strides in identi
fying factors that are required for nephron segment 
development, there remain significant gaps in 
knowledge including 1) how these pathways relate 
to one another; 2) how distinct processes such as 
segment patterning, maturation, and terminal dif
ferentiation are regulated; 3) if key regulators of 
pronephros segment development in lower verte
brates exhibit conserved functions during mamma
lian nephrogenesis. There are many instances 
where homologous genes exhibit parallel expres
sion patterns in both the pronephros and develop
ing metanephric nephrons, hinting that their roles 
are preserved or partially conserved across species. 
In recent years, genetic studies using the zebrafish 
and Xenopus pronephros have provided substantial 
insight into nephron segment ontogeny. The fol
lowing sections primarily discuss these findings 
from work in the zebrafish pronephros.

7.1. Nephron segment pattern formation via RA

One of the most potent morphogens that pat
terns the renal progenitor field in zebrafish is 

RA.79–81 It was previously found that RA and 
cdx (caudal) transcription factors are responsible 
for the proximo-distal patterning and axial posi
tioning of the pronephros.80,81 RA promotes 
proximal segment fates at the expense of distal 
segment fates and cdx genes define the position
ing of the pronephros on the embryonic 
axis.80,81 Mechanistically, cdx factors control 
the expression boundaries of aldh1a2 and 
cyp26a1, which are enzymes that control the 
synthesis and degradation of RA, 
respectively.80,81 In accordance with these obser
vations, inhibition of RA severely impairs zebra
fish pronephros formation. Additionally, Raldh2 
null mouse embryos undergo abnormal specifi
cation of the pronephric lineage.198 A separate 
study determined that RA is activated down
stream of BMP to pattern non-axial mesoderm 
and induce anterior kidney fates.199 RA has also 
been linked to proximo-distal nephron pattern
ing in mammals,37 and it has been supplemen
ted along with BMP4 to kidney organoid 
cultures to stimulate IM differentiation.200

7.2. Transcription factors hnf1ba/b

The transcription factors hnf1ba and hnf1bb 
function downstream of RA signaling and are 
required for global nephron segmentation. 
Zebrafish deficient in hnf1ba/b fail to express 
both proximal and distal nephron solute trans
port markers, however pronephric tubules retain 
normal epithelial characteristics indicated by the 
presence of laminin, cdh1, and epcam 
transcripts.201 Additionally, the cytoplasmic 
sequestration of Hnf1b is necessary for CS 
gland development.105 In zebrafish, hnf1ba and 
hnf1bb exhibit broad expression patterns 
throughout developing renal progenitors. These 
patterns parallel observations in nascent mouse 
nephron tubules, which express Hnf1b in 
a proximo-distal gradient at the SSB stage. 
Hnf1b-deficient mouse kidneys exhibit severe 
tubular defects and undergo failure to develop 
all nephron segments.202,203 Furthermore, 
HNF1B mutations in humans are associated 
with CAKUT and renal cystic disease.204
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7.3. Segment fate regulators: roles and emerging 
interactions

7.3.1. Sim1a/Ppargc1a and the PST identity
A novel role for the sim1a transcription factor, 
traditionally known as the master regulator of mid
line cell development in the central nervous system, 
was unveiled by performing genetic manipulations 
in zebrafish. Cheng et al. (2015) discovered sim1a 
functions downstream of RA signaling and patterns 
proximal segments during pronephros 
development.205,206 Notably, zebrafish deficient in 
sim1a suffer losses of the PST and CS populations 
and an expanded PCT.205,206Although Sim1 is a key 
factor for early Wolffian duct formation, it has yet 
to be determined if it also functions to pattern 
mammalian proximal nephron fates.207

A separate study that arose from this initial che
mical genetic study entailed workup of the ‘screen 
hit,’ ppargc1a, a master regulator of mitochondrial 
biogenesis.145 Loss of ppargc1a results in proneph
ric phenotypes such as an expanded PST and 
severely reduced DL.145 Through genetic rescue 
studies, Chambers et al. (2018) determined 
ppargc1a controls nephron patterning by antago
nizing sim1a to delineate the PST segment 
boundary.145 In mice, Ppargc1a exerts renoprotec
tive effects in tubular cells upon acute kidney injury 
by controlling metabolic processes such as NAD 
biosynthesis.208,209 Future studies in developing 
mammalian nephrons are needed to determine if 
Ppargc1a controls segmental identity, and if meta
bolic changes influences cell fate decisions in this 
context.

7.3.2. Mecom—Tbx2a/b—Emx1 and navigating DE, 
CS, and the DL identities
Many new discoveries have been brought to light by 
conducting genetic manipulations of the zebrafish 
and/or frog pronephros but have yet to be con
firmed in a mammalian system. For example, zeb
rafish tbx2a and tbx2b were found to regulate DL 
and CS fate downstream of Notch signaling,210 and 
the corresponding ortholog Tbx2 defines the pro
nephros territory in Xenopus.211 Morales et al. 
(2018) determined empty spiracles homeobox gene 
1 (emx1) promotes DL formation and inhibits DE 
as part of the genetic cascade downstream of 
mecom and tbx2a/b under the influence of RA 

signaling.212 To determine the role of emx1 during 
pronephros development Morales et al. utilized 
a combination of loss of function, rescue experi
ments, and chemical studies. emx1 is initially 
expressed in a broad domain of renal progenitors 
and is then confined to the distal late domain by the 
28-somite stage.212 Gene expression studies 
revealed that emx1 transcripts were colocalized in 
the distal domain with mecom, tbx2a, and tbx2b, 
therefore implying that emx1 functions in conjunc
tion with these transcription factors.212 

Interestingly, by treating zebrafish embryos with 
exogenous RA or the RA biosynthesis inhibitor 
DEAB tha RA negatively regulates emx1 expres
sion, as its domain in renal progenitors showed 
a reduction and expansion, respectively.212 

Knockdown of emx1 utilizing morpholino oligonu
cleotides led to an expansion of the slc12a1+ DE 
segment and reduction of the slc12a3+ DL 
segment.212 Further, there was an increase in the 
CS lineage based on expanded stc1 expression.212 

Although there is a difference in the specific mar
kers of the distal pronephros, there it was change in 
the pan-distal expression thus implying there may 
be transfating within the distal pronephros. This is 
supported by the lack of an increase in cell death or 
proliferation in the distal domain.212 Morales et al. 
showed that while the knockdown of emx1 does not 
affect mecom expression, the knockdown of mecom 
affects emx1 expression and could be rescued with 
the addition of emx1 cRNA in mecom morphants, 
therefore placing emx1 downstream of mecom in 
the cascade.212 A similar assay was done with tbx2a 
and tbx2b knockdown, which placed tbx2 factors 
within the cascade. This work suggests that distal 
patterning is modulated by the RA signaling path
way that functions upstream of mecom, tbx2a/b, 
and emx1 during pronephros development.212 

Interestingly, ppargc1a also modulates tbx2b to 
promote DL formation,145 but future work is 
needed to delineate the relationship between 
Ppargc1a and these other distal promoting factors.

Perturbations in zebrafish efhc2 were also deter
mined to affect distal nephron compartments 
including the DE, CS, and DL, and to act indepen
dently of RA signaling.109 In Xenopus, the gene 
prdx1, which codes for an antioxidant enzyme, 
influences RA and Wnt signaling to regulate pro
nephros development. Interestingly, knockdown of 
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this factor increases cellular levels of reactive oxy
gen species, impairs primary cilia formation, and 
inhibits proximal tubule formation.213

7.3.3. Prostaglandin signaling and segment fate
A zebrafish chemical genetic screen conducted by 
Poureetezadi et al. (2016) facilitated the discovery 
of additional pathways that alter nephron 
patterning.144 For the first time, this study identi
fied prostaglandin signaling balances nephron seg
ment fates, where treatment with PGE2 results in an 
expanded PST at the expense of the DL.144 

Manipulation of cox1, cox2, ptger2a, and ptger4a 
activity similarly affected DL segment 
development.144 Prostaglandin signaling controls 
segment identity by functioning upstream of pro
nephros patterning factors irx3b and sim1a.144 

Physiologically, PGE2 synthesis occurs across 
nephron segments and affects transepithelial trans
port in the adult mammalian nephron; however, 
additional studies are needed to determine if pros
taglandins function in an embryonic setting to 
influence cell fate during mammalian 
nephrogenesis.214 Interestingly, prostaglandin sig
naling was recently discovered to promote renal 
progenitor proliferation during neonephrogenesis 
in the adult zebrafish mesonephros following acute 
kidney injury.215,216 In this context, PGE2 produced 
from renal interstitial cells, which reside in proxi
mity to the renal progenitors, is essential to pro
mote the rapid induction of cell division.215,216 

Whether the duration or dosage of PGE2 impacts 
nephron segment fate decisions in the renal pro
genitors will be an intriguing question to pursue in 
future studies.

7.3.4. Gldc and nephron segmentation
Glycine decarboxylase (GLDC) is a rate-limiting 
enzyme in the glycine cleavage system (GCS), 
a vital complex for regulating glycine levels. 
GLDC specifically functions to break down glycine 
and produce one-carbon units for folate metabo
lism. When GLDC function is disturbed, glycine 
accumulation occurs, and there are detrimental 
defects in humans and animals including seizures, 
abnormal brain patterning, and premature 
death.217–224 In mice, Gldc is essential for neural 
tube closure and normal brain development, how
ever, the exact mechanism it has in organogenesis is 

still unknown.222,224,225 GLDC has been implicated 
in a variety of cellular processes including glu
tathione production in the liver, stem cell fate 
through regulation of senescence and epigenetic 
modifications, and cell proliferation in some cancer 
types.226–228

In a recent publication, Weaver et al. identified 
gldc as a novel regulator of nephrogenesis in which 
it controls glycine levels leading to normal 
segmentation.229 Upon surveying of live pheno
types in gldc deficient animals, they noted hydro
cephalus and pericardial edema suggesting 
impaired kidney function.229 To analyze this 
further, Weaver et al. performed a functional 
assay and determined the gldc morphants were 
unable to excrete a fluorescent molecule as effi
ciently as their wild-type counterparts.229 Due to 
these phenotypes, they hypothesized that perturba
tion of gldc was leading to an increase of glycine 
globally which caused alterations in nephron seg
mentation and eventually, altered fluid homeosta
sis. Upon measurement of the nephron segments in 
gldc morphants, there were changes in several 
populations: proximally, the PCT was reduced; dis
tally, the DE tubule expanded in length, while the 
DL was decreased.229 After identifying changes in 
differentiated populations, they studied the basis of 
the distal segment changes, and found that gldc was 
working upstream of the transcription factors 
responsible for patterning these distal segments 
(irx1a, irx3b, tbx2a, and tbx2b).229 Further studies 
are needed to ascertain the basis of the proximal 
changes.

Interestingly, the researchers tested glycine accu
mulation was disturbing segmentation, indepen
dent of gldc function. To determine whether 
excess glycine alone impacts kidney development, 
Weaver et al. treated animals exogenously with 
varying concentrations, and observed similar seg
ment changes to gldc deficient animals in a dose- 
dependent fashion.229 This suggests glycine may be 
the mechanistic action causing altered nephron 
patterning in gldc deficient embryos.229 While gly
cine is a well-known neurotransmitter, it has pre
viously been implicated in the development of the 
heart, liver, brain, and vascular system in 
zebrafish.230–233 In the kidney, glycine has been 
found to impact ion uptake, renal plasma flow, 
and glomerular filtration rate in various contexts, 
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including kidney injury.234–240 Both the GCS and 
glycine have been connected to differentiation and 
cell fate in various cell populations.227,241 Thus, 
these studies support the conclusions that gldc defi
ciency causes glycine accumulation, and that both 
gldc and glycine are acting upstream to influence 
nephron segment differentiation.

7.3.5. Estrogen signaling and distal segment fate
A recent study by Wesselman et al. found that 17- 
beta (β) estradiol (or E2) influences pronephros 
development through following up on a related 
hit from a chemical screen.146 Exposure to exogen
ous E2 beginning at the shield stage (about 6 hpf) 
led to significant alterations in distal segment 
development, where the DL was reduced and DE 
was expanded.146 These changes were also repeated 
using additional DE and DL markers, whilst effects 
on the proximal segments were not observed.146 

Further, these distal segment change were not asso
ciated with changes in cell death or cell prolifera
tion, which implied that exogenous E2 treatment 
caused changes in nephron patterning. Previous 
studies have shown that xenoestrogens such as 
ethinylestradiol, bisphenol A (BPA) and genistein 
also activate E2 signaling pathways similar to 
E2.244,242,, 243 Wesselman et al. found specifically 
that exposure to ethinylestradiol or genistein 
caused an increased DE domain and a decreased 
DL domain, similar to E2 treatment.146 

Additionally, they observed similar phenotypes 
with other DE and DL markers as well, while seeing 
no differences in PCT and PST formation.146 Taken 
together, these results suggest that estrogen signal
ing is sufficient to impact distal nephron 
segmentation.

To query which components of E2 signaling were 
involved in proper nephrogenesis, the researchers 
designed and conducted a selective estrogen recep
tor modulator (SERM) screen, including an Esr1 
agonist (PPT), an Esr1 antagonist (MPP), an Esr2 
agonist (DPN) and an Esr2 antagonist (PHTPP).146 

Treatment with PHTPP caused embryos to exhibit 
an increase in DL domain and a decrease in DE 
domain.146 However, DPN treatment did not result 
in increased DE domain.146 Additionally, MPP and 
PPT did not result in changes in distal domains. 
Additionally, using additional markers such as 
kcnj1a.1 and tbx2b for DE and DL, respectively, 

we observed similar trends in PHTPP-treated 
embryos, and no changes in proximal segments.146 

To further investigate the role of each receptor in 
the zebrafish pronephros, gene knockdown studies 
were performed to target esr1, esr2a, and esr2b, 
respectively. esr2b knockdown resulted in 
decreased DE and increased DL, similar to the 
phenotypes observed with PHTPP treatment.146 

On the other hand, esr1 and esr2a knockdown did 
not affect proximal-distal segmentation.146 To 
answer the question whether esr2a may serve 
a redundant role together with esr2b in distal cell 
development, they used morpholino to both dual 
knockdown of esr2a and esr2b was performed. This 
led to a similar decrease in the DE domain and an 
increase in DL domain, but not more significant 
than the esr2b-deficient embryos alone.146 These 
findings strongly suggest that Esr2a and Esr2b do 
not function redundantly in nephron development. 
While analysis of a stable esr2buab127 mutant line 
revealed that there were no changes in DE or DL 
domain in the homozygous embryos, this is likely 
due to the presence of maternal transcripts coding 
Esr2b.146 Nevertheless, similarities between the 
results of esr2b MO and PHTPP treatment establish 
that the Esr2b receptor is most likely required for 
estrogen signaling during distal segmentation.146

Overall, these results suggest a crucial role of 
estrogen signaling in nephron segmentation of zeb
rafish embryonic kidneys, and suggest a mechanism 
of E2 signaling in nephron segmentation.146 At its 
active stage, E2 diffuses from yolk into the adjacent 
renal progenitor cells and binds to Esr2b. Esr2b 
then leads to changes in genes that dictate DE/DL 
differentiation, such as Irx3b and Irx1a (discussed 
in section 7.4.2). When E2 is inactive whether via 
morpholino or PHTPP treatment, this causes inhi
bition of Esr2b, which causes reduction in activity 
of Irx3b and Irx1a, thus causing favored DL fate 
over DE fate. Overall, this study provides a crucial 
insight into the role of hormonal signaling in zebra
fish kidney, with greater implication for under
standing kidney development and treating kidney 
dysfunction due to hormonal imbalance.146

7.3.6. Pou3f3 transcription factors and the 
intermediate segments
The POU domain transcription factor Brn1 (Pou3f3) 
is another known effector of LOH fate.244 Brn1 
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mutant mice form truncated nephrons lacking bona 
fide TAL segment structures as indicated by the 
disappearance of Umod, Slc12a1, Bsnd, Kcnj1, and 
Ptger3 expression.244 Mutant TAL cells exhibited 
undifferentiated ultrastructural features such as sim
ple cell membranes and scarce mitochondria. 
During metanephric development, Brn1 is localized 
to the intermediate and distal regions of the SSB.244 

Similarly, in zebrafish, pou3f3a and pou3f3b expres
sion is concentrated in the central-distal pronephric 
regions.79 However, the function of these factors in 
the zebrafish kidney has not yet been tested.

7.4. Control of segment differentiation

7.4.1. Dynamin binding protein
Recent studies in the frog pronephros, which is 
another excellent model of nephrogenesis,245,246 

have revealed new insights into the mechanisms of 
segment differentiation. Researchers discovered that 
dynamin-binding protein, dnmbp, does not function 
in pronephros specification or patterning, but rather 
controls tubular differentiation.247 Animals deficient 
in dnmpb displayed defects in both proximal and 
distal pronephros solute transporters, exhibiting 
reduced expression of slc5a1 and clcnkb, respectively. 
Additionally, knockdown of dnmbp caused disorga
nized pronephric cilia, a hallmark of defective tubu
lar differentiation.246 Further exploration of these 
factors in mammalian and organoid models will 
yield significant insights into embryonic nephron 
development, specifically concerning the mechan
isms guiding specification, patterning, and terminal 
differentiation of distinct segment cell types.

7.4.2. Irx genes
The Iroquois homeobox genes also appear to exert 
conserved functions during nephron segmentation. 
During zebrafish development, irx3b and irx2a are 
expressed in the central renal progenitor 
field.79,112,248 Specifically, irx3b-deficiency elicits 
an expansion of the PCT, PST, and CS, however, 
abrogates DE differentiation.79 Intriguingly, irx3b 
is required to maintain hnf1ba expression in the DE 
domain, unveiling a segment-specific circuit.201 

Family member irx2a works upstream of etv5a 
and downstream of RA signaling to regulate PST 
and DL pronephric fates.112 During pronephric 
development, irx1a is present in presumptive DE 

precursors, and by 24 hpf colocalizes with the 
slc12a1+ DE domain.249 Overexpression studies 
indicate irx1a likely plays a prominent role in DE 
segment differentiation and is sufficient to activate 
slc12a1 and kcnj1a.1 expression.249 Additionally, 
regulation of irx1b by the homeobox transcription 
factor Mnx2b has been associated with proper 
nephron tubule morphogenesis.250 In agreement 
with these observations, studies in Xenopus and 
mice show similar nephron localization of Irx1, 
Irx2, and Irx3 during kidney development.251 Loss 
of function studies in frogs have also suggested 
conserved roles of Irx1 and Irx3 in segment 
differentiation.251,252 In mice, Hnf1b promotes 
Irx1 and Irx2 expression in the intermediate SSB 
domain, which gives rise to the loop of Henle 
(LOH).202 However, Irx knockdown studies in 
mammals are needed to confirm these roles are 
biologically conserved among vertebrates.

7.4.3. Tfap1a/B transcription factors and 
autoregulatory repression via Kctd15a/b
A novel determinant of DE terminal differentiation 
was discovered by a forward haploid genetic screen 
conducted in zebrafish. Mutant analysis revealed 
transcription factor AP-2 alpha (tfap2a), a classical 
regulator of neural crest fate, controls the differen
tiation of the DE, CS, and DL. This transcription 
factor acts as the conductor of a multitiered genetic 
regulatory network including family member 
tfap2b.249 In this network, Tfap2a operates 
a circuit consisting of tfap2b and irx1a to activate 
the expression of distal nephron solute transporter 
genes clcnk, slc12a1, kcnj1a.1, and slc12a3. In 
a subsequent study, the KCTD15 paralogs, 
kctd15a and kctd15b, were found to be key compo
nents of the Tfap2a distal nephron network.253 By 
employing CRISPR-Cas9 and knockdown strate
gies, kctd15a/b loss was shown to prime the 
nephron cells to adopt a DE segment signature.253 

Mechanistically, kctd15a/b restricts DE differentia
tion by repressing Tfap2a activity in developing 
nephrons.253 Further interrogation of this signaling 
axis revealed Tfap2a can reciprocally promote 
kctd15 transcription.253 These data revealed 
a transcription factor-repressor feedback module 
where nephron segment fate is controlled by pre
cise regulation of Tfap2a-Kctd15 kinetics.
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8. 8. Summary/Conclusions

Employing the zebrafish to perform genetic studies 
cultivates the identification of novel nephron reg
ulators. By employing ENU mutagenesis, morpho
lino, transgenic, and CRISPR-Cas9 technologies in 
the genetically tractable zebrafish model, research
ers have divulged valuable insights into the mole
cular pathways controlling nephrogenesis. Looking 
forward, zebrafish models exhibit many connec
tions to renal conditions observed in humans, spe
cifically congenital anomalies of the kidney and 
urinary tract (CAKUT). For example, the loss of 
tfap2a/b results in abrogated expression of distal 
nephron solute transporters slc12a1, kcnj1a.1, 
clcnk, and slc12a3, which is comparable to renal 
channelopathies in humans.249 Neonatal Bartter’s 
syndrome type 1, neonatal Barrter’s syndrome type 
2, classic Barrter’s syndrome type 3, and Gitelman’s 
syndrome are all classified as inherited disorders 
affecting TAL/DCT and are caused by defects in 
SLC12A1, KCNJ1, CLCNKB, and SLC12A3, 
respectively. Furthermore, there are extrarenal 
defects associated with loss of the tfap2a/b tran
scription factors in the zebrafish, including neural 
crest and ear abnormalities.249 These phenotypes 
indicate human mutations in these genes are likely 
associated with a larger syndrome affecting multi
ple tissue types. To this point, patients with ear 
malformations have a higher incidence of kidney 
anomalies; thus, in these cases, renal sonography is 
often pursued by pediatricians as a screening 
measure.254

To date, the functions of many zebrafish prone
phros regulators have not yet been examined in 
higher vertebrates, such as the mouse. In some cases, 
interesting distinctions have been observed. For 
example, several early studies have noted that both 
Tfap2a and Tfap2b mutant mice exhibit renal anoma
lies, suggesting that these factors likely play significant 
roles in mammalian kidney development.255–257 

Additionally, human mutations in TFAP2A cause 
branchio-oculo-facial syndrome, and a portion of 
these patients experience severe kidney defects.258 

More recent inactivation studies in the mouse indicate 
that TFAP2A is important for medullary collecting 
duct development, but not nephron segment differ
entiation, and that TFAP2B controls the terminal 
differentiation of the TAL and DCT.259,260 

Therefore, there are likely other distinctions in gene 
functions which have evolved across vertebrates. 
Nevertheless, identification of genes with critical func
tions in renal development of lower vertebrates pro
vides a useful starting point to delineating such 
pathways in higher vertebrates like mammals.

Future studies of these and other genetic factors 
are of utmost importance to fully understand their 
roles across vertebrate species. In most cases, global 
knockout of these factors in mice results in perina
tal lethality and impedes meaningful renal analysis. 
One approach to overcome this obstacle is to gen
erate tissue-specific knockout mice, however this 
method can be time-consuming and expensive. 
Luckily, a system has recently emerged that enables 
researchers to study gene function and model 
human diseases in an organ-specific manner 
in vitro. Renal organoid technologies involve cul
turing miniaturized kidneys in a 3D matrix, reca
pitulates embryonic nephron development, and 
provides an excellent platform to explore the func
tion of candidate genes in human cells.261

Taken together, the studies discussed in this 
review have illustrated the utility of the zebrafish 
pronephros in catalyzing the discovery of novel 
genetic mechanisms that orchestrate embryonic 
kidney development. Key developmental insights 
from these and future zebrafish studies will support 
the assembly of the genetic blueprint required to 
fashion a nephron, and in turn support efforts to 
advance kidney organoid technology, further 
develop precision medicine, and deepen our under
standing of congenital renal syndromes.
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