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ABSTRACT

Brain connectivity can be estimated in many ways, depending on modality and processing strategy. Here we present the
Krakencoder, a joint connectome mapping tool that simultaneously, bidirectionally translates between structural (SC) and
functional connectivity (FC), and across different atlases and processing choices via a common latent representation. These
mappings demonstrate unprecedented accuracy and individual-level identifiability; the mapping between SC and FC has
identifiability 42-54% higher than existing models. The Krakencoder combines all connectome flavors via a shared low-
dimensional latent space. This “fusion” representation i) better reflects familial relatedness, ii) preserves age- and sex-
relevant information and iii) enhances cognition-relevant information. The Krakencoder can be applied without retraining
to new, out-of-age-distribution data while still preserving inter-individual differences in the connectome predictions and
familial relationships in the latent representations. The Krakencoder is a significant leap forward in capturing the relationship
between multi-modal brain connectomes in an individualized, behaviorally- and demographically-relevant way.

1 Introduction
The brain is a vastly complex, interconnected network of neurons (and other types of cells) whose proper function
allows us to move, think, feel, and observe as well as interact with our environment. Studying how the brain’s
connections relate to behavior, so-called brain connectome-behavior mapping, is crucial not only for understanding
how the brain works generally but also for identifying biomarkers of disease, predicting outcomes in neurological
disorders, and designing personalized interventions. Brain connectivity can be probed through various structural
and functional neuroimaging techniques. Structural connectivity (SC) can be captured with diffusion MRI (dMRI)
measures of white matter, or the anatomical wiring, that connects different brain regions. Functional connectivity
(FC), as measured with blood oxygen level dependent functional MRI (BOLD-fMRI), quantifies the temporal similarity
between brain regions’ dynamic neural activity patterns.The association between SC and FC is a subject of intense
research, as it is believed that structural pathways provide the backbone over which functional activation flows.
Despite this, correlations of SC and FC are moderate at best. Understanding the relationship between SC and FC
is key to deciphering how the brain’s physical structure supports its dynamic functions and may offer insights into
the neural mechanisms underlying behavior, injury or disease, and recovery1–4.

There are many approaches to modeling the relationship between SC and FC, most of which focus on using
SC to predict FC. These methods include i) biophysical models, e.g. linked neural mass models5–10, ii) graph
theoretical models, e.g. communication strategies11–15, iii) statistical models, i.e. that model SC and FC topological
metrics16–19, and iv) network control theory20–23. More recently, machine learning has been used to predict FC
from SC24–27, predict SC from FC28, or to translate a connectivity estimate between parcellations29,30. Many of
these studies have shown that metrics of SC-FC relationships vary with age, sex, and behavioral variables16,27,31,
or disease/injury and recovery4,32,33.

Among the challenges and considerations in modeling this relationship, the assumption that estimated SC is an
objective, fixed constraint on possible FC patterns is increasingly questioned. Evidence suggests that the brain’s
functional dynamics can be highly flexible and adaptive, and may be driven by geometric factors not measured with
SC34. Variability in SC estimation techniques, particularly in their sensitivity to detect faint or indirect connections,
further complicates the interpretation of connectivity data. Moreover, the performance metrics and loss functions
currently employed in connectivity studies often fail to adequately account for inter-subject variability, potentially
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skewing the results and interpretations.
Despite the utility of modeling the relationship between connectomes, there is strong methodological disagree-

ment in the literature as to how to extract the connectomes themselves from brain images35–37. Studies have
shown that biases inherent in different processing choices, referred to here as “flavors”, can lead to different or even
contradictory conclusions38,39. Each connectome flavor may differ in how the brain is parcellated into regions, how
potential noise, artifacts, or confounds are removed, and how the connectivity between regions is quantified, among
other methodological choices. Furthermore, connectome data from different studies are often shared only in certain
flavors, making comparisons between datasets challenging.

In this work, our fundamental assumption is that each set of choices in the imaging and processing pipelines
provides a different view of the same underlying system. Drawing inspiration from recent advances in multi-view
learning40, we develop and share a tool called “Krakencoder” that provides a way to combine these choices (i.e.
connectome fusion), and thus create a more comprehensive representation of the brain’s connectivity. Deriving
a unified latent representation from within-modality and/or across modality connectome estimates may allow
reconciliation of differing views of the same underlying network in order to overcome limitations and combine benefits
from various processing choices. Krakencoder is a novel “universal” brain connectivity encoding architecture and is
capable of transforming connectivity estimates between parcellations, estimation techniques, and modalities with
unprecedented precision. Importantly, the Krakencoder is able to preserve inter-individual differences in a way that
is behaviorally and demographically relevant. This element is crucial if we are to use the Krakencoder to improve
our understanding of how brain structure and function and their interplay maps to behavior, impairment, or recovery
after disease or injury.

2 Results

2.1 Krakencoder model architecture and training
The Krakencoder architecture comprises a set of encoders and decoders that allow transformation of each
connectivity type into every other connectivity type via a common low-dimensional latent representation, see Fig. 1 .
The Krakencoder was trained to optimize for both reconstruction accuracy and preservation of individual differences.
The latter was achieved by enforcing latent-space representations of different connectivity types from the same
subject to be close to one another and far from other subjects’ latent space connectome representations. The
model was trained on resting-state FC and white-matter SC data from 683 healthy young adults (366 female, aged
28.6±3.8) from the Human Connectome Project, validated during training on 79 held-out subjects (43 female, aged
29.1±3.8), and finally tested on 196 subjects (107 female, aged 29.1±3.6). Care was taken to ensure that no
siblings spanned the divisions, as this data leakage can lead to over-optimistic model performance. Connectivity
flavors include 3 parcellations (with 86, 268, and 439 regions), 3 common FC estimates (Pearson correlation,
Pearson correlation following global signal regression, and regularized partial correlation), and 2 SC estimates
(volume-normalized streamline counts from deterministic and probabilistic tractography), for a total of 15.

We create a separate encoder and decoder for each of the 15 connectivity flavors and then train the model to
predict each flavor from each other flavor. There are 225 total training paths, including 15 autoencoders that map
between the same flavor (See Fig. 1a ) and 210 transcoders that predict one flavor from another (See Fig. 1b
). Each encoder is a single fully-connected linear layer, followed by L2 normalization that constrains the latent
representation to the surface of a 128-dimensional hypersphere. Each decoder is a single fully-connected linear
layer. Dimensionality of the connectivity flavors varies between parcellations, which could lead to an imbalance in
the training to favor higher dimension connectivity flavors. We balanced the contributions of each flavor by reducing
each connectivity input to 256 dimensions using a precomputed PCA, derived using only training data to avoid
leakage between train and test sets. Reconstruction loss for each training path includes both Pearson correlation
and Euclidean distance. We include a contrastive component to the correlation and Euclidean loss functions, to
explicitly preserve inter-subject variability of predicted connectomes. A contrastive loss term is applied to the latent
representation as well to further promote inter-subject variability of the representations. The term “contrastive”
here refers to a penalty that attempts to force the same subject’s reconstructed and latent space connectomes
close to each other and far apart from other individuals’ representations. Finally, we include an intra-subject latent
space consistency loss to maximize the similarity of the latent representations from each connectome flavor for
a given subject (See Fig. 1c ). This combination of loss functions allowed us to fine-tune the tradeoff between
reconstruction accuracy and inter-subject variability (See Fig. S2 ), and to condition the latent space representation.
See Methods for details on training procedure and loss functions.

During model inference, the Krakencoder predicts each of the 15 connectivity flavors from any other, transforming
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predictions that exist in the reduced 256-dimensional space to their higher native dimensions using the inverse
of the precomputed PCA transforms. The model can also combine information from multiple connectomes by
averaging their latent space representations to obtain a “fusion” representation; this fusion representation can then
be decoded to predict all 15 connectome flavors. The encoding and averaging step in the fusion process can include
all available connectome flavors, or a subset of flavors to, for instance, predict FC flavors from the fusion latent
representation of all SC flavors or vice versa (“fusionSC” or “fusionFC”, Fig. 1d ), or to predict one parcellation
using inputs from the averaged latent representations of all other parcellations (“fusion-parc”, Fig. 1d ). The latter
fusion version is particularly informative if one is using the Krakencoder to translate connectome data to a desired
atlas on which it had not been computed.
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Figure 1. Key features of the Krakencoder architecture. a. Autoencoder for connectivity flavor i (i.e., pathii)
begins by stacking the upper triangular portion of each subject’s connectivity matrix into input Xi ∈ Rnedges×nsub j . A
precomputed, fixed PCA transformation normalizes the data and reduces dimensionality to X ′i ∈ R256×nsub j ,
equalizing the size of disparate input flavors. A single fully-connected layer Encoderi followed by L2 normalization
transforms X ′i into a latent hypersphere surface zi ∈ R128×nsub j . Batch-wise encoding loss Lz(zi) controls inter-subject
separation in latent space. A single fully-connected layer Decoderi transforms zi to X̂ ′i , and batch-wise
reconstruction loss Lr(X ′i , X̂

′
i ) and Lz(zi) are backpropagated to optimize Encoderi and Decoderi. b. Transcoder

pathi j converting input flavor i to output flavor j begins the same as pathii, transforming Xi→ X ′i → zi, then Decoder j
transforms zi→ X̂ ′j, and reconstruction loss Lr(X ′j, X̂

′
j) is backpropagated to optimize Encoderi and Decoder j. c.

Latent similarity loss Lz.sim(zi,z j,zk, ...) provides explicit control to ensure the latent representations of each subject
are consistent across connectivity flavors. See Table 1 for details about loss terms. d. Illustration of “fusion”
predictions from averaged latent space vectors. For these predictions, we average the encoded latent vector from
all input flavors (as in the “fusion” model), or a subset of input flavors (as in the “fusionSC” model which only
averages latent vectors from SC inputs), and then decodes this average vector to all output flavors. The
“fusion-parc” model demonstrates cross-parcellation prediction, by averaging only inputs from the other
parcellations.
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2.2 Measuring connectome prediction accuracy
A key consideration when assessing the performance of a connectome prediction model is the high degree of
similarity of measured connectomes with the population mean. The Pearson correlation between connectomes of
unrelated individuals can exceed 0.9, depending on the flavor, and a model that simply predicts the population mean
for every subject can appear to have a very high prediction accuracy if it uses Pearson correlation as its metric
(See Fig. 2d , “pop. mean” in bottom subpanel). One simple solution to this issue is to subtract the population
mean calculated from training subjects before correlating measured and predicted connectomes; here we refer
to this metric as avgcorrdemean. However, this metric still cannot distinguish whether predictions faithfully capture
individual variation, particularly when there is clustering within the population (see Fig. S1b ). Our goal here is
to create individualized connectome predictions to understand the sources and consequences of across-subject
variability. Thus, we also consider the identifiability of our predictions: whether our measured connectome for a
subject is closer to the predicted connectome for that subject than the predicted connectome of any other subject.
The “top-1 accuracy” is a winner-take-all measure that reflects the fraction of subjects for which this is true. For a
more continuous measure of identifiability, more suitable to assessing imperfect predictions, we use an “average
rank percentile” measure (avgrank), which is the fractional rank of the similarity (Pearson correlation) of a subject’s
measured and predicted connectomes compared to all other predicted connectomes, averaged across subjects (
Eq. 4 ). Taken together, prediction accuracy and identifiability, as measured by avgcorrdemean and avgrank, convey a
more complete picture of how well a model explains individuals’ connectomes.

In addition to these measures of prediction accuracy for the connectivity matrix values, we compute several
common graph theoretical metrics to assess how faithfully the predicted connectomes capture the network properties
of the measured connectomes. We use the Brain Connectivity Toolbox41 to compute average node strength, average
betweenness centrality, characteristic path length, and modularity (Louvain community detection) for each measured
and predicted connectome, and compute the Spearman rank correlation between the predicted and measured
values across all test subjects for each metric.
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2.3 Connectome prediction performance
The accuracy of the Krakencoder’s connectome predictions was assessed on 196 held-out test subjects via
identifiability (top-1 accuracy and avgrank) and (de-meaned) correlation (avgcorrdemean). The heatmaps in Fig. 2a-c
illustrate the various metrics for every pair of the 15 connectome flavors, as well as “fusion” predictions decoded
from the averaged latent vectors from groups of encoded connectome flavor inputs (See Fig. 1d ). The “average”
column and row show the average performance metric for each source and target flavor, respectively.

Top-1 identifiability ( Fig. 2a ) measures the fraction of subjects whose predicted connectome is more similar
(higher Pearson correlation) to their measured connectome than any other subject’s measured connectome (random
chance 1/nsub j = 0.005). Average rank percentile ( Fig. 2b ) is the fractional rank of the similarity (Pearson correlation)
of a subject’s predicted and measured connectomes compared to all other measured connectomes, averaged across
subjects (random chance 0.5). The avgcorrdemean metric ( Fig. 2c ) is the average Pearson correlation between
a subject’s predicted and measured connectomes, after subtracting the population average of the measured
connectome flavor from the predicted and measures connectomes. The average rank percentile for FCs predicted
from FCs of different parcellations or connectivity estimations (FC→ FC) shows near-perfect identifiability ( Fig. 2b ,
upper section, upper left block mean=1.0). Similarly, SC→ SC predictions have near-perfect identifiability (upper
section, lower right block mean=0.99). Inter-modality predictions performed worse than within-modality, but still far
exceeding chance, with the overall mean of SC→ FC (lower left block) and FC→ SC (upper right block) average
rank identifiability of 0.82 and 0.85, respectively. In general, we find better avgrank prediction identifiability coincides
with connectome sparsity, with higher dimensional parcellations (Coco439) and more sparse FC estimates (FCpcorr)
being more easily identifiable. The avgcorrdemean metric ( Fig. 2c ) shows an average of 0.38 for FC→ FC, and an
average of 0.35 for SC→ SC. Inter-modality predictions are again more difficult, with average FC→ SC=0.16, and
SC→ FC=0.09. Lower dimensional parcellations generally had higher avgcorrdemean. Higher dimensional atlases are
likely better at capturing inter-individual variability in the functional boundaries within an atlas and thus have higher
identifiability, while lower dimensional atlases likely benefit from higher SNR within the measured regional SC and
FC and thus have smaller reconstruction error when mapping between flavors.

Predictions of regularized partial correlation FC (FCpcorr) had the highest avgrank, but the lowest avgcorrdemean
among FC flavors, which reflects the noise inherent in this estimate, even with regularization, but also an increased
sparsity that drives identifiability. SC predicted from FCpcorr yielded consistently better performance than other
FC inputs, likely due to the increased sparsity and removal of non-specific correlations. The best single FC input
for predicting all SC flavors was the Shen268 FCpcorr, which predicts Coco439 SCpr with an avgrank of 0.99 and
avgcorrdemean of 0.19. The best single SC input for predicting all FC flavors was the Coco439 SCpr.

The bottom subpanel of Fig. 2a-c shows connectome predictions using the “fusion” latent space average from
multiple input flavors. The “fusion-parc” predictions exclude inputs of the same parcellation from the averaged
latent vectors, and their relatively high values demonstrate the level of shared information across flavors within the
Krakencoder’s unified latent space.

Finally, we show that the Krakencoder’s fusion prediction also preserves the network properties of the measured
connectomes. Fig. S6 shows the Spearman correlation between the measured connectomes’ network properties
(mean node strength, mean betweenness centrality, characteristic path length and modularity) and the Krakencoder’s
predicted connectomes’ network properties, across 196 held-out individuals in the test set. The three fusion
representations are used as input and each of the 15 connectome flavors as output; correlations between measured
network metrics from the various familial relatedness groups are shown as comparison. The Krakencoder’s predicted
connectomes generally preserve the network properties of the measured connectomes as well as or better than
the correlation between network properties extracted from identical twins (MZ) or two scans of the same individual
(self-retest).

2.4 Connectome similarity of related individuals
The “fusionSC-parc” and “fusionFC-parc” rows in Fig. 2a-c represent the accuracy of the Krakencoder when
predicting an SC or FC connectome flavor from all other SC or FC flavors (excluding those from the predicted
parcellation). If we compare this directly to Fig. 2d , we can see how the Krakencoder’s predicted connectome
accuracy compares to several baseline estimates: measured connectomes from age- and sex-matched individuals
who are unrelated, family members (non-twin siblings, dizygotic [DZ] and monozygotic [MZ] twins), retest sessions
from the same individual (self retest), or the population mean connectome. For instance, the “self retest” row in
the Fig. 2d heatmaps can be considered a measurement reliability ceiling, while the “unrelated” row shows the
performance that can be explained by age- and sex-matching alone. Within a modality, top-1 accuracies (ranging
from 0.93-1 for “fusionFC-parc”→FC and 0.83-0.97 for “fusionSC-parc”→SC) and average rank percentiles (all
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equal to 1 for the “fusionFC/SC-parc”) in Fig. 2a and Fig. 2b are similar to the self retest identifiability (when
connectomes derived from imaging the same person twice are used to perform the identification) and better than
the identifiability of individuals who are genetically identical (MZ twins). Similarly, the diagonal entries in Fig. 2c
, representing the autoencoder avgcorrdemean for each flavor, range from 0.13-0.74, which is comparable to the
“self retest” noise ceiling (0.15-0.81), and are larger than the “MZ twin” row (0.07-0.47, a 40-110% increase).
This indicates that the autoencoders with a 128-dimensional bottleneck preserve more inter-subject connectome
variability than can be explained by identical genetics, and about the same amount of variability as expected
when measuring the connectome from the same individual twice. The “fusionSC” and “fusionFC” rows in Fig. 2c
represent the avgcorrdemean for the unified SC (or FC)→FC (or SC) connectome predictions, with values ranging
from 0.03 to 0.16 for SC→FC and 0.16-0.26 depending on the flavor. These exceed the similarity observed in the
“sibling” or “DZ twin” row from the avgcorrdemean subpanel in Fig. 2d , indicating that predicting FC from our unified
SC representation preserves more intersubject FC variability than can be explained by age, sex, and 50% genetic
similarity.

2.5 Spatial variation in edge prediction accuracy
The primary performance metrics assess global connectome similarity. We further assessed the spatial variability
of prediction accuracy to determine whether certain brain regions are more accurately predicted than others. For
fusion-parc, fusionFC-parc, and fusionSC-parc (fusion predictions made without the parcellation being predicted),
the prediction accuracy for each edge is the Pearson correlation between the predicted and measured values for
the 196 held-out test subjects. To simplify visualization and enable comparison across varied size parcellations,
each region is assigned to one of 7 cortical resting state networks42 or subcortical and cerebellar networks.
The edge-wise accuracies (region× region) are then grouped and averaged into a 9×9 network representation
for each connectome flavor. In the top block of Fig. S3a , the network-averaged edge prediction accuracy is
presented for each of the fusion types as input (rows) and each connectivity flavor as output (columns). The bottom
block shows the baseline network-averaged edge similarity comparing measured connectomes of unrelated age-
and sex-matched subjects and related individuals. The figure demonstrates that the Krakencoder’s prediction
accuracy is relatively uniform throughout the cortex and subcortex. Networks with lower Krakencoder predictability
(e.g., the limbic network), also show low self-retest measurement reliability (bottom row). In Fig. S3b , each
network×network heatmap in Fig. S3a is correlated with the corresponding self-retest measurement reliability
(bottom row), to quantify the consistency of the spatial pattern of edge-wise accuracies with the reliability of the
edge-wise measurements. We see that the spatial pattern of the edge-wise accuracy of the Krakencoder’s fused
intra- and inter-modality predictions is as similar to the spatial pattern of the edge-wise self-retest measurement
reliability as the MZ twins’ spatial patterns of edge-wise reliability. Fig. S4 summarizes the edge-wise prediction
accuracy at a region level for each connectivity flavor in its own parcellation, showing a similar agreement between
prediction and measurement reliability.

We observe that higher level association cortex (e.g., default mode) tends to have higher SC→FC prediction
accuracy than sensory-motor cortex (e.g., visual). In Fig. S5a , we further quantify this relationship by correlating
regional prediction accuracy with an estimate of the cortical hierarchy gradient derived from functional connectivity43,
and find a significant positive correlation (Spearman r=0.249, pspin=0.019, 10000 rotations44). Thus, our SC→FC
predictions explain more of the population variability in higher level cortex than in lower. Conversely, if we correlate
corresponding rows in the square measured and predicted connectome matrices, we find that predicted connections
to high-level cortex are less coupled to their measured rows than low-level cortex (Spearman r=-0.191, pspin=0.116;
see Fig. S5b ). This latter relationship is consistent with previous work on structure-function coupling16,19, but
primarily reflects the relationship between population averaged SC and FC rather than predicting inter-individual
variability.

2.6 Demographic and behavioral prediction from the Krakencoder’s latent space representations
We next tested if the Krakencoder latent space preserves inter-subject variation related to family structure as well as
demographic and behavioral features. Fig. 3a shows the inter-subject similarity of latent space representations for
pairs of age- and sex-matched unrelated individuals, non-twin siblings, DZ and MZ twins, and self-retest, along with
inter-subject similarity of observed connectomes. By comparing ROC separability of each pair of violin plots, we
see that separation is greater for the Krakencoder latent space than for the observed connectomes, with statistical
significance for unrelated vs sibling, DZ vs MZ twins, and MZ vs unrelated (pperm < .05, 10000 permutations,
FDR-corrected).

To demonstrate the preservation of demographically- and behaviorally-relevant features in the Krakencoder’s

7/25

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 8, 2024. ; https://doi.org/10.1101/2024.04.12.589274doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.12.589274
http://creativecommons.org/licenses/by-nc-nd/4.0/


latent space, we trained linear models to predict individuals’ age, sex, and cognitive scores (“total”, “fluid”, “crys-
tallized”, and “early childhood” composite scores from the NIH toolbox) from the Krakencoder latent space, and
compared them to the same predictions based on observed connectome data. Linear kernel ridge regression
models for each variable were built from the mean latent vectors (fusionFC, fusionSC, fusionFCSC, each of which is
nsub j×128) or from the average inter-subject cosine similarity of observed data (i.e. the average of 9 FC, 6 SC, or
15 SC+FC nsub j×nsub j matrices). Fig. 3b shows Krakencoder and observed connectome data predict sex with a
similar balanced accuracy of ≥ 0.93. The Krakencoder’s latent space predicts age with Pearson r ≥ 0.5, (fusionFC
r=0.50, MAE=2.35; fusionSC r=0.51, MAE=2.57; fusionFCSC r=0.58, MAE=2.33), similar to the predictions from
observed data (observed FC r=0.57, MAE=2.31; observed SC r=0.49, MAE=2.58; observed FC+SC r=0.59,
MAE=2.33). For the age predictions, fusionSC outperformed observed SC and observed FC outperformed fusionFC
(pperm < 10−3, FDR-corrected), but the observed data and fusion SCFC models performed similarly. Interestingly, the
Krakencoder’s latent space predictions significantly outperformed the observed data model predictions for predicting
all cognitive composite scores. See Methods for details on inter-subject similarity calculations and model fitting.

2.7 Sensitivity analyses
Sensitivity analyses were performed to determine which brain areas’ connections played the largest role in i) the
accuracy of the Krakencoder’s connectome mapper, and ii) the accuracy of the models predicting age, sex, or total
cognition from the Krakencoder’s latent space. These analyses demonstrate how the Krakencoder may be used to
understand the biological underpinnings of, for example, SC to FC relationships or what brain networks may play
the largest role in predicting cognition. For simplicity, regions were grouped into 7 cortical resting state networks42

or subcortical and cerebellar networks. To perform the sensitivity analyses, every connectome edge was set to the
population mean of the training set, except for the columns/rows corresponding to the regions within the network of
interest, which were left untouched, see Fig. 4a . The fusion latent space representations (fusion, fusionSC, and
fusionFC) were re-calculated for each individual and used to predict i) each connectome flavor and ii) age, sex and
total cognition using re-fitted KRR models.

Fig. 4b shows the mean avgrank and avgcorrdemean when only individual-level values of those networks’ con-
nections’ were retained. The accuracy metrics for the fully intact, non-masked connectomes are shown on the
right; values that are lower indicate that network’s connections do not contribute as much to the accuracy of the
Krakencoder’s mapping. The top row shows the mean avgrank over the SC flavors predicted from fusionFC, the
second row shows the mean avgrank over the FC flavors predicted from fusionSC and the third row shows the
mean avgrank across all flavors of predicted SC and FC. We see that default mode network connections appear
important for mapping accuracy, particularly for the fusion→all and fusionFC→SC. Connections to/from regions in
the somatomotor network and subcortex seem to be more informative for fusionSC→FC than for fusionFC→SC.

In Fig. 4c , we see the largest retention in accuracy for predicting sex when functional and structural connections
to/from regions in the default mode network and structural connections to/from the subcortex are retained. Age was
best predicted using functional connections to/from the salience/ventral attention network and structural connections
to/from the subcortex. Total cognition was best predicted by functional connections to/from regions in default mode
and dorsal attention networks, and by structural connections to/from regions in the visual network.

2.8 Krakencoder performance on out-of-sample, out-of-distribution data
To assess generalizability of the Krakencoder to new datasets, we applied our frozen, pretrained Krakencoder model
to data from the multi-site HCP Lifespan study45–47, including both the Development cohort (HCP-D) and the Aging
cohort (HCP-A). These two studies differ from the original HCP young adult study in both subject demographics
(ages 8-21 for HCP-D and 36-100+ for HCP-A vs 22-37 for HCP-YA) and acquisition parameters, with voxel sizes
and scan durations more similar to those used in typical neuroimaging studies (see Methods for more details). To
account for domain shift, we linearly mapped the population mean of each connectome flavor to the population
mean of the HCP-YA training subjects before applying the HCP-YA derived PCA dimensionality reduction and
Krakencoder latent space projection. Despite the demographic and acquisition differences, the Krakencoder still
predicts connectome flavors with high accuracy and precision. Fig. 5a-d shows avgrank and avgcorrdemean for
the HCP-D (age 8-21) and HCP-A (age 36-100+) cohorts. Within-modality connectome prediction identifiability
remained high for both HCP-D and HCP-A (avgrank > 0.96). Inter-modal prediction identifiability was reduced 6-12%
compared to held-out HCP-YA subjects, though still well above chance (avgrank > 0.75). Intra-modal avgcorrdemean
was reduced by 10-26%, while inter-modal avgcorrdemean was 30-50% lower than held-out HCP-YA. Thus, despite
significant differences in age and acquisition reducing prediction accuracy, the Krakencoder model still performs
well above chance and preserves inter-individual differences when mapping between connectome flavors.
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The HCP-D dataset contains 76 sibling pairs (50 same-sex, 26 opposite sex, ∆age 0-9yr), so we performed a
familial similarity analysis similar to that for HCP-YA. In Fig. 5e , we show that siblings were more separable from
age- and sex-matched individuals in latent space than in the observed data for all three fusion types (fusionFC,
fusionSC, fusionFCSC) (pperm < 10−3, FDR-corrected). Finally, we performed a regression analysis to predict age,
sex, and cognition in the HCP-D and HCP-A datasets (See Fig. S7 ). New predictive models using the same
approach as the HCP-YA predictions were fit and cross-validated for each of the two new datasets. As with HCP-YA,
sex was predicted very accurately by both latent and observed data models (balanced held-out test accuracy = 0.86-
0.95). Age was predicted with much higher accuracy than in HCP-YA (HCP-D r=0.84-0.95, MAE=1.45-1.72; HCP-A
r=0.76-0.85, MAE=6.13-6.52 on held-out test data), likely due the much larger age range and larger age-related
changes during development and aging. Cognitive score prediction performance for the HCP-A data was similar to
or better than HCP-YA, perhaps due to larger age-related cognitive effects, but performed considerably worse for
the HCP-D dataset. This decrease in predictive ability was especially pronounced when predicting cognition from
SC, where accuracy (Pearson’s r) from latent and observed data models was not significantly greater than 0. For all
other predictions, observed data models performed significantly better than those on the Krakencoder latent space
(pperm < 10−3, FDR-corrected), though the Krakencoder predictions remained well above chance.

We aim to further test Krakencoder’s biological plausibility by applying it to connectomic data from individuals
with pathological changes in the brain’s structural and functional connections. We extracted SC and FC from 100
individuals with multiple sclerosis (age: 22-71, 45.5±11.4 years; 66% female; disease duration: 12.97±8.07 years),
an autoimmune disease that results in lesions primarily in the brain’s white matter48. This disease has also been
associated with changes in SC and FC that are related to individuals’ disability levels49,50. The fMRI and dMRI
acquisitions for these patients had significantly lower spatial, temporal, and angular resolution than the HCP-YA
or HCP-Lifespan data (see Table S1 ). We fed the observed, pathological SC and FC into the corresponding
arms of the frozen Krakencoder to obtain a fusionSC and fusionFC, from which we predicted the various FC or
SC flavors. We found that the average rank identifiability of the Krakencoder’s predicted FC (from the fusionSC)
was up to 71%, which was higher than the identifiability of the observed SC to observed FC (calculated within the
same atlas), which was at most 54%, see Fig. S8 . Mapping the fusionFC, calculated from fMRI in the MS patients,
to the various SC flavors using the Krakencoder had around the same identifiability (up to 63%) as the mapping
between observed FC to SC. These results demonstrate that even though the Krakencoder was trained on young,
healthy individuals, it can still represent with good fidelity the relationship between connectomes in individuals with
pathology. Importantly, it may indeed better capture the mapping from SC to FC than the observed connectome
data itself. This provides evidence of the biological plausibility of the Krakencoder’s architecture and hints at its
possible clinical significance in capturing low-dimensional representations of disease pathology.

2.9 Comparison with existing techniques
While predicting FC from SC is not the only application of our model, this route of prediction is among the most
commonly studied problems in brain connectivity mapping. To compare our current Krakencoder model with this
previous literature, we gathered a few recent studies that used different approaches to predict FC from SC. The
first is a deep neural network proposed by Sarwar et. al24 (“deepnet”) and the second is a graph neural network
from Neudorf et. al25 (“graphnet”). The Krakencoder model incorporates 6 flavors of SC (2 per parcellation) and 9
flavors of FC (3 per parcellation). These two previous SC-FC prediction frameworks are designed to predict a single
flavor of FC from SC. Thus, we trained 12 separate models for each of the two frameworks for all combinations of
SCdt/SCpr and FC/FCpcorr. FCgsr was excluded due to computational constraints and relative redundancy with FC.

By both avgrank and avgcorrdemean metrics, the predictions from our model outperform both “deepnet” and
“graphnet” models across all connectome flavors and parcellations (See Fig. S9 ). Specifically, the Krakencoder
avgrank was 17-86% higher (average 42%) than “deepnet” or “graphnet” models for the same single SC inputs, and
18-90% higher (average 54%) using the fusionSC input to predict each FC flavor. Krakencoder avgcorrdemean was
1-890% higher (average 335%) than either model using single SC inputs, and 25-980% higher (average 450%)
using fusionSC. Similarly, the accuracy of network properties for FC predicted by Krakencoder exceeded that from
either alternative SC to FC framework. These particular results highlight the special emphasis of the Krakencoder
on preservation of individual differences when mapping from SC to FC.

A note on computational efficiency: training all 12 “deepnet” models required approximately 140 GPU hours on
an Nvidia A100 (4x5 hours for FS86, 4x10 hours for Shen268, and 4x20 hours for Coco439), and all 12 “graphnet”
models required 1200 GPU hours (4x50 hours for FS86, 4x100 hours for Shen268, 4x150 hours for Coco439).
For comparison, the Krakencoder required only 30 GPU hours to train a model for all 15x15=225 prediction paths
simultaneously. When applying the Krakencoder model to new connectome data, the computational requirements
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are minimal and can even be done using free cloud-based platforms like Google Colab.

2.10 Extending the Krakencoder to new connectivity flavors
To broaden the applicability of our model, we demonstrate a means to extend the pre-trained Krakencoder model
beyond the 15 flavors shown here. As depicted in Fig. S10a , given a new connectivity flavor computed on the
same training subjects as the pre-trained model, we train a new autoencoder with an additional loss term to force
the new latent representation into alignment with the pre-computed fusion latent representation. To illustrate this
capability, we extended our model to new data from a previously unseen parcellation with bandpass-filtered time
series for FC (original flavors use a high-pass filter) and un-normalized streamline count for SC (original flavors use
pairwise volume normalization). As seen in Fig. S10b , prediction identifiability and reconstruction accuracy are
comparable to the original 15 flavors. Furthermore, unlike training the original 225 path model, which takes up to
30 hours on a GPU, adding each new flavor takes only 1-2 minutes without a GPU. In this example, we used the
original 683 HCP-YA training subjects, but this model-extension technique can use any population for which have
already computed the Krakencoder latent representation.
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Figure 2. Connectome prediction performance for all input and output flavors on 196 held-out HCP-YA
subjects. Heatmaps in a-c show connectome prediction performance from each source flavor (row) to each
target flavor (column). Flavors include 3 parcellations (fs86, sh268, co439), 3 FC estimates (FC=Pearson,
FCgsr=global signal regressed Pearson, and FCpc=regularized partial correlation), and 2 SC estimates
(SCdt=deterministic tractography, SCpr=probabilistic tractography). The “average” row is the mean of
performance metrics for all sources in the column above. The “fusion” row shows predictions from the average
latent vector from all 15 connectome flavors (See Fig. 1d ). “fusionFC” and “fusionFC” are predicted from the
average of 9 FC or 6 SC latent vectors, respectively. “fusion-parc” predicts each parcellation from the average of
all parcellations except itself. a. Top-1 accuracy measures the fraction of test subjects whose predicted
connectome is closer to their own measured connectome than any other subject’s measured connectome.
Chance level is 1/196=0.005. b. Average rank percentile measures the fraction of other subjects’ measured
connectomes that are further from the target subject’s predicted connectome than its own measured connectome.
This rank percentile is then averaged across subjects. Chance level is 0.5. c. Average correlation of each
subject’s measured and predicted connectomes, after subtracting the population average (avgcorrdemean). d. For
each subject sa, we select an age- and sex-matched individual sb of a given relatedness (unrelated, sibling,
DZ/MZ twin, or self retest) and consider the measured connectome from sb as the prediction for sa. For each
relatedness level, we compare the set of pseudo-predictions to measured connectomes using each performance
metric, as though they were predictions from our model. Thus, we can observe the reliability and utility of each
flavor and performance metric, and provide multiple baselines for evaluating model performance. We also show
performance using the population average for each flavor (“pop. mean”) as pseudo-prediction, which for the
avgcorr metric (bottom) exceeds test-retest, but for all other metrics is zero or chance.
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Figure 3. Familial connectome similarity and demographic prediction for held-out HCP-YA subjects. a.
Inter-subject similarity of latent space representations and observed SC/FC data, stratified by family relationship.
Each violin plot shows the distribution of inter-subject similarity for age- and sex-matched pairs for each familial
relationship, as well as unrelated pairs and self-retest. Due to the high baseline similarity in observed data, latent
and observed data similarity measures were independently z-scored by the mean and standard deviation of the
similarity of unrelated subjects for visual comparison. Separability of each pair of violins within a modality was
computed as the area under the receiver operating characteristic (ROC) curve. Separability estimates for a given
relationship pair from the latent space and observed data were statistically compared using a permutation test,
where bars show family-level pairs where latent space separability exceeds observed data separability
(pperm < .05, 10000 permutations, FDR-corrected). b. Prediction accuracy of demographic and cognitive metrics
from different subsets of the Krakencoder’s latent space and observed SC and FC data. Variability of prediction
accuracy was assessed through bootstrap resampling (N=100). ∗= significant difference between prediction
accuracy from latent space and observed data. (pperm < 10−3, 10000 permutations, FDR-corrected).
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Figure 4. Spatial input sensitivity analysis of Krakencoder predictions. a. We estimate the sensitivity of the
Krakencoder’s prediction accuracy to regions within a given network by replacing all connectome edge values not
in that network with the population mean and feeding these masked connectomes into the connectome and
demographic predictions. The accuracy after masking reveals the amount of information that particular network’s
regional connections have in the mapping and demographic/behavioral predictions. b. Connectome prediction
identifiability (avgrank, top) and reconstruction accuracy (avgcorrdemean, bottom) using only the connections to/from
regions within each brain network shows how much information the model is utilizing from each network when
predicting whole-brain connectomes. The “non-masked” column on the right shows performance using original
connectomes without masking. c. Similarly, predicting subject sex (top), age (middle), and total cognition
(bottom) from masked input data shows the relative amount of information the connections to/from regions in
each network contain about those demographic and cognitive features.
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Figure 5. Out-of-sample performance of the Krakencoder on individuals from across the lifespan.
Heatmaps in a-b show connectome prediction performance for subjects from the HCP-Development study (ages
8-21) and heatmaps in c-d show connectome prediction performance for subjects from the HCP-Aging study
(ages 36-100). The Krakencoder model applied was trained on HCP-YA data (ages 22-37) and frozen; no
re-training or fine-tuning was performed. a,c. Average rank percentile ( Fig. 2b ) is the fractional rank of the
similarity (Pearson correlation) of a subject’s predicted and measured connectomes compared to all other
measured connectomes, averaged across subjects (random chance 0.5). b,d. Average correlation of each
subject’s measured and predicted connectomes, after subtracting the population average. e. Connectomes from
sibling pairs in HCP-D are more similar than age- and sex-matched unrelated pairs, with latent space similarity
significantly more separable than observed data. Each violin plot shows the distribution of inter-subject similarity
for sibling pairs or pairs of unrelated individuals with matching age and sex disparity. As in Fig. 3a , latent and
observed connectome similarity were independently normalized for visualization. Separability was measured by
ROC analysis, and significance was assessed using permutation testing. For all three fusion types (fusionFC,
fusionSC, fusionFCSC), siblings were more similar in the Krakencoder’s latent space than in the observed data
(pperm < 10−3).
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3 Discussion
Here, we present the Krakencoder, a joint connectome encoder/decoder tool, capable of simultaneously, bidirec-
tionally translating between structural and functional connectivity, and connectomes from different atlases and
processing choices. The Krakencoder’s predicted connectomes match measured connectomes with an unprece-
dented level of accuracy and individual-level identifiability, while also preserving their network properties. The
Krakencoder’s across modality mapping (from SC to FC and vice versa), which is arguably the most commonly
performed mapping, had identifiability that was 42-54% higher than existing deep learning models. In addition
to translating between connectome flavors, the Krakencoder can fuse connectome representations to create a
single low-dimensional representation of all measured connectome flavors, each of which provide a different view of
the true underlying connectome. The latent space of the Krakencoder appears to i) better reflect familial related-
ness (compared to observed connectome data), ii) preserve age- and sex- relevant information and iii) enhance
cognition-relevant information (again, compared to the observed connectome data). Finally, we demonstrated that
the Krakencoder can be applied without any retraining to completely new, out-of-age-distribution lifespan data and
still preserve inter-individual differences in the connectome predictions and familial relatedness in the fused latent
space representations. Overall, we believe the Krakencoder has several novel aspects and applications, and is
a significant leap forward in quantifying the relationship between multi-modal brain connectomes and how these
relationships map to behavior.

Previous work in mapping between connectomes, mostly predicting FC from SC, has largely focused on
optimizing accuracy in the model predictions by maximizing the correlation between predicted and measured FC.
However, we argue here that over-emphasis on this metric can result in a model that predicts FC that is close to the
population mean and/or does not preserve individual differences. The “deepnet” model did incorporate into its loss
function a term that aimed to reduce inter-subject similarity of predicted FC24, however it appears that this only
pushed the individual FC predictions away from one another and not toward the particular individual’s measured
connectomes as its identifiability was just above chance. The Krakencoder’s connectome predictions, on the other
hand, achieve perfect average rank identifiability within the same connectome modality, and consistently high
average rank identifiability predicting FC from SC. Other modeling work has revealed that regional SC-FC coupling
follows a functional gradient wherein the coupling is highest in visual and somatomotor networks and lowest in
higher-order association networks16,19. The Krakencoder predictions of FC from fusionSC follow this trend where
the regional, row-wise correlation of observed FC and the Krakencoder’s predicted FC from fusionSC appears to be
linearly decreasing with increasing regional hierarchy (see Fig. S5 ). This metric of row-wise correlation is very
different from the across-subject, network-level correlations we are illustrating in Fig. S3 that appear to be inversely
correlated with regional hierarchy. As the Krakencoder architecture predicts each edge from all other regions and
edges, rather than a single row, the edge-wise accuracy appears to be more aligned with measurement reliability
than regional coupling. (see Fig. S3 and Fig. S4 ).

The Krakencoder has many novel aspects, including its ability to translate between connectome flavors without
requiring raw data. This is useful when researchers only have access to a connectome from a particular pipeline or
atlas and need it in another. One previously developed tool called CAROT does allows translation of a connectome
from a different atlas into another without requiring the raw data30; however, this tool does not allow translating
connectomes between different processing pipelines or mapping between SC and FC. There is not one FC or SC
processing pipeline that has been agreed upon by the field; many researchers chose one pipeline and replicate on
others. The ability of the Krakencoder to predict other flavors within the same modality suggests a common, latent
connectomic backbone that gives rise to each FC or SC flavor when a given parcellation or connectome estimation
strategy is employed. The Krakencoder’s fusion functionality removes the burden of having to choose one pipeline or
replicate findings on several different pipelines and attempt to make general conclusions. More than that, we believe
the fusion of various snapshots of the underlying connectome increases the SNR of the connectome representations
and perhaps becomes more than the sum of its parts. This latter statement is supported by the finding that models
predicting cognition from the fused latent space representations outperformed models based on the observed
connectome data; age and sex predictions were similar between the models but these are generally easier to predict
compared to cognitive scores. The Krakencoder’s SNR boosting effect will be especially useful when the tool is
applied to connectomes extracted from lower-quality data, which is often the case in clinical populations. Here, using
lower-quality MRI data from individuals with multiple sclerosis, we demonstrate that the fusionSC to FC mapping
has better identifiability (and the fusionFC to SC mapping similar identifiability) than the observed connectome data.

The Krakencoder is robust when applied to completely new, out-of-distribution data from individuals across the
lifespan (8-100+) and from adults with pathological changes to their connectomes (individuals with multiple sclerosis,
or MS). The frozen model (trained on young adult data) still retained a high level of identifiability and explained
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variance when mapping between connectomes from the HCP-D, HCP-A, and MS datasets. The Krakencoder
appears somewhat impervious to the sweeping connectomic changes that occur throughout human development,
aging, and, to a certain extent, disease processes51,52. The drop in demographic predictions of the latent space
for the HCP-D, HCP-A, and MS data may mean there may be a benefit of the Krakencoder from further training
(perhaps fine tuning) using lifespan and /or disease data.

Future work will apply the Krakencoder to predict connectomes under other clinical conditions, and further explore
the relationship between the common latent representation and factors of neuroscientific or clinical significance.
We will also create a fine-tuning procedure to further increase the robustness of the Krakencoder when applied to
novel datasets in order to promote its wider applicability, particularly in datasets that contain pathology like stroke
and Alzheimer’s disease. The Krakencoder could also be adapted to have encoding and decoding arms for data
from other modalities (MEG or EEG) or even to explicitly capture demographic/behavioral information so that the
latent space may be used more effectively for brain-behavior mapping. While we purposefully chose atlases that
were derived in varied ways, i.e. using anatomical vs functional information, there still may be disagreement in
the labeling of regions across subjects. However, by translating between and fusing SC and FC derived from all
atlases, the Krakencoder attempts to identify a latent organizational representation that underlies those observed in
different overlapping parcellation schemes. In the context of SC-FC coupling, we do not think these atlas choices
prevent its accurate evaluation within an individual, since we are using the same parcellation for both SC and FC.
Finally, while this first proof-of-concept work focused on applying the Krakencoder to static FC, we know that brain
activity is flexible and adapts to task demands, varied states, and pharmacological manipulations. Further work will
investigate adapting the Krakencoder to better reflect dynamic changes that occur in brain networks.
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4 Methods

4.1 Data description
The data for this study come from the original Human Connectome Project (HCP)53 and the HCP Lifespan
studies45–47, which together includes high-resolution 3T MRI data for 2490 healthy participants aged 8-100+.
Primary model training and testing was performed using data from 958 subjects from the original “young adult” HCP
study (HCP-YA), aged 22-37, which includes monozygotic and dizygotic twin pairs as well as non-twin siblings.
For benchmarking performance, we include a subset of 40 HCP-YA subjects who returned for a complete “retest”
session 1-11 months after their initial session. The HCP-Development (HCP-D, 608 subjects, aged 8-21, including
76 pairs of non-twin siblings) and HCP-Aging (HCP-A, 716 subjects aged 36-100) cohorts from HCP Lifespan were
used to evaluate our pre-trained model on out-of-sample, out-of-distribution data. HCP Lifespan data differs from
HCP-YA in both age range and acquisition parameters, with Lifespan acquiring less than half as much fMRI and
dMRI data as HCP-YA. HCP Lifespan studies were also collected across four different sites using standard MRI
scanners while the HCP-YA data were all acquired on a custom MRI scanner at a single site. See Table S1 for
demographic and acquisition details. For all three datasets, we excluded subjects with incomplete resting-state
fMRI or diffusion MRI, and subjects with known acquisition or QC issues.

4.2 Construction of Functional Connectomes
All resting-state fMRI timeseries were preprocessed by HCP using the Minimal Preprocessing Pipeline54, which
includes motion correction, susceptibility distortion correction, coregistration to anatomy and nonlinear template
space (FSL MNI152 template, 6th generation), as well as automated denoising using ICA-FIX55. We used a custom
post-processing pipeline to identify motion and global signal outlier timepoints (global signal>5σ , motion derivative
>.9mm), regress out tissue-specific nuisance time series (5 eigenvectors each from eroded white matter and CSF
masks56) and motion-related time series (24 total, including 6 motion parameters, their backward derivatives, and
the squares of both57), temporally filter (high-pass >0.01 Hz for HCP-YA, >0.008 Hz for HCP-A/D, using DCT
projection), and parcellate time series using each atlas. Outlier timepoints were excluded from nuisance regression
and temporal filtering. Regional time series for each brain region were obtained by averaging voxels in the denoised
time series data. Regional time series for each of the four (for HCP-YA) or two (for HCP-Lifespan) scans were
variance-normalized and concatenated, and Pearson correlation between regional time series (excluding outlier
timepoints) resulted in an region×region resting-state functional connectivity (FC) matrix for each subject. We also
computed an FC matrix with global signal regression, FCgsr, by regressing the mean gray matter time series and its
temporal derivative from each regional time series before computing region×region Pearson correlation. Finally, we
computed a Tikhonov-regularized partial correlation FCpcorr (or FCpc) that minimizes the average distance between
subject FCpcorr and the unregularized population average partial correlation36; see Supplemental Methods for
regularization details.

4.3 Construction of Structural Connectomes
Diffusion MRI were preprocessed by HCP using the Minimal Preprocessing Pipeline, which jointly corrected
for motion, EPI distortion, and eddy current distortion using FSL’s “topup” and “eddy” tools58,59, before being
linearly coregistered to the anatomical image. Preprocessed diffusion MRI were further processed using MRtrix360,
including bias correction, constrained spherical deconvolution (multi-shell, multi-tissue FOD estimation, lmax=861),
and whole-brain tractography. We performed both deterministic (SD_STREAM62, or SCdt) and probabilistic,
anatomically-constrained tractography (iFOD2+ACT63,64, or SCpr) using dynamic white-matter seeding65 for both
methods, resulting in 5 million total streamlines per subject for each tractography algorithm. Structural connectivity
(SC) matrices were constructed for each atlas by counting the number of streamlines that ended in each pair of gray
matter regions, normalized by the total volume of each region pair.

4.4 Parcellations
We used three different whole-brain atlases, covering a range in size and construction methodology. The 86-region
FreeSurfer atlas (FS86) combines 68 cortical gyri from Desikan-Killiany and 18 subcortical gray matter regions
(aparc+aseg66,67). The 268-region Shen atlas (Shen268 or sh268) is an MNI-space cortical and subcortical
volumetric atlas based on resting-state fMRI clustering68,69. The 439-region CocoHCP439 atlas (Coco439 or co439)
combines 358 cortical regions from the HCP multimodal parcellation70, defined using anatomical and functional
connectivity gradients, with 12 subcortical regions from FreeSurfer “aseg” (further modified by FSL FIRST71), 30
thalamic nuclei derived from FreeSurfer772 (50 original outputs included many small nuclei, which were merged into
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the final set of 30), 27 cerebellar regions from the SUIT atlas73, and 12 additional subcortical nuclei from AAL374.
The FS86 and Coco439 atlases were defined based on each individual subject’s FreeSurfer surface and subcortical
parcellations, whereas the Shen268 atlas was applied directly to MNI-resampled data for each subject. The FS86,
Shen268, and Coco439 parcellations result in 3655, 35778, and 96141 pairwise connectivity estimates, respectively.

4.5 Evaluating connectome predictions
As previously discussed, and as illustrated in Fig. S1 , we consider several complementary assessments of how
predicted connectomes (denoted X̂s for subject s) reflect measured connectomes (denoted Xs). Based on these
considerations, we use the following metrics for evaluating model performance:

avgcorr =
1

nsub j

nsub j

∑
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corr(Xs, X̂s) (1)
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1
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nsub j

∑
s=1

corr(Xs−µtr, X̂s−µtr), where µtr =
( 1

nsub j

nsub j

∑
s=1

Xs

)
for training subjects (2)

top1acc =
1

nsub j

nsub j

∑
s=1

[argmaxa∈1...nsub j
(corr(Xs, X̂a)) = s], where [·] represents an indicator function (3)

avgrank =
1

nsub j

nsub j

∑
s=1

( 1
nsub j

nsub j

∑
a̸=s

[corr(Xs, X̂a)< corr(Xs, X̂s)]
)

(4)

4.6 Model training
Each model training epoch comprises two stages: 1) path-wise reconstruction and inter-subject dispersion and
2) latent space consistency. For a given path i→ j, we loop through batches of subjects (nbatch = 41), apply
Encoderi to transform input flavor X ′i (256×nbatch) to latent representation zi (128×nbatch), and Decoder j to transform
zi to predicted output flavor X̂ ′j (256× nbatch). Path-wise reconstruction loss and inter-subject dispersion terms
(Lr.corrI , Lr.mse, Lr.marg) are computed per batch from X ′j and X̂ ′j. These reconstruction losses collectively penalize
reconstruction error in both absolute MSE and correlation terms, and promote inter-subject separation in the
reconstruction space. Path-wise latent space dispersion loss (Lz.corrI , Lz.dist), computed from zi, promotes inter-
subject separation in the latent space. This forward pass and backpropagation is repeated for each batch of training
subjects, before moving on to the next training path. The order in which paths are selected is randomly reshuffled
each epoch. The second stage of each training epoch, latent space consistency, enforces similarity of the latent
space representations from each input flavor. We re-compute zi for all input flavors from the encoders updated
in the path-wise stage, and then compute Lz.sim as the total MSE between the set of zi matrices for all flavors.
Explicit weights were applied to the reconstruction MSE loss term Lr.mse (wrm = 1000), the combined path-wise latent
space dispersion loss Lz (wz = 10), and the latent space intra-subject consistency loss Lz.sim (wzs = 10000). See
Algorithm 1 for pseudocode depiction of training procedure, and Table 1 for details of loss function terms.

After each training epoch, we compute predicted connectomes for all paths on a held-out set of 80 validation
subjects, and the inverse PCA transform (pre-computed on the training data only) is applied to compute X̂ j ∈ Rnedges

from X̂ ′j ∈ R256. Reconstruction accuracy and identifiability are computed in this high-dimensional data space.
Loss term weights were tuned empirically to balance the reconstruction (avgcorrdemean) and identifiability (avgrank)
performance metrics in the validation dataset. Fig. S2 illustrates this trade-off when tuning MSE reconstruction
loss.

The model was implemented in PyTorch 1.10, using the AdamW optimizer with learning rate 10−4. Model
weights were regularized by weight decay 10−2, as well as dropout in all encoders and decoders (dropout rate
0.5). The model was trained for 5000 epochs, which took approximately 36 hours on an Nvidia A100 GPU. Due to
the regularization and the largely linear nature of the model, we did not observe significant overfitting. Validation
performance plateaued after 500-1000 epochs, and we selected the 2000 epoch checkpoint for further evaluation.
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Algorithm 1 Krakencoder model training procedure. (See Table 1 for loss function details)

Initialization: X ′i ← PCA(Xi) for all i ∈ 1 . . .n f lav # Transform inputs into R256×nsub j PCA space

for epoch = 1, . . . , nepochs do

# Stage 1: Path-wise reconstruction loss
for each pathi j ∈ shuffle((i, j) ∈ 1 . . .n f lav) do # Loop through each path i→ j

for each subject_batch do
zi← Encoderi(X ′i )
X̂ ′j← Decoder j(zi)

Lpath← Lr(X ′j, X̂
′
j)+wz ∗Lz(zi) # Latent space and reconstruction loss for X ′i → zi→ X̂ ′j

backprop(Lpath) # Update Encoderi and Decoder j for this subject_batch
end for

end for

# Stage 2: Latent space consistency
for each subject_batch do

zi← Encoderi(X ′i ) for all i ∈ 1 . . .n f lav # All input flavors→ latent space using updated Encoderi
Lz.sim← ∑i, j ̸=i ∥zi− z j∥2

2 # Similarity of latent space across flavors for each subject
backprop(Lz.sim) # Update all Encoderi for this subject_batch

end for

Evaluation: X̂i← PCA−1(X̂ ′i ) for all i ∈ 1 . . .n f lav # Predicted PCA outputs→ high dimensional Rnedges×nsub j

end for

4.7 Procedure for comparing family structure and predicting demographics
To examine how the connectomes (predicted and measured) reflect family structure, we first compute the averaged
latent vector in the Krakencoder for each subject from either all 15 flavors (“fusion”) or the 9 FC (“fusionFC”) and
6 SC (“fusionSC”) separately, and then compute a nsub j×nsub j inter-subject latent similarity matrix using Pearson
correlation. These pairwise similarities are grouped according to the inter-subject relationship. For comparison,
we also compute the inter-subject similarity for all 15 flavors of the high-dimensional measured connectome data,
average these 9, 6, or 15 nsub j×nsub j similarity matrices, and group them according to relatedness. Due to the high
baseline similarity in observed data, latent and observed data similarity measures were independently z-scored by
the mean and standard deviation of the similarity of unrelated subjects for visual comparison. Differences of ROC
separability of the distributions (e.g., separability of DZ and MZ distributions in latent space, compared to separability
of DZ and MZ in observed data) was assessed through permutation testing (10000 matched permutations).

For demographic predictions, we used a linear support vector classifier (SVC) to predict sex, and kernel ridge
regression with linear kernel to predict age and cognition75. For the Krakencoder, models were fit using cross-
validation on the average latent vectors for the 683 subjects used to train the Krakencoder model, and tested on the
196 held-out subjects. For the observed connectome data, we computed the inter-subject cosine similarity matrix of
each connectome flavor, and used the averaged similarity matrices as input into the model, using the same training
and testing splits as for the Krakencoder. Regression hyperparameters were selected by nested cross-validation
grid search. Variability of prediction accuracy was assessed through bootstrap resampling (N=100), and significant
differences between Krakencoder and observed data models was assessed using permutation testing of matched
bootstrap samples (10000 permutations).

Data and code availability
Code is available at https://github.com/kjamison/krakencoder. Post-processing code for FC can be
found here: https://github.com/kjamison/fmriclean. Additional data files are available at https://
osf.io/dfp92.

Preprocessed data for this study are available for download from the Human Connectome Project (www.
humanconnectome.org). Users must agree to data use terms for the HCP before being allowed access to
the data and ConnectomeDB, details are provided at https://www.humanconnectome.org/study/hcp-
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Loss category Equation Description
P

at
h

lo
ss

Reconstruction
accuracy and
inter-subject
dispersion

Lr.corrI(X ′i , X̂
′
i ) = ∥corr(X ′i , X̂

′
i )− Insub j×nsub j∥2 [nsub j × nsub j] correlation matrix of

measured→predicted should be high
along the diagonal and low off-diagonal

Lr.mse(X ′i , X̂
′
i ) = ∥X ′i − X̂ ′i ∥2

2 MSE between measured→predicted
should be low

Lr.marg(X ′i , X̂
′
i ) =−mina,b̸=a(∥X ′i (sa)− X̂ ′i (sb)∥2) Predicted X̂ ′ for subject sa should be far

from nearest measured X ′ for sb̸=a

Latent space
inter-subject
dispersion

Lz.corrI(zi) = ∥corr(zi,zi)− Insub j×nsub j∥2 [nsub j×nsub j] correlation matrix of latent
space vectors (for the same path)
should be low off-diagonal

Lz.dist(zi) =−∑
nsub j
a,b ̸=a ∥zi(sa)− zi(sb)∥2 Mean inter-subject latent space

distances should be high

Combined path
loss

Lr(pathi j) =Lr.corrI(X ′j, X̂
′
j)+Lr.marg(X ′j, X̂

′
j)+wrm ∗Lr.mse(X ′j, X̂

′
j) (wrm = 1000)

Lz(pathi j) =Lz.corrI(zi)+Lz.dist(zi)

Lpath =Lr(pathi j)+wz ∗Lz(pathi j) (wz = 10)

Latent space
intra-subject
consistency

Lz.sim(z) = ∑
nsub j
a=1

(
∑

n f lav
i, j ̸=i ∥zi(sa)− z j(sa)∥2

2
)

Total MSE between all latent vectors
from all flavors for each subject should
be low

Table 1. Loss function summary

young-adult/data-use-terms. Data from the HCP Aging and HCP Development studies can be down-
loaded as part of the HCP-Lifespan 2.0 release, distributed by the NIMH Data Archive (https://nda.nih.gov).
See https://www.humanconnectome.org/study/hcp-lifespan-aging/data-releases and https:
//www.humanconnectome.org/study/hcp-lifespan-development/data-releases for more informa-
tion about data use terms.

Post-processed connectomes and related input files can be made available upon reasonable request from
corresponding author K.J., subject to HCP data use restrictions described above.
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