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Abstract

Intraventricular vector flow mapping (VFM) is a growingly adopted echocardiographic modality that derives time-resolved
two-dimensional flow maps in the left ventricle (LV) from color-Doppler sequences. Current VFM models rely on kinematic
constraints arising from planar flow incompressibility. However, these models are not informed by crucial information about
flow physics; most notably the pressure and shear forces within the fluid and the resulting accelerations. This limitation has
rendered VFM unable to combine information from different time frames in an acquisition sequence or derive fluctuating
pressure maps. In this study, we leveraged recent advances in artificial intelligence (AI) to develop AI-VFM, a vector flow
mapping modality that uses physics-informed neural networks (PINNs) encoding mass conservation and momentum balance
inside the LV, and no-slip boundary conditions at the LV endocardium. AI-VFM recovers the flow and pressure fields in
the LV from standard echocardiographic scans. It performs phase unwrapping and recovers flow data in areas without input
color-Doppler data. AI-VFM also recovers complete flow maps at time points without color-Doppler input data, producing
super-resolution flow maps. We show that informing the PINNs with momentum balance is essential to achieving temporal
super-resolution and significantly increases the accuracy of AI-VFM compared to informing the PINNs only with mass
conservation. AI-VFM is solely informed by each patient’s flow physics; it does not utilize explicit smoothness constraints
or incorporate data from other patients or flow models. AI-VFM takes 15 minutes to run in off-the-shelf graphics processing
units and its underlying PINN framework could be extended to map other flow-associated metrics like blood residence time or
the concentration of coagulation species.

1 Introduction

Echocardiography is the most used imaging technique in the clinical setting to measure intracardiac flow, as it is non-invasive,
portable, and widely available [1]. Modalities such as color-, pulsed-, and continuous-wave Doppler facilitate the bedside
assessment of intracardiac blood flow by providing time-resolved velocities in the direction of the ultrasound beam. However,
despite its well-known accuracy and accessibility, Doppler velocity measurements are unidirectional, often missing critical
information about flow patterns.

Two- and three-directional vectorial maps of intracardiac flow can be acquired using phase-contrast cardiac magnetic
resonance imaging (PC-MRI) [2–5]. However, compared with echocardiography, PC-MRI has limited temporal and spatial
resolutions, involves long acquisition times, and is less accessible, which can hamper its application in clinical practice [6–8].
Computed tomography (CT) is more widely available, can assess cardiovascular anatomy with high spatial resolution in the
imaging plane, and offers the possibility to obtain volumetric data. However, no analysis tools quantify flow directly from CT
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images. While computational fluid dynamics (CFD) analysis can be performed using CT-derived segmentations [9], CFD is
critically sensitive to modeling choices and boundary conditions.

Given its potential value in the diagnosis and prognosis of heart failure, ultrasound flow mapping inside the left ventricle
(LV) has received significant attention. Several ultrasound methods have been developed to capture LV flow, balancing
temporal and spatial resolutions with clinical accessibility. Echo particle image velocimetry (Echo-PIV) can obtain time-
resolved 2D intraventricular velocity fields with good spatial and temporal resolution from contrast-infused images [10, 11],
and 3D extensions have been proposed [12]. However, its sensitivity to operational parameters like image quality, frame rate,
insonation angle, and absolute flow velocity [13], and the consequent need for a finely tuned contrast infusion, have hindered
the clinical application of Echo-PIV. Emerging modalities like Blood Speckle Imaging (BSI) use analyses analogous to PIV
to the information in the high-frequency ultrasound scattered by red blood cells, simplifying LV flow mapping. However, this
technique has been limited so far by the shallow penetration of high-frequency ultrasound. Although its feasibility has been
demonstrated in adults [14], BSI is most often applied in the pediatric setting [15].

In the past decade, vector flow mapping (VFM) has gained acceptance as a modality to obtain time-resolved 2D velocity
maps from color-Doppler echocardiographic acquisitions in the LV [16–22], as well as 3D velocity maps from triplane
color-Doppler [23]. Early implementations of VFM recovered the cross-beam velocity component by enforcing planar mass
conservation along circular arcs of the color-Doppler sector [16–18]. Subsequent extensions reformulated VFM as a maximum-
likelihood estimation problem with priors based on mass conservation and noise reduction [19, 20]. Other VFM variants use
the stream function-vorticity formulation [22,24]. Despite these advances, existing VFM methods do not incorporate physical
information about momentum balance (i.e., the Navier-Stokes equations) and remain sensitive to imaging artifacts that lead
to spatial and temporal gaps in the color-Doppler input images. Moreover, current VFM implementations focus exclusively
on recovering the cross-beam velocity, overlooking significant flow variables like pressure, which has to be recovered by
secondary analyses [25]. The dynamical interplay between pressure and flow acceleration is not used to inform current VFM
methods.

In parallel with these efforts, artificial intelligence (AI) models based on deep learning (DL) have swiftly transformed
cardiovascular image analysis [26]. Initially focused on automating the interpretation of echocardiograms and electrocardio-
grams or the segmentation of cardiovascular structures [27–29], these models can enhance flow imaging data by removing
phase-wrapping artifacts, reconstructing complete fields from scattered measurements, and increasing the resolution of flow
measurements [30–32]. Physics-informed neural networks (PINNs) harness recent advancements in DL to infer hidden infor-
mation in flow measurements constrained by the governing equations of fluid mechanics [33,34]. A notable feature of PINNs
is that they can be trained on sparse data and in a patient-specific manner, making them well-suited for VFM. The application
of DL models or, more specifically, PINNs to VFM remains underexplored despite noteworthy ongoing work [35].

This manuscript introduces AI-VFM, a vector flow mapping method that uses PINNs to reconstruct the cross-beam flow
velocity and fluctuating pressure in the apical long-axis view of the left ventricle. Like other VFM implementations, AI-
VFM uses a color-Doppler sequence and a time-resolved delineation of the LV endocardial wall as inputs. Its outputs are
a phase-unwrapped color-Doppler map together with reconstructed cross-beam velocity and fluctuating pressure maps. The
PINN is trained for each patient-specific acquisition to minimize a loss function that aggregates the difference between the
input and output Doppler maps, as well as the residuals of the continuity and Navier-Stokes equations in the imaging plane,
including boundary conditions at the endocardial border. Most notably, AI-VFM leverages momentum balance to recover
hidden information about flow dynamics which was inaccessible to previous methods.

The manuscript is organized as follows. Section 2 describes the AI-VFM implementation and the methodology for
validation and sensitivity analyses using ground-truth data from CFD simulations. Section 3 reports results from those
analyses and illustrates the application of AI-VFM to echocardiographic acquisitions, including cases with evident missing
information (“holes”) or artifacts in the input Doppler images. Section 4 discusses the strengths and weaknesses of AI-VFM,
suggests applications of this modality, and outlines the potential extensions of AI-VFM.
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2 Materials and Methods

2.1 Governing Equations of LV flow

This work relies on mathematical models of LV flow to define loss function terms in the physics-informed neural network
(PINN) and to generate synthetic ground-truth data for validation via computational fluid dynamics (CFD) analysis. These
models use the same governing equations of fluid flow but differ in some aspects, like their physical domains and coordinate
systems (see §2.2 and §2.6 below). In all cases, blood was modeled as an incompressible, Newtonian fluid of constant kinematic
viscosity ν = 3× 10−6,m2/s. Consequently, the velocity (⃗v) and pressure (p) fields were assumed to obey the continuity and
Navier-Stokes equations, i.e.,

∇ · v⃗ = 0 (1)

∂v⃗
∂t

+ v⃗ · ∇v⃗ = −1

ρ
∇p+ ν∇2v⃗ (2)

where ρ is the density of blood. The boundary conditions for these equations are no-slip at the endocardial wall, i.e., v⃗ = v⃗wall.

2.2 LV geometrical domain for AI-VFM

In AI-VFM, we adopted a planar polar coordinate system with its origin at the ultrasound transducer (Figure 1A), as customary
in the VFM literature [18]. In this reference frame, the radial velocity component vr is parallel to the ultrasound beam and,
thus, measurable by color-Doppler. In contrast, the azimuthal velocity component, vθ, and the pressure field p are unknown.
The equations of fluid motion (1–2) were enforced on a domain Ω corresponding to an LV segmentation obtained from
echocardiographic imaging as described in §2.9 below. Boundary conditions were imposed on the endocardial border of the
segmentation, ∂Ω.

2.3 Color-Doppler Phase Unwrapping in AI-VFM

During Doppler acquisitions, phase wrapping (i.e., aliasing) artifacts occur when blood velocity exceeds the maximum
detectable velocity (e.g., Nyquist velocity), causing the detected Doppler phase to wrap around 2π and altering the sign and
magnitude of the measured velocity, i.e.,

vr
vN

π =
vDop

vN
π + 2nπ, (3)

where vr is the actual velocity in the direction parallel to the ultrasound beam, vDop is the measured Doppler velocity, vN is
the Nyquist velocity, and n is the number of phase wraps. Since aliased velocities do not obey the equations of fluid motion
(1-2), Doppler measurements cannot be used directly as training data in AI-VFM. However, trigonometric functions (e.g., sines
and cosines) of both sides of equation 3 are equal. Thus, we used sin(πvr/vN ) and cos(πvr/vN ) as training data fields in
our neural network. A similar approach was previously implemented in PINN to perform phase-unwrapping in 4D flow MRI
velocities [36]. We found this method yielded flow and pressure fields free of aliasing artifacts with no need for additional
constraints and without considering n into the PINN.

2.4 Neural Network Architecture and Super-Resolution Loss Function

AI-VFM (Figure 1A) uses physics-informed neural networks (PINNs) to reconstruct the cross-beam flow velocity and the
fluctuating pressure from a color-Doppler sequence and a time-resolved delineation of the LV endocardial wall. A PINN is a
neural network trained to minimize a residual including physical laws. Therefore, it learns the training data and the underlying
(i.e., hidden) dynamics of the system. In AI-VFM, we use a fully connected neural network to approximate the following
mapping function: [t, r, θ] 7→ [vr, vθ, p], where the inputs are time and the spatial coordinates of the points inside the LV,
and the outputs are the corresponding velocities (radial and cross-beam components) and pressure fluctuations. Input and
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(A)

(B)

Figure 1: AI-VFM flowchart. Raw color Doppler radial velocity field is used for training. B-mode wall segmentation to obtain LV boundary
points to impose the boundary condition. A fully connected neural network is employed to infer radial velocity vr , angular velocity vθ , and
pressure field p. The neural network is penalized by a loss function constructed from training data Ldata and underlying physical laws LBC

and Lcons. The total loss Ltotal is minimized using the Adam optimizer. Neural network parameters (e.g., weights ϑ∗) are updated via
backpropagation during each iteration.

output variables are defined on Nout frames along the cardiac cycle. In all the cases we studied, we adopted a neural network
configuration with 10 layers, each consisting of 150 neurons. This configuration aimed to balance low expressivity (shallow
layer) and overfitting (deep layer). Given that the underlying physical constraints involve nonlinear equations, we employed
nonlinear swish activation functions [37]. The neural network weights were initialized using Xavier’s scheme [38], and weight
normalization was employed to accelerate training [39].

The loss function employed to train the AI-VFM PINN comprises three terms representing the differences with respect to
the training data (Ldata), the wall boundary conditions (LBC), and the governing mass and momentum conservation equations
(Lcons),

Ltotal = Ldata + LBC + Lcons.

Color-Doppler vr fields usually have different temporal resolutions than the B-mode acquisitions used to delineate the LV wall,
where boundary conditions are imposed. To account for this disparity, and to achieve temporal super-resolution in the output
flow and pressure fields, we devised the strategy outlined in Figure 1B. The data loss, Ldata, was sampled in the available
NDop color-Doppler frames, whereas the boundary condition loss, LBC , was sampled in the available NBC B-mode frames,
and the governing equations loss, Lcons, was sampled at the Ncons frames. We then set the number of output temporal frames,
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Nout, equal to Ncons > NBC > NDop to achieve temporal super-resolution. The data loss term was defined as

Ldata = λdata

(
1

Md

Md∑
i=1

∥∥∥∥cos(πvr,i
vN

)
− cos

(
πvDop,i

vN

)∥∥∥∥2 + 1

Md

Md∑
i=1

∥∥∥∥sin(πvr,i
vN

)
− sin

(
πvDop,i

vN

)∥∥∥∥2
)
, (4)

where λdata is a hyperparameter and i indicates members within a list of Md sampled points in the segmented LV mask (Ω)
across the available NDop color-Doppler frames. We accounted for possible holes in the color-Doppler measurements caused
by, e.g., low signal power or imaging artifacts, by enabling the selective removal of subdomains of Ω in the calculation of
Ldata. Therefore, the sampled points used to compute Ldata were randomly redrawn each training iteration, excluding points
within data holes. The boundary condition loss, weighed by the hyperparameter λBC , included the residual of the no-slip
boundary condition sampled at Mbc points of the LV boundary (∂Ω) across the available NBC bright-mode frames,

LBC = λBC
1

Mbc

Mbc∑
k=1

∥⃗vk − v⃗wall,k∥2 . (5)

Finally, the mass and momentum conservation loss was defined as

Lcons = λcons

3∑
j=1

1

Mp

Mp∑
i=1

∥J⃗j,i∥2, (6)

where the vector J⃗j,i = Jj(ri, θi, ti) is formed by the residuals of the continuity equation and the radial and azimuthal
components of the non-dimensional Navier-Stokes equations in polar coordinates, i.e.,

J1 =
1

r

∂

∂r
(rvr) +

1

r

∂vθ
∂θ

,

J2 =
∂vr
∂t

+ vr
∂vr
∂r

+
vθ
r

∂vr
∂θ

− v2θ
r

+
∂p

∂r
− 1

Re

[ ∂

∂r

(1
r

∂

∂r
(rvr)

)
+

1

r2
∂2vr
∂θ2

− 2

r2
∂vθ
∂θ

]
,

J3 =
∂vθ
∂t

+ vr
∂vθ
∂r

+
vθ
r

∂vθ
∂θ

+
vrvθ
r

+
1

r

∂p

∂θ
− 1

Re

[ ∂

∂r

(1
r

∂

∂r
(rvθ)

)
+

1

r2
∂2vθ
∂θ2

+
2

r2
∂vr
∂θ

]
,

where Re = UD/ν is the Reynolds number obtained from the typical values of the diastolic jet velocity (U ), the mitral
valve diameter (D), and blood viscosity (ν). These loss terms were sampled at Mp points randomly selected across Ncons

frames. The points were chosen inside the time-dependent Ω domain obtained by interpolating the LV mask segmentation
from NBC frames to Ncons frames. The temporal and spatial derivatives appearing in the definition of J⃗j,i were computed
using automatic differentiation [40] on the neural network.

To non-dimensionalize the flow variables used in training, the inputs (e.g., t, r) and training data (vr) were normalized by the
characteristic scales specified in Table 1, and then back-dimensionalized during the inference stage after training is complete.
Additionally, we employed a renormalization scheme to ensure all training variables had zero mean and unit variance. This
step promotes training robustness and mitigates the issue of vanishing gradients during backpropagation [38].

2.5 PINN runs

In all the PINN runs reported in this manuscript, a batch size of 10K sampling points (e.g., Md = Mp = 104) was used during
each iteration to evaluate the losses with respect to training data and physical constraints, and the whole batch (i.e., all available
points) was used to impose boundary conditions. The entire batch size for boundary conditions varied for CFD and ECHO
depending on spatiotemporal resolution, with typical values being Mbc ≈ 59K and 23K for CFD and ECHO, respectively.
In our CFD validation, we chose λdata = 10, λcons = 1, and λBC = 10, whereas we set all the weights to be unity in the
clinical application of Doppler data. The PINNs were run until Ldata, LBC , and Lcons reached plateaus, as shown in Figure
2A-B. The number of iterations run for each case is indicated in Table 1. The total loss function was minimized using the

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 15, 2024. ; https://doi.org/10.1101/2024.04.12.589319doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.12.589319
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1: Characteristc scales used to non-dimensionalize inputs. Reynolds number defined by Re = UD/ν, where
ν = 3× 10−6m2/s is the kinematic viscosity, and U and D are the peak diastolic jet velocity and the diameter of the mitral
valve, respectively. Spatial resolution for CFD benchmark and echocardiographic data. Case-specific NDop, NBC , and
Ncons = 200. Iterations of AI-VFM for each example.

Example U [cm/s] D [cm] Re ∆r [mm] ∆θ [°] NDop NBC Ncons Iterations

CFD 50.00 2.73 4550 0.50 1.00 15 100 200 80K

#1 73.60 3.57 8758 0.54 1.34 17 64 200 70K

ECHO #2 57.24 2.31 4407 0.54 1.34 19 74 200 68K

#3 57.24 2.40 4579 0.54 1.35 19 83 200 65K

(A) (B) (C)ECHO

IterationsIterations

CFD

Minutes

r2 v.s. training time

Figure 2: A) Loss values vs. AI-VFM training iteration using settings for CFD validation (∆r = 0.5mm, ∆θ = 1.0°, NDop = 15,
NBC = 100, and Ncons = 200); B) Loss values vs. training iterations using settings typical for clinical application of AI-VFM
(∆r = 0.54mm, ∆θ = 1.34°, NDop = 17, NBC = 64, and Ncons = 200); C) Accuracy vs. computational cost analysis in high-resolution
CFD case (e.g., ∆r = 0.5mm, ∆θ = 0.3°) using NDop = NBC = Ncons = 200.

Adam adaptive optimization algorithm [41] with a default learning rate of 0.001. AI-VFM was implemented in Python using
TensorFlow [42] library as described in Raissi et al. 2020 [43]. The training was performed using an NVIDIA A40 GPU
with 48GB RAM, providing favorable accuracies in the recovered pressure and velocity fields within 15 mins, which improved
accuracies an additional ≈ 10% by extending training runs to one hour (Figure 2C). All other pre- and postprocessing was
done in MATLAB.

The classic VFM implementation relies on mass conservation but does not enforce momentum balance. To help understand
how this modeling choice affects the accuracy of AI-VFM, we compared two AI-VFM implementations. In kinematic AI-VFM,
we only included the continuity loss, J1, in the definition of Lcons. In dynamic AI-VFM (or simply AI-VFM), we enforced
momentum balance in addition to mass conservation as physical constraints, using the definition for Lcons given in equation
(6). Moreover, since pressure does not enter the continuity equation for an incompressible fluid, kinematic AI-VFM did not
recover p.

2.6 LV geometrical domain for CFD

The LV cavity of our CFD simulation data was modeled as a half-ellipsoid (Figure 3A) with the endocardial surface given by(
2x

D0

)2

+

(
2y

D0

)2

+

(
z

L(t)

)2

= 1, (7)
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(A) (B)

Figure 3: A) Sketch of the computational domain and idealized LV geometry, showing the mitral valve orifice in orange and the aortic
valve orifice in blue; B) Time evolution of the LV volume prescribed in CFD simulations.

where D0 = 5.57 cm is the diameter of the LV base and L(t) is the time-dependent LV long-axis dimension (i.e., the distance
between the LV base and its apex). LV beating in sinus rhythm at 70 b.p.m. was modeled by varying L(t) between Lmin = 3.62

cm and Lmax = 7.96 cm, yielding the LV volume vs. time evolution shown in Figure 3B. The two increments of LV volume
correspond to the E and A waves mediated by LV relaxation and atrial contraction, with a physiological E/A wave ratio of 1.1.
LV ejection fraction (EF = 0.54) and sphericity index (SpI = 0.49) were also set within physiological ranges [44, 45].

The openings at the LV base shown in Figure 3A represent the aortic and mitral orifices. They were modeled without
leaflets and with two states: fully open or fully closed. The aortic orifice was modeled as a circle of diameter DAO = 2.52 cm
centered at xAO = 0 and yAO = −1.48 cm (i.e., separated by a distance 0.05 cm to the edge of the LV base), yielding an area
AAO = 4.97 cm2. A half-moon-shaped mitral orifice was defined by the boundary line:((

2x

D0

)2

+

(
2y

D0

)2

− 1

)
·

((
2x

DAO

)2

+

(
2(y − yAO)

DAO

)2

− 1

)
= φ (8)

where the parameter φ was chosen to yield an orifice area AMO = 7.45 cm2.

2.7 CFD runs

Following previous works [46], the blood flow simulations of the idealized LV configuration described above were performed
using TUCAN, an in-house GPU flow solver [47–50]. TUCAN uses a fractional step method to solve the Navier-Stokes
equations for an incompressible fluid. The spatial discretization is based on second-order finite differences in a Cartesian
staggered grid with constant grid spacing in all directions, ∆x. Time integration is performed using a three-step, semi-implicit
Runge-Kutta. The presence and motion of the LV walls are modeled in TUCAN using the immersed boundary method [51].

The simulations were initialized with zero velocity inside the LV and run for 5 cardiac cycles to ensure a quasi-periodic
and converged flow. All the data presented in this paper correspond to the 5th cycle, for which 200 uniformly-spaced velocity
and pressure fields were stored. For the present work, we chose ∆t = 1.47 × 10−4 s and ∆x = 0.5 mm, yielding a
CFL < 0.6 throughout the cardiac cycle. These temporal and spatial resolution values agree with recent convergence studies
for intracardiac flows [52].
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2.8 Validation and Sensitivity Analysis on CFD-generated LV flow

Velocity and pressure fields from CFD simulations were interpolated into an 11 cm × 60 degree fan-shaped sector mimicking
the long-axis apical echocardiographic view (Figure 3A). In this scheme, the ultrasound transducer would be located at the
sector’s vertex, which also coincides with the origin of the polar coordinate system used in the VFM model (Figure 1A). To
match the spatial resolution of standard color-Doppler acquisitions (see §2.9), the CFD data were interpolated using radial and
azimuthal step sizes ∆r = 0.5 mm and ∆θ = 1.0◦, yielding a mesh with 220× 50 points. Also, 200 temporal frames of flow
fields evenly distributed over one cardiac cycle were obtained for training and validation.

To test the accuracies of dynamic and kinematic AI-VFMs’ when varying the temporal resolution of the input color-Doppler
sequence, we first considered using all available training data (e.g., NDop = NBC = Ncons = 200). We then tested dynamic
AI-VFM’s ability to provide super-resolution against more realistic temporal resolution of wide-sector color-Doppler and
bright-mode acquisitions (e.g., NDop = 15, NBC = 100, Ncons = 200). To evaluate AI-VFM’s ability to recover hidden
information in untrained frames, we ran another dynamic AI-VFM usingNDop = NBC = Ncons = 15 and linearly interpolated
the results to populate the velocity field up to 200 frames. The sensitivity of AI-VFM with respect to imaging resolution
was tested by considering down-sampled cases with ∆r = 1mm, ∆θ = 1.3, 1.8◦ and one up-sampled case ∆r = 0.5mm,
∆θ = 0.3. We also tested whether increasing NDop from 15 to 50, 100, or 200 improved the accuracy of the recovered fields
in both dynamic and kinematic models.

Aliasing artifacts were simulated by introducing a Nyquist limit of vN = 50 cm/s in vr. In addition, we investigated the
effect of transducer misalignment with the LV and outflow jets by rotating the virtual Doppler sector as described in Figure
6(E & F). When varying one parameter, all other parameters are kept fixed at nominal values (i.e., ∆r = 0.5mm, ∆θ = 1.0°,
NDop = 200, and α = 0).

To compare the recovered flow fields vs. the ground-truth CFD data, we computed the coefficient of determination, r2,
and the normalized root-mean-squared error (NRMSE) as follows:

NRMSE =
1

max∥v⃗CFD∥

√√√√ 1

Nt

Nt∑
i=1

∥v⃗V FMi
− v⃗CFDi

∥2. (9)

2.9 Echocardiographic Imaging

To assess the clinical feasiblity of AI-VFM, color-Dopper image sequences were acquired using a Vivid 7 scanner with
broadband transducers (GE Healthcare) from three patients in sinus rhythm, one with dilated cardiomyopathy (patient #1) and
two with acute myocardial infarction (patient #2 & #3). Standard B-mode and Doppler data were obtained as recommended
in established guidelines [53]. Pulsed-wave Doppler spectrograms were obtained at the mitral valve tips and LV outflow tract,
from which key cardiac cycle events were identified using EchoPac software (version 214, GE Healthcare) to temporally align
data for postprocessing. Color-Doppler images covering the entire LV chamber were obtained in the apical three-chamber
view (∼ 10 cycles, frame rate ≈ 15 Hz), followed by the acquisition of 2D cine-loops (∼ 3 cycles, frame rate > 60 Hz). The
LV myocardial wall was segmented from the LV B-mode series using speckle-tracking software to delineate the endocardium
(EchoPac, version 214, GE Healthcare). The spatial and temporal resolutions of the acquired Doppler images (e.g., vr) and flow
parameters used in AI-VFM for training (NDop), imposing boundary condition (NBC), and mass and momentum conservation
equations (Ncons) are summarized in Table 1.

2.10 Reference (Vanilla) VFM and Phase-Unwrapping Methods

For reference in our validation study, we also derived time-resolved 2D blood velocity fields from color-Doppler data inside the
LV using Garcia et al.’s original method (as described in references [16,54], and hereon referred to as vanilla VFM). The vanilla
VFM algorithm is fed by a color-Doppler acquisition and integrates the planar continuity equation, imposing no-penetration

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 15, 2024. ; https://doi.org/10.1101/2024.04.12.589319doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.12.589319
http://creativecommons.org/licenses/by-nc-nd/4.0/


boundary conditions at the LV endocardium. Retrospective frame interleaving from multiple cycles and Fourier interpolation
using 10 − 20 modes are applied to produce output sequences with 100-200 frames/beat. Data from heartbeats with > 5%

heart rate variation are rejected. We used Loecher et al.’s one-step Laplacian correction [55] as the reference method for phase
unwrapping of aliased color-Doppler values. In this method, a Laplacian equation is formulated for the number of phase wraps,

∇2n = (2π)−1[cos(φw)∇2 sin(φw)− sin(φw)∇2 cos(φw)−∇2φw],

where φw = πvw/vN is the wrapped phase and vw the aliased velocity. The solution to this equation is rounded off to the
nearest integer number and plugged into equation 3 to correct the velocity field.

3 Results

This section presents validation and sensitivity analyses of AI-VFM using CFD-generated data. We also illustrate the clinical
application of AI-VFM to improve ultrasound flow data. Overall, AI-VFM accurately recovers the cross-beam velocity
component and fluctuating pressure inside the LV at temporal resolution higher than that of the training Doppler data. It also
deals with aliasing artifacts and recovers missing velocity values.

3.1 AI-VFM Validation on CFD-generated LV flow

Figure 4 displays snapshots of LV flow velocity and fluctuating pressure fields during the early filling, late filling, and ejection
phases of the cardiac cycle. This figure includes the CFD-generated ground-truth data and the results from two AI-VFM runs.
In the first run, AI-VFM was trained using Ncons = NBC = NDop = 200 temporal frames, including the three timepoints
represented in Figure 4. In the second run, AI-VFM was trained using a more realistic setting with Ncons = 200, NBC = 100,
NDop = 15. Of note, in this second AI-VFM run, none of the color-Doppler data from the three time points represented in
Figure 4 was used for training. Still, AI-VFM inferred the entire velocity field at these time points, thereby increasing the
temporal resolution of the original data.

The CFD-generated data, used as ground truth for evaluating AI-VFM, showed LV flow features in good agreement with
previous simulations [56, 57] and clinical measurements [1]. As in the human LV, the CFD-simulated flows exhibited strong
filling jets flanked by vortex rings and an emptying jet with prograde swirl. These patterns are the hallmarks of systolic and
diastolic LV flow. Thus, although idealized, our CFD model provided an effective, physiologically representative benchmark
flow for validating AI-VFM.

At time points with color-Doppler training data, AI-VFM inferred vr almost exactly (Figure 4A), which was expected since
the Ldata loss directly penalized differences between the original and the reconstructed vr component. Moreover, outside of
the timepoints with color-Doppler training data, AI-VFM also provided a faithful estimation of vr. The cross-beam velocities
from AI-VFM closely matched the ground-truth CFD maps (Figure 4B). Because AI-VFM did not use any vθ data for training,
this flow component estimation was not as precise as vr. Nevertheless, AI-VFM still recovered the dominant patterns of vθ
even if some fine-scale features were not captured. The availability of color-Doppler training data at the interrogated temporal
frame did not significantly influence the reconstruction of vθ. This result indicates that AI-VFM learned the dynamics of the
flow to incorporate data across different time points despite the low temporal resolution in the training data.

An interesting feature of AI-VFM is that, by incorporating momentum equations in its loss functions, it can also infer flow
pressure fields, p(r, θ, t). Pressure in incompressible flows is undetermined by a constant (i.e., pressure enters the governing
equations 2 under a spatial gradient). Thus, to compare the inferred pressure maps with ground-truth maps from CFD (Figure
4D), we examined the pressure fluctuations p′ = p− p by subtracting each snapshot’s mean pressure, p(t) =

∫
Ω
p(r, θ, t)dΩ.

The p′ maps produced by AI-VFM agreed well with the ground-truth fields. During early filling, AI-VFM recovered the
pressure fluctuations caused by the vortex ring flanking the mitral jet, and the vortex ring from the preceding beat as it
impinged the LV apex. During late filling, AI-VFM reproduced pressure fluctuations induced by vortices as well as the adverse
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Figure 4: Velocity and pressure maps inferred by AI-VFM compared to ground-truth CFD data at early filling, late filling, and ejection
(i.e., t = 0.85, 0.45, 0.21T , where T is the cardiac cycle period). Data from two AI-VFM implementations, using PINNs trained with
NDop = 200 and NDop = 15, are shown. As indicated by the dials symbolizing the cardiac cycle, the NDop = 200 AI-VFM is shown at
frames (•) within the training set (◦). In contrast, the NDop = 15 AI-VFM is shown at frames outside of the training set. A) Radial velocity
vr; B) Azimuthal velocity vθ; C) Flow vectors and color map of velocity magnitude; D) Flow vectors and color map of fluctuating pressure
p′. Units for velocity and pressure are cm/s and mmHg, respectively.

pressure gradient that decelerates the LV filling jet during this phase. Likewise, the pressure inferred by AI-VFM during
ejection agreed with the CFD data, showing a favorable pressure gradient that accelerates the flow toward the aortic orifice.

The only noticeable difference between the pressure maps in AI-VFM and CFD was that AI-VFM produced smoother
results, reaching lower p′ peak values than CFD. This effect was more pronounced when AI-VFM was interrogated at temporal
frames with no color-Doppler training data. PINNs are known to implicitly introduce smoothing by prioritizing learning the
low-frequency features in the training data, a phenomenon known as spectral bias [58, 59]. To investigate whether this effect
could be palliated by reducing the importance of the viscous terms in the PINN, we ran dynamic AI-VFM setting Re = ∞
in the Navier-Stokes loss terms (i.e., J2 and J3). The resulting flow maps were almost indistinguishable from those obtained
using the Reynolds number value used in the CFD, Re = 4, 550 (Figure SI3).

3.1.1 Point-wise Comparison of Velocity and Pressure Values

Scatter plots comparing vr, vθ, and p′ from AI-VFM (y coordinate) and CFD (x coordinate) were built by pooling all the
spatial points within the interrogated temporal frames, as indicated below. We overlaid contours of the joint probability density
functions (pdfs) of VFM and CFD values and computed their r2 values. For reference, the outermost contour of these pdfs
was chosen so that it left out 1% of the sampled points.

We tested the dynamic and kinematic versions of AI-VFM, along with the vanilla VFM method of Garcia et al [16], using
all the CFD validation frames as input frames (e.g., NDop = NBC = Ncons = 200 for the PINNs). The results are displayed

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 15, 2024. ; https://doi.org/10.1101/2024.04.12.589319doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.12.589319
http://creativecommons.org/licenses/by-nc-nd/4.0/


dynamic AI-VFM, 𝑟2 = 0.99

kinematic AI-VFM
 𝑟2=1.00

vanilla VFM
 𝑟2=0.99

dynamic AI-VFM, 𝑟2 = 0.54

kinematic AI-VFM
 𝑟2=0.31

vanilla VFM
 𝑟2=0.25

dynamic AI-VFM, 𝑟2 = 0.92

𝑣𝑟,𝐶𝐹𝐷 (cm/s)

𝑣
𝑟

,𝑉
𝐹

𝑀
 (

cm
/s

)

𝑣𝜃,𝐶𝐹𝐷 (cm/s)

𝑣
𝜃

,𝑉
𝐹

𝑀
 (

cm
/s

)

𝑝′𝐶𝐹𝐷 (mm Hg)

𝑁𝐷𝑜𝑝 = 𝑁𝐵𝐶 = 𝑁𝑐𝑜𝑛𝑠 = 200

𝑁𝐷𝑜𝑝 = 15, 𝑁𝐵𝐶 = 100, 𝑁𝑐𝑜𝑛𝑠 = 200 within training set
dynamic AI-VFM, 𝑟2 = 1.00 dynamic AI-VFM, 𝑟2 = 0.48 dynamic AI-VFM, 𝑟2 = 0.80

kinematic AI-VFM
 𝑟2=1.00

kinematic AI-VFM
 𝑟2=0.31

𝑣𝑟,𝐶𝐹𝐷 (cm/s)

𝑣
𝑟

,𝑉
𝐹

𝑀
 (

cm
/s

)

𝑣𝜃,𝐶𝐹𝐷 (cm/s)

𝑣
𝜃

,𝑉
𝐹

𝑀
 (

cm
/s

)

𝑝′𝐶𝐹𝐷 (mm Hg)

dynamic AI-VFM, 𝑟2 = 0.95 dynamic AI-VFM, 𝑟2 = 0.50 dynamic AI-VFM, 𝑟2 = 0.80

𝑁𝐷𝑜𝑝 = 15, 𝑁𝐵𝐶 = 100, 𝑁𝑐𝑜𝑛𝑠 = 200 outside of training set

kinematic AI-VFM
 𝑟2=0.93

kinematic AI-VFM
 𝑟2=0.30

Time-interpolated 
AI-VFM
𝑟2=0.93

Time-interpolated 
AI-VFM 𝑟2=0.35

Time-interpolated 
AI-VFM 𝑟2=0.28

𝑣𝑟,𝐶𝐹𝐷 (cm/s)

𝑣
𝑟

,𝑉
𝐹

𝑀
 (

cm
/s

)

𝑣𝜃,𝐶𝐹𝐷 (cm/s)

𝑣
𝜃

,𝑉
𝐹

𝑀
 (

cm
/s

)

𝑝′𝐶𝐹𝐷 (mm Hg)

𝑝
′ 𝑉

𝐹
𝑀

 (
m

m
 H

g)
𝑝

′ 𝑉
𝐹

𝑀
 (

m
m

 H
g)

𝑝
′ 𝑉

𝐹
𝑀

 (
m

m
 H

g)

(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

Figure 5: Point-wise comparison of velocity and fluctuating pressure values inferred by AI-VFM with ground-truth CFD data. Each
panel shows scatter plots where the x and y coordinates are, respectively, the ground-truth CFD and AI-VFM values of flow variables
sampled at uniformly spaced points inside the LV domain. The contour maps of joint probability densities of CFD and AI-VFM values
are superimposed on each scatter plot. Units for velocity and pressure are cm/s and mmHg, respectively. A-C) AI-VFMs vs. CFD,
NDop = NBC = Ncons = 200; D-F) AI-VFMs vs. CFD, NDop15, NBC = 100, Ncons = 200 within training set; G-I) AI-VFMs vs.
CFD, NDop = 15, NBC = 100, Ncons = 200 outside of training set.

in the first row of Figure 5. The vr and vθ scatter plots from kinematic AI-VFM and vanilla VFM are shown as insets in the
corners of each panel (top left and bottom right corners of Figures 5A-B, respectively). Consistent with the results shown in
Figure 4, the scatter plots for vr aligned tightly along the identity line y = x for the three methods considered (Figure 5A),
with r2 hovering around 0.99 in all the cases. Although the scatter plots of vθ experienced more dispersion than those of vr,
dynamic AI-VFM still showed favorable agreement with the CFD ground-truth data, leading to r2 = 0.54. In comparison
kinematc AI-VFM and vanilla VFM reached r2 = 0.31 and r2 = 0.25 respectively. Correspondence with ground-truth data
was better for large vθ values, while more significant differences were observed around vθ = 0. Of note, kinematic AI-VFM
and vanilla VFM showed more significant errors than dynamic AI-VFM when reconstructing negative values of vθ, suggesting
that the Navier-Stokes constraint increased the accuracy of vector flow mapping. Pressure fluctuations from dynamic AI-VFM
showed good agreement with CFD data (5C), with an overall r2 = 0.92. The agreement was particularly good for low and
intermediate |p′| values, whereas AI-VFM tended to underestimate extreme values, consistent with the visualizations of Figure
4D.

Next, we tested the ability of AI-VFM to learn hidden information about flow physics and recover velocity and pressure
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Figure 6: Normalized root mean squared error (NRMSE) of the radial velocity vr (blue), azimuthal velocity vθ (red), and pressure fluctuation
p′ (yellow) maps recovered by AI-VFM using CFD analysis as ground-truth data. The top row (panels A, C, E, and G) corresponds to
dynamic AI-VFM whereas the bottom row (panels B, D, F, and H) corresponds to kinematic AI-VFM. A-B) NRMSE vs. spatial resolution in
the azimuthal direction (i.e., angular step size ∆θ); C-D) NRMSE vs. spatial resolution in the radial direction (i.e., radial step size ∆r); E-F)
NRMSE vs. ultrasound sector orientation (i.e., angle α between sector axis and LV long axis); G-H) NRMSE vs. temporal resolution of
color-Doppler training sequence (i.e., NDop or ∆t = 1/NDop. When varying one parameter, all other parameters are kept fixed at nominal
values (i.e., ∆r = 0.5mm, ∆θ = 1.0°, Ndop = 200, and α = 0).

fields with finer temporal resolution than the training data. Thus, we ran AI-VFM using only NDop = 15 frames with
training vr data, but we imposed the boundary conditions and governing equations on more frames along the cardiac cycle
(NBC = 100, Ncons = 200). We then compared AI-VFM with ground-truth CFD data both at the NDop = 15 within the
training set (Figure 5D-F) and at the 185 frames outside of the training set (Figure 5G-I). Overall, the accuracy of dynamic
AI-VFM decreased modestly when NDop was lowered from 200 to 15, with r2 values for vr, vθ and p′ varying from 0.99,
0.54, and 0.92 to 0.95-1.00, 0.48-0.50, and 0.80, respectively. The pressure fields were more sensitive to lowering NDop than
the velocity fields, and the shape of the pdfs suggests that peak pressure values were underestimated more significantly for
NDop = 15 than for NDop = 200. Remarkably, dynamic AI-VFM had similar accuracy when interrogated within the training
set (Figure 5D-F) and outside of it (Figure 5G-I).

Kinematic AI-VFM also conserved its performance when trained with NDop = 15 instead of NDop = 200; its accuracy
was essentially unchanged both within the training range (top left corner insets of Figures 5D, E) and outside of it (top left
corner insets of Figures 5G, H), except for a modest drop in r2 for vr from 1.00 to 0.93.

Finally, we ran dynamic AI-VFM using Nout = Ncons = NBC = NDop = 15, and linearly interpolated its results in
time at the 185 outside of the training dataset. This run aimed to evaluate the level of hidden flow information recovered by
the PINN for different values of NBC and Ncons. Their scatter plots are shown in the lower right corner insets of Figures
5G-I. The accuracy of the linearly interpolated AI-VFM maps dropped significantly, reaching values very similar to those
obtained by kinematic AI-VFM. Overall, these results suggest that enforcing momentum balance at temporal frames without
training data allows the PINN to learn hidden information about the flow dynamics, improving the accuracy of AI-VFM and
providing temporal super-resolution. On the other hand, informing AI-VFM about flow kinematics (e.g., mass conservation)
was insufficient to achieve super-resolution.
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A) Aliased color-Doppler frame B) Laplacian dealiasing method C) AI-VFM
vr

m/s

Figure 7: Color-Doppler dealiasing of radial velocity vr example in a clinical acquisition. A) Color-Doppler frame acquired during early
diastole exhibiting an aliased region (white) in the central part of the inflow jet (red) that is merged with the positive velocity values associated
with diastolic vortices. B) Color-Doppler frame dealiased using the one-step Laplacian method of Loecher et al.’s [55]. C) Color-Doppler
output frame from AI-VFM. Velocity units are [m/s].

3.1.2 Sensitivity Analyses

To assess the robustness of AI-VFM, we repeated the CFD-based validation for different spatial and temporal resolutions and
transducer locations, as outlined in §2.8. To evaluate the distinct contributions of the Navier-Stokes and mass conservation
constraints, we performed sensitivity analyses of the dynamic and kinematic implementations of AI-VFM. Figure 6 summarizes
the results of these analyses, reporting NRMSEs of vr, vθ, and p′ for dynamic AI-VFM, and NRMSEs of vr and vθ for kinematic
AI-VFM.

First, we varied the angular resolution while keeping nominal values for transducer positioning and radial and temporal
resolutions. Since a standard color-Doppler acquisition has an angular step size ∆θ ≈ 1.0°, we considered step sizes
∆θ ≈ 0.3, 1.0, 1.3, and 1.8° in our sensitivity analysis. The NRMSEs of the reconstructed flow variables varied little
with ∆θ in the studied range for both dynamic AI-VFM (Figure 6A) and kinematic AI-VFM (Figure 6B). However, dynamic
AI-VFM produced lower errors consistent with the results reported in the previous section. We also addressed the effect of
radial resolution, varying the standard echocardiographic value, ∆r ≈ 0.5mm, to ∆r ≈ 1mm. Similar to the case of ∆θ, this
perturbation did not significantly modify the NRSME of the reconstructed flow variables in any of the two AI-VFM models
(Figure 6C-D). Once again, dynamic AI-VFM was more accurate than kinematic AI-VFM over the range of studied resolutions.

We also examined the effect of transducer positioning by varying the angle α formed by the ultrasound sector axis and the
CFD-LV long axis. For dynamic AI-VFM (Figure 6E), the NRMSEs of vr and p′ were almost independent of α in the range
[−45◦, 45◦] while the NRMSE of vθ experienced a shallow increase with |α|. In the case of kinematic AI-VFM (Figure 6F),
the NRMSEs of vr were also insensitive to α. However, the reconstruction error of vθ increased more sharply with |α| in
kinematic AI-VFM than in dynamic AI-VFM. In particular, the NRMSEs of dynamic AI-VFM at α = ±45◦ (0.26 and 0.31)
were comparable to that of kinematic AI-VFM at α = 0 (0.28).

The temporal resolution of color-Doppler acquisitions is particularly sensitive to the width of the imaged sector. Because
VFM works best when the color-Doppler sector encompasses the whole LV cavity, frame rates of 20 Hz or lower are not
unusual in patients with dilated LVs. To address this issue, we studied AI-VFM performance while varying NDop between 15
and 200. We found that dynamic AI-VFM was relatively insensitive to NDop even if a modest increase in the NRMSEs of vr
and p′ was observed between NDop = 50 and NDop = 15 (Figure 6G). In contrast, kinematic AI-VFM was more sensitive to
the temporal resolution of vr, experiencing an appreciable drop in the accuracy of its vθ reconstruction when NDop decreased
below 200, together with a more gradual deterioration of its vr reconstruction (Figure 6H).
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Figure 8: Example of clinical application of AI-VFM in patient #1. The first (panels A, D, and G), second (panels B, E, and H), and third
(panels C, F, and I) columns display respectively early filling, late filling, and ejection. A-C) Raw color-Doppler training frames at indicated
time points. D-F) Flow vectors and color map of velocity magnitude from AI-VFM at indicated time points. G-I) Flow vectors and pressure
fluctuation at indicated time points. Velocity units are [m/s] and pressure units are [mmHg]. NDop = 17, NBC = 64, Ncons = 200 for
dynamic AI-VFM.

3.2 Application to Clinical Acquisitions

This section demonstrates the feasibility of performing AI-VFM on clinical echocardiographic acquisitions. We illustrate this
technique’s ability to correct aliasing artifacts in the color-Doppler data and reconstruct 2D maps of flow velocity vectors
and pressure fluctuations. We also demonstrate that AI-VFM can restore missing data in clinical acquisitions, including
entire color-Doppler frames. Since the validation and sensitivity analyses reported in previous sections suggest dynamic
AI-VFM is more accurate and robust than kinematic AI-VFM, our clinical demonstration of AI-VFM focused on the dynamic
implementation. Unless otherwise stated, we ran the PINNs using patient-specific values for NDop and NBC in Table 1 given
by the temporal resolution of each echocardiographic acquisition. In contrast, Ncons = 200 frames were used to enforce mass
conservation and momentum balance.

Phase wrapping artifacts are common in clinical color-Doppler images and can be particularly problematic during early
diastole. During this phase, the flow velocity reaches large negative values inside the filling jet. If these velocity values are
aliased, a large region of positive Doppler velocity, including the LV diastolic vortices, can be created, as shown in Figure
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Figure 9: Example of clinical application of AI-VFM in patient #1 to color-Doppler sequences with holes inside the LV domain. The first
(panels A, D, and G), second (panels B, E, and H), and third (panels C, F, and I) columns display respectively early filling, late filling, and
ejection. A-C) Raw color-Doppler training frames at indicated time points displaying a large hole near the center of the LV chamber. D-F)
Flow vectors and color map of velocity magnitude from AI-VFM at indicated time points. Note that AI-VFM reconstructs the velocity field
inside the holes. G-I) Flow vectors and pressure fluctuation at indicated time points. Note that AI-VFM reconstructs the velocity field inside
the holes. Velocity units are [m/s] and pressure units are [mmHg]. NDop = 17, NBC = 64, Ncons = 200 for dynamic AI-VFM.

7A. This pattern can confound physics-unaware phase unwrapping algorithms, leading to jagged velocity contours that require
artificial smoothing (Figure 7B) or, in worst-case scenarios, to the partial or total obliteration of the vortex signature in the
color-Doppler signal (not shown). Figure 7C shows a clinical example where AI-VFM removed aliasing in the color-Doppler
vr map, producing a smooth velocity field.

Figure 8 displays the velocity and pressure maps obtained by AI-VFM for the same patient considered in the previous figure.
These maps are represented during early filling, late filling, and ejection. For completion, the raw color-Doppler maps at those
time instants, some of which contain aliasing artifacts, are also represented (Figure 8A-C). Similar plots for two additional
patients are shown in Supplementary Figures SI1 and SI2. The velocity vectors captured the early filling jet and its associated
vortex ring (Figure 8D), which evolves into a single prograde swirling structure that occupies most of the LV chamber by
late diastole (Figure 8E) and persists through ejection (Figure 8F), routing incoming blood toward the outflow tract. This
spatiotemporal pattern is well-established as the representative LV flow pattern in the apical long-axis view [1]. In addition to
the velocity field, AI-VFM calculated the pressure fluctuations inside the LV from clinical color-Doppler acquisitions (Figures
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Figure 10: Leave-one-out validation of AI-VFM on the clinical color-Doppler sequence of patient #1. The three columns show results from
three runs, where dynamic AI-VFM was trained on NDop − 1 color-Doppler frames, and one frame was dropped. The top image in each
column is the dropped color-Doppler frame. The bottom image is the vr map recovered by AI-VFM for the instant of time corresponding to
the dropped frame. Velocity units are [m/s]. NDop = 17, NBC = 64, Ncons = 200.

8G-I). These pressure maps identified vortex cores since those are associated with local pressure minima, and agreed well with
previously reported maps by secondary analyses of VFM maps [25].

To illustrate the capacity of AI-VFM to handle gappy images and regenerate the missing information, we re-ran the
algorithm on the same patient, i.e., patient #1, as in Figure 8. However, this time, we created a large hole at the center of the
color-Doppler sector in all the frames (NDop) of the input sequence (Figure 9A-C). Despite the presence of these holes, the
flow and pressure maps reconstructed by AI-VFM, shown in Figures 9D-I, were almost indistinguishable from those obtained
when running AI-VFM on intact input images (Figures 8D-I), yielding r2 = 0.93, 0.87, 0.95 for vr, vθ, and p′, respectively
Ncons = 200 frames.

Finally, we followed a leave-one-out approach to show that AI-VFM can also recover complete missing frames in clinical
acquisition sequences. We created decimated versions of patient #1’s color-Dopppler acquisition by sequentially removing
one of its NDop color-Doppler frames. Then, we trained the PINN in dynamic AI-VFM using the remaining NDop − 1

frames, and used the color-Doppler frame excluded from training as ground-truth data for validation. Figure 10 compares
ground-truth frames with the corresponding AI-VFM-reconstructed frames during early diastole, late diastole, and ejection,
showing favorable visual agreement, and yielding r2 = 0.81 with respect to training with all available (NDop) frames.

4 Discussion

Machine learning (ML) and AI are shaking the landscape of fluid mechanics research, offering unprecedented ability to
study complex flows. In cardiovascular research, ML models are powerful tools to discover hidden relationships between
clinical variables and diseases, offering valuable metrics for disease risk stratification [60–62]. The impact of deep learning
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(DL) models has been particularly significant [63]. Among these models, deep convolutional networks (CNNs) have proven
effective at pattern recognition and feature extraction in complex flow data. Applied to cardiovascular flows, CNNs have
proven helpful in resolving Doppler images aliasing artifacts [30], aortic wall shear stress estimation from 4D flow MRI [32],
and real-time estimation of thrombotic risk in left atrial appendage [64]. Among the growing body of DL models, PINNs
are well suited to study flow phenomena since they effectively incorporate the laws of physics as constraints in the learning
process [34,65]. PINNs have been used to enhance flow measurements from laboratory experiments [66] and medical imaging
acquisitions [31, 36]. However, its applications to recover and visualize intracardiac flows from clinical data are scarce, and
only preliminary approaches to the cardiovascular system have been recently conducted [31,67,68]. Some of these applications
aim to use PINNs for improving cardiac simulations or modeling [29, 69, 70].

The application of DL models to reconstruct LV flow from color-Doppler data is just beginning to be explored but offers
significant promise of improvement over traditional VFM methods [35,71]. This study centered around PINNs as the means of
flow reconstruction, focusing on the performance gains obtained by incorporating physical constraints related to flow kinematics
(i.e., mass conservation) and dynamics (i.e., momentum balance). Unprecedented in VFM, we included momentum balance
in the AI-VFM PINNs via loss terms that measure the residuals of the planar Navier-Stokes equations. Since these equations
include pressure gradients, the pressure was an output variable of the PINNs, allowing AI-VFM to recover pressure fluctuations
inside the LV. Furthermore, informing AI-VFM with flow dynamics allowed this modality to provide temporal super-resolution
and recover entire missing frames from an acquisition sequence.

Our comparative analyses of kinematics-informed vs. dynamics-informed AI-VFM suggested that enforcing momentum
balance in the PINN increased the accuracy and robustness of VFM. Overall, dynamic AI-VFM was more accurate than
kinematic AI-VFM, which in turn was more accurate than the vanilla VFM implementation that integrates the continuity
equation separately along each arc of the Doppler sector [16]. Moreover, our sensitivity analyses showed dynamic AI-VFM to
be less sensitive to the input data’s spatial and temporal resolutions and the ultrasound sector’s orientation. The sensitivity to
ultrasound sector alignment is particularly relevant since VFM relies on the inflow and outflow jets of the LV being captured
by the color-Doppler velocity component. Because those jets are primarily aligned with the LV long axis, the performance of
VFM deteriorates as the angle α between the LV long axis and the ultrasound sector increases [16]. Still, we found dynamic
AI-VFM to perform as accurately for α = 45° as kinematic AI-VFM for α = 0.

The Navier-Stokes equations include acceleration and viscous terms representing physical mechanisms distinct from mass
conservation. Informing AI-VFM with flow acceleration allowed this method to connect information from different temporal
frames within each training set. Consequently, dynamic AI-VFM produced temporally super-resolved outputs with velocity
and pressure maps at time points without color-Doppler training data. When forcing dynamic AI-VFM to linearly interpolate
between training frames without enforcing momentum balance inside the intervals defined by these frames, its performance
degenerated to that of kinematic AI-VFM. This experiment supports the idea that enforcing momentum balance is crucial to
achieving temporal super-resolution. From a practical point of view, handling color-Doppler input sequences with few more
than a dozen frames spanning one single heartbeat facilitates the clinical adoption of VFM because it reduces the time patients
need to hold their breath while being scanned from ∼ 10 s to ∼ 1 s. In our experience, breath-holding has been a limiting
factor of VFM, especially in patients with severely impaired cardiac function. This feature also opens the door to applying
AI-VFM to patients with heart rhythm disorders.

In color-Doppler acquisitions, the Nyquist velocity limit beyond which the Doppler phase wraps around 2π, is dictated by the
ultrasound pulse repetition frequency (PRF). Increasing the PRF allows for detecting higher flow velocities but compromises
the scanning depth of the acquisition. Consequently, color-Doppler sequences for VFM are often acquired using Nyquist
velocities lower than the peak velocities found in the inflow and outflow jets of the LV. Thus, these sequences cancontain
significant aliasing artifacts. Since aliasing artifacts are common to other flow imaging modalities like phase-contrast MRI,
they have received significant attention, and standalone algorithms have been developed for their removal [30, 55, 72, 73].
In a nutshell, these algorithms use knowledge about phase-wrapping, training data, and/or smoothness constraints to decide
whether jumps in velocity between neighboring pixels are caused or not by phase wrapping. Using physical constraints should
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help make this decision but had not been attempted in color-Doppler echocardiography so far. In AI-VFM, we followed an
approach recently proposed for 4D-flow MRI [36]. We made the data loss term in the PINN insensitive to 2π jumps in the
phase of the color-Doppler signal and let the physics constraints in the PINN ensure the regularity of the output flow maps. We
found this approach was sufficient to correct aliasing artifacts in several clinical color-Doppler acquisitions without introducing
any explicit dealiasing step in the algorithm. We also found that the dealiased color-Doppler maps generated by AI-VFM
compared well with those obtained with standalone methods informed by phase wrapping rules [55].

In addition to aliasing, clinical color-Doppler images sometimes include sizeable areas of unreliable data caused by
insufficient signal power, device-related ultrasound reflections [74], etc. These artifacts are more challenging to remedy than
aliasing because they are not governed by a simple phase-wrapping rule. We have shown that AI-VFM seamlessly tolerates
large holes in the input data, using the hidden information about flow physics to restore the flow inside these holes. Therefore,
AI-VFM offers a new method to analyze artifact-ridden images as long as the unreliable pixels in each image can be labeled
and excluded from training. Future efforts should focus on the automation of unreliable pixel labeling and the design of data
loss terms that tolerate such pixels, similar to the 2π-insensitive data loss term used in this work.

The inclusion of viscous terms in the PINN loss should contribute to regularizing the velocity fields in ways consistent
with flow physics. The flexibility of the PINN framework allows for blood viscosity to be an output parameter [65], so no prior
knowledge of this parameter is needed. Nevertheless, our results suggest that spectral bias in the PINNs [58,59] created at least
as much smoothing as the viscous terms for physiologically representative Reynolds number values. Therefore, the effective
Re of the AI-VFM-reconstructed flow maps was lower than the actual Re of the flow and, consequently, the peak values of,
e.g., pressure fluctuations, were underestimated by AI-VFM. On the other hand, except for the presence of imaging noise,
the clinical color-Doppler maps do not exhibit the fine-scale flow patterns expected to be found in LV flow at physiologically
representative Reynolds number values of Re ≈ 4, 000. This averaging effect in color-Doppler maps was previously noted by
Seo et al [56] by comparing with their CFD simulations. Therefore, while further efforts are warranted to mitigate spectral
bias in AI-VFM [59, 75], the clinical application of this technique should not be hindered by this limitation. Furthermore, our
leave-one-out validation of AI-VFM on clinical acquisitions suggests that the PINN captured most if not all the flow features
in the color-Doppler maps.

The PINN approach followed in AI-VFM ensures this technique is trained using data from one patient at a time, bypassing
the need for training on large pre-existing data sets. PINNs are generally less sensitive to common issues of DL models like
the misrepresentation of features underrepresented in the training set [26, 60, 61]. While the need for re-training the PINN
for every single patient may seem computationally expensive, this demand is manageable in VFM given the relatively light
weight of the input 2D image sequences. Currently, AI-VFM converges reasonably within 15 minutes on an off-the-shelf
contemporary graphics processing unit (GPU), and its accuracy can be improved by an additional 10% by extending training to
one hour. Moreover, we did not make an exhaustive effort to fine-tune the number of PINN layers/neurons, batch size, training
iterations, and the weights of different loss terms, leaving room for further accelerations in convergence. Considering these
factors, the rapid progress in GPU architecture, and the Tensorflow software engine used by the PINNs [76], we expect that
further reductions in compute time that could bring AI-VFM closer to real-time execution are well within reach. Future efforts
for accelerating AI-VFM and mitigating the ad hoc choices of weight coefficients will include the implementation of dynamic
weights of the loss terms as proposed in the literature [59, 77, 78].

The fully-connected neural network configuration in AI-VFM provides a flexible framework that can be expanded without
great difficulty to include additional input and output variables, as well as physical constraints. In the field of echocardiography,
this flexibility could be exploited to assimilate flow fields from blood speckle imaging [14, 15], a technique based on high-
frequency ultrasound that measures 2D blood flow vectors but often produces gappy data. In addition, future directions
will explore including additional physical constraints in the PINNs of AI-VFM to map LV blood residence time [79] or the
concentration of coagulation species [80].
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5 Conclusion

This manuscript describes AI-VFM, a new vector flow mapping (VFM) method enabled by recent advances in artificial
intelligence (AI). AI-VFM uses physics-informed neural networks (PINNs) encoding mass conservation, momentum balance,
and boundary conditions to recover intraventricular flow and pressure fields from standard echocardiographic scans. AI-VFM
performs phase unwrapping and recovers missing data in the form of spatial and temporal gaps in the input color-Doppler data,
thereby producing super-resolution flow maps. AI-VFM is solely informed by each patient’s flow physics; it does not utilize
explicit smoothness constraints or incorporate data from other patients or flow models. AI-VFM shows good validation against
ground-truth data from CFD, outperforming traditional VFM methods as well as similar PINN-based VFM formulations
relying exclusively on mass conservation.
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Supporting Information

Figures SI1 and SI2 in this section demonstrate the clinical application of AI-VFM to two additional patients (#2 and #3, see
Table 1 in the main text). Figure SI3 compares CFD and AI-VFM data when the PINN is informed with and without viscous
terms.
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Figure SI1: Example of clinical application of AI-VFM in patient #2. The first (panels A, D, and G), second (panels B, E, and H), and third
(panels C, F, and I) columns display respectively early filling, late filling, and ejection. A-C) Raw color-Doppler training frames at indicated
time points. D-F) Flow vectors and color map of velocity magnitude from AI-VFM at indicated time points. G-I) Flow vectors and pressure
fluctuation at indicated time points. Velocity units are [m/s] and pressure units are [mmHg]. NDop = 19, NBC = 74, Ncons = 200 for
dynamic AI-VFM..
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Figure SI2: Example of clinical application of AI-VFM in patient #3. The first (panels A, D, and G), second (panels B, E, and H), and third
(panels C, F, and I) columns display respectively early filling, late filling, and ejection. A-C) Raw color-Doppler training frames at indicated
time points. D-F) Flow vectors and color map of velocity magnitude from AI-VFM at indicated time points. G-I) Flow vectors and pressure
fluctuation at indicated time points. Velocity units are [m/s] and pressure units are [mmHg]. NDop = 19, NBC = 83, Ncons = 200 for
dynamic AI-VFM..
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Figure SI3: Velocity and pressure maps inferred by AI-VFM compared to ground-truth CFD data at early filling, late filling, and ejection
(i.e., t = 0.85, 0.45, 0.21T , where T is the cardiac cycle period). Data from two AI-VFM implementations, using PINNs trained with
Re = 4, 550 and Re = ∞, are shown. Both are trained with NDop = 15, NBC = 100, and Ncons = 200. As indicated by the dials
symbolizing the cardiac cycle, bot are shown at frames (•) outside of the training set (◦). A) Radial velocity vr; B) Azimuthal velocity vθ; C)
Flow vectors and color map of velocity magnitude; D) Flow vectors and color map of fluctuating pressure p′. Units for velocity and pressure
are cm/s and mmHg, respectively.
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