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Abstract 23 

The current “consensus” order in which amino acids were added to the genetic code is based on 24 

potentially biased criteria, such as absence of sulfur-containing amino acids from the Urey-Miller 25 

experiment which lacked sulfur. More broadly, abiotic abundance might not reflect biotic 26 

abundance in the organisms in which the genetic code evolved. Here, we instead identify which 27 

protein domains date to the last universal common ancestor (LUCA), then infer the order of 28 

recruitment from deviations of their ancestrally reconstructed amino acid frequencies from the 29 

still-ancient post-LUCA controls. We find that smaller amino acids were added to the code earlier, 30 

with no additional predictive power in the previous “consensus” order. Metal-binding (cysteine and 31 

histidine) and sulfur-containing (cysteine and methionine) amino acids were added to the genetic 32 

code much earlier than previously thought. Methionine and histidine were added to the code 33 

earlier than expected from their molecular weights, and glutamine later. Early methionine 34 

availability is compatible with inferred early use of S-adenosylmethionine, and early histidine with 35 

its purine-like structure and the demand for metal-binding. Even more ancient protein sequences 36 

— those that had already diversified into multiple distinct copies prior to LUCA — have 37 

significantly higher frequencies of aromatic amino acids (tryptophan, tyrosine, phenylalanine and 38 

histidine), and lower frequencies of valine and glutamic acid than single copy LUCA sequences. If 39 

at least some of these sequences predate the current code, then their distinct enrichment 40 

patterns provide hints about earlier, alternative genetic codes. 41 

Significance Statement 42 

The order in which the amino acids were added to the genetic code was previously inferred from 43 

consensus among forty metrics. Many of these reflect abiotic abundance on ancient Earth. 44 

However, the abundances that matter are those within primitive cells that already had 45 

sophisticated RNA and perhaps peptide metabolism. Here, we directly infer the order of 46 

recruitment from the relative ancestral amino acid frequencies of ancient protein sequences. 47 

Small size predicts ancient amino acid enrichment better than the previous consensus metric 48 

does. We place metal-binding and sulfur-containing amino acids earlier than previously thought, 49 

highlighting the importance of metal-dependent catalysis and sulfur metabolism to ancient life. 50 

Understanding early life has implications for our search for life elsewhere in the universe. 51 

 52 

 53 

Main Text 54 

Introduction 55 

The modern genetic code was likely assembled in stages, hypothesized to begin with “early” 56 

amino acids present on Earth before the emergence of life (possibly delivered by extraterrestrial 57 

sources such as asteroids or comets), and ending with “late” amino acids requiring biotic 58 

synthesis (1, 2). For example, the Urey-Miller experiment (3)  has been used to identify which 59 

amino acids were available abiotically and are thus likely to have come earlier than those 60 

requiring biotic synthesis. The order of amino acid recruitment, from early to late, was inferred by 61 

taking statistical consensus among 40 different rankings (4), none of which constitute strong 62 

evidence on their own. On the basis of this ordering, Moosmann (5) hypothesized that the first 63 

amino acids recruited into the genetic code were those that were useful for membrane anchoring, 64 

then those useful for halophilic folding, then for mesophilic folding, then for metal binding, and 65 

finally for their antioxidant properties. However, a late role for metal-binding amino acids is 66 

puzzling; many metalloproteins date back to the Last Universal Common Ancestor’s (LUCA)’s 67 

proteome, where they are presumed to be key to the emergence of biological catalysis (6).  68 

Indeed, the late status of some amino acids is disputed (7). For example, the Urey-Miller 69 

experiment (3) did not include sulfur, and so should not have been used to infer that the sulfur-70 

containing amino acids cysteine and methionine were late additions. Methionine and 71 

homocysteine (a product of cysteine degradation) were detected in hydrogen sulfide (H2S)-rich 72 
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spark discharge experiments, suggesting that methionine and cysteine could be abiotically 73 

produced (8). A nitrile-activated dehydroalanine pathway can produce cysteine from abiotic serine 74 

that is produced from a Strecker reaction (9), further demonstrating the possibility of its early 75 

chemical availability.  76 

Histidine’s classification as abiotically unavailable also contributed to its annotation as late (4). 77 

While histidine can be abiotically synthesized from erythrose reacting with formamidine followed 78 

by a Strecker synthesis reaction (10), the reactant concentrations might have been insufficient in 79 

a primitive earth environment (11). More importantly, because histidine resembles a purine, even 80 

if histidine were abiotically unavailable, it might have had cellular availability at the time of genetic 81 

code construction (12), in an organism that biotically synthesized ribosomes, and that might also 82 

have already utilized amino acids and peptides. Indeed, histidine is the most commonly 83 

conserved residue in the active site of enzymes (13).   84 

To directly infer the order of recruitment from protein sequence data, without reference to abiotic 85 

availability arguments, we consider that some of LUCA’s proteins were born prior to the 86 

completion of the genetic code (14). We predict that ancestrally reconstructed sequences from 87 

this era will be enriched in early amino acids and depleted in late amino acids. Previous analyses 88 

relied on conserved residues within a small number of LUCA proteins (15, 16). Here, we classify 89 

a larger set of protein-coding domains that date back to LUCA, rather than being more recently 90 

born, e.g., de novo from non-coding sequences or alternative reading frames (17, 18). We 91 

compare reconstructed ancient amino acid frequencies of the most ancient vs. moderately 92 

ancient protein cohorts, to deduce the order in which amino acids were incorporated into the 93 

genetic code.  94 

We take advantage of gene-tree species-tree reconciliation methods (19) to infer LUCA’s protein 95 

sequences. Previous analyses focused on the age of orthologous gene families (20-22); ours is 96 

the first to infer which protein domains date back to LUCA. Protein domains are the basic units of 97 

proteins, that can fold, function, and evolve independently (23). Proteins often contain multiple 98 

protein domains, each of which might have a different age (Figure 1). For the purpose of inferring 99 

ancient amino acid usage, what matters is the age of the protein domain, not that of the whole 100 

protein that it is part of. We use protein domain annotations from the Pfam database (24). We 101 

recognize Pfams present in LUCA by trimming horizontal gene transfer (HGT) events, and by 102 

exploiting long archaeal-bacterial branches (Figure 2; see Methods for details).  103 

 104 

Figure 1. The evolutionary history of a protein domain may date back further in time than 105 

that of the whole-gene ortholog that it is part of. Multi-domain genes 3 and 4 originated 106 
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around the same time. However, they are made up of two protein domains (blue & orange boxes) 107 

that emerged and diverged at different points in time – domain 1 is older than domain 2. 108 

 109 

 110 
Figure 2. Criteria for (a) LUCA Pfam annotation, (b) identifying HGT to be filtered, and (c) 111 

pre-LUCA Pfam annotation. Details are in Methods, with a brief summary here. a) Pruning HGT 112 

between archaea and bacteria reveals a LUCA node as dividing bacteria and archaea at the root. 113 

Colored circles are indicated just upstream of the most recent common ancestor (MRCA) of all 114 

copies of that Pfam found within the same taxonomic supergroup. We recognize a total of five 115 

bacterial supergroups (FCB, PVC, CPR, Terrabacteria and Proteobacteria (75, 76)) and four 116 

archaeal supergroups (TACK, DPANN, Asgard and Euryarchaeota (77, 78)); only 4 out of 5 117 

bacterial supergroups and 3 out of 4 archaeal supergroups are shown. The yellow diamond 118 

indicates LUCA as a speciation event between archaea and bacteria. We do not assume that the 119 

LUCA coalescence timing was the same for every Pfam (94). Prior to HGT pruning, PVC 120 

sequences can be found on either side of the two lineages divided by the root. After pruning 121 

intradomain HGT, four MRCAs are found one node away from the root, and three more MRCAs 122 

are found two nodes away from the root, fulfilling our other LUCA criterion described in the 123 

Methods, namely presence of at least three bacterial and at least two archaeal supergroup 124 

MRCAs one to two nodes away from the root. b) Criteria for pruning likely HGT between archaea 125 

and bacteria (see Methods for details). We partition into monophyletic groups of sequences in the 126 

same supergroup; in this example, there are four such groups, representing two bacterial 127 

supergroups and one archaeal supergroup. There is one ‘mixed’ node, separating an archaeal 128 

group (HG1) from a bacterial group (HG2). It is also annotated by GeneRax (19) as a transfer ‘T’. 129 

The bacterial nature of groups 3 and 4 indicates a putative HGT direction from group 2 to group 130 

1. Group 2 does not contain any Euryarchaeota sequences, meeting the third and final 131 

requirement for pruning of group 1. If neither Proteobacteria or Euryarchaeota sequences were 132 

present among the other descendants of the parent node, both groups 1 and 2 would be 133 

considered acceptors of a transferred Pfam and would both be pruned from the tree. c) Pre-LUCA 134 

Pfams have at least two nodes annotated as LUCA. 135 

  136 

Results 137 
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Ancient protein domain classifications agree with whole-gene classifications  138 

We classify 969 Pfams and 445 clans (sets of one or more Pfams that are evolutionary related) 139 

as present in LUCA (Figures 3a and 3b; detailed lists in Supplementary Tables 1 and 2). We 140 

compare these to the 3055 Pfams and 1232 clans that we classify as ancient but post-LUCA 141 

(including Last Bacterial Common Ancestor (LBCA) and Last Archaeal Common Ancestor (LACA) 142 

candidates). Encouragingly, 88.6% of Pfams that we annotate as pre-LUCA or LUCA are 143 

contained within genes annotated by Moody et al. (21) as present in LUCA with more than 50% 144 

confidence, when present in their dataset (Figure 3c). This level of agreement far exceeds earlier 145 

works (22). 146 

 147 

Figure 3. Pfams (a) and clans (b) classified as ancient are well validated by the whole gene 148 

annotations of Moody et al. (21) (c). a) Ancient post-LUCA Pfam classifications include 285 149 

LACA candidates and 2770 LBCA candidates (more analysis would be required to rule out 150 

extensive HGT within archaea or bacteria). Modern Pfams are distributed among the prokaryotic 151 

supergroups as follows: 9 CPR, 210 FCB, 942 Proteobacteria, 51 PVC, 1111 Terrabacteria, 2 152 

Asgard, 49 TACK, and 177 Euryarchaeota. In addition to supergroup-specific modern Pfams, we 153 

classified another 1097 Pfams, present in exactly two bacterial supergroups, as modern post-154 

LBCA. We deemed 15 Pfams unclassifiable due to high inferred HGT rates, 397 due to 155 

uncertainty in rooting, and 198 due to ancient rooting combined with absence from too many 156 

supergroups (see Methods). b) Pre-LUCA clans contain at least two LUCA-classified Pfams or 157 

one pre-LUCA Pfam, whereas LUCA clans contain exactly one LUCA Pfam. Ancient post-LUCA 158 

clans contain no LUCA, pre-LUCA, or unclassified Pfams; they include an ancient post-LUCA 159 

Pfam or at least two modern Pfams covering at least two supergroups from only one of either 160 

bacteria or archaea. Modern clans include Pfams whose root is assigned at the origin of one 161 
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supergroup. Finally, unclassifiable clans did not meet any of our clan classification criteria, e.g., 162 

because they included both post-LUCA and unclassifiable Pfams. c) 98% of our pre-LUCA Pfams 163 

and 87% of our LUCA Pfams are present in genes annotated by  as present in LUCA with more 164 

than 50% confidence, when present in their dataset. We mapped all Clusters of Orthologous 165 

Genes (COGs) (95) in the Moody et al. (21) supplementary dataset (STable_1.csv) to UniProt IDs 166 

(96) using the EggNOG 5.0 database (97). We then identified their associated Pfams using the 167 

‘Pfam-A.regions.uniprot.tsv’ file downloaded from the Pfam FTP site (https://pfam-168 

docs.readthedocs.io/en/latest/ftp-site.html#current-release) (24) on May 28th, 2024. Our protein to 169 

Pfam ID mappings are available in ‘Protein2Domain_mappings’ at 170 

https://doi.org/10.6084/m9.figshare.27191274.v1. 171 

In agreement with the Moody et al. (21) classification of LUCA metabolism, almost all Pfams 172 

associated with enzymes in hydrogen metabolism, assimilatory nitrate and sulfate reduction 173 

pathways, and the Wood-Ljungdahl pathway date back to LUCA (Supplementary Table 3). Our 174 

results also support a, post-LUCA, bacterial origin of nitrogen fixation (21, 25) (Supplementary 175 

Table 3). We assign to LUCA the complete set of amino acid-tRNA synthetase-associated anti-176 

codon binding domains found in modern prokaryotes. Here, focusing on complete genes would 177 

have been problematic, because accessory amino acid-tRNA synthetase-associated domains 178 

(e.g. PF04073 and PF13603, which deacylate misacylated tRNA) were sometimes added later. 179 

We also checked the antiquity of the cofactor/cosubstrate S-adenosylmethionine (SAM) (26), both 180 

with respect to SAM biosynthesis and SAM usage. In agreement with past work attributing the 181 

SAM biosynthesis enzyme methionine adenosyltransferase to LUCA (27, 28), we assign its single 182 

Pfam (PF01941) to LUCA (the corresponding COG1812 is not analyzed by Moody et al. (21)). In 183 

agreement with past work attributing SAM-dependent methyltransferases to LUCA (29), Moody et 184 

al. (21) assign the RsmB/RsmF family (COG0144), which methylates 16S rRNA, more than 75% 185 

confidence of being present in LUCA, and we also classify its SAM-binding Rossman fold Pfam 186 

(PF01189) as LUCA. In agreement with (30, 31), Moody et al. (21) assign the SAM-binding tRNA 187 

methylthiolase (COG0621) to LUCA with more than 75% confidence, and we confirm the pre-188 

LUCA status of its associated Radical SAM, TIM-barrel-related Pfam (PF04055).  In agreement 189 

with attribution of polyamines to LUCA (32) we assign to LUCA the one Pfam (PF02675) of S-190 

adenosylmethionine decarboxylase, which acts on SAM in the first step of polyamine synthesis; 191 

the antiquity of corresponding COG1586 is not further confirmed by Moody et al. (21). 192 

 193 

Hydrophobic amino acids are more interspersed within ancient proteins 194 

Interspersion of hydrophobic amino acids away from one another along the primary sequence is 195 

believed to mitigate risks from protein misfolding, while still enabling correct folding (33-35). Older 196 

sequences have previously been found to have greater interspersion among their hydrophobic 197 

residues, indicating more sophisticated protein folding (14, 36), likely due to survivorship bias 198 

(37). Our Pfam age classifications confirm the antiquity of this trend, previously observed only for 199 

animal sequences. LUCA Pfams show even more hydrophobic interspersion than the still-ancient 200 

‘post-LUCA’ Pfams that include LACA candidates and LBCA candidates (Supplementary Figure 201 

1; Wilcoxon rank sum test; p = 0.02). Post-LUCA Pfams in turn have more hydrophobic 202 

interspersion than ‘modern’ Pfams that are specific to particular prokaryotic supergroups 203 

(Wilcoxon rank sum test; p = 0.02).  204 

 205 

LUCA’s protein sequences were depleted in larger amino acids 206 

Clans present in LUCA were born before the divergence of Archaea and Bacteria, some 207 

potentially prior to the completion of the genetic code. If newly recruited amino acids were added 208 

slowly, the contemporary descendants of LUCA clans will show signs of ancestral depletion in 209 

amino acids that were added late to the genetic code. We first focus on clans present in one copy 210 
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in LUCA (denoted “LUCA clans”), excluding those that had already duplicated and diverged into 211 

multiple surviving lineages (denoted “pre-LUCA clans”). We score ancestral amino acid 212 

enrichment and depletion as relative to still-ancient post-LUCA clans, which represent amino acid 213 

usage from the standard genetic code of all 20 amino acids, plus any ascertainment biases. This 214 

ratio, reflecting ancient amino acid usage, is not confounded with the effects of temperature, pH, 215 

oxygen tolerance, salinity, GC content, or transmembrane status on amino acid frequencies 216 

(Supplementary Figures 2a-f). Indeed, LUCA usage is similar in the very different biophysical 217 

context of a transmembrane site (Supplementary Figure 3).  218 

Smaller amino acids are enriched in LUCA (Figure 4a; weighted R2 = 0.48, p = 0.0005). Results 219 

are similar using a restricted set of Pfams validated by Moody et al. (21) (weighted R2 = 0.44, p = 220 

0.001). As a negative control for methodological artifacts, the ancestral amino acid usage of post-221 

LUCA clans relative to modern clans is not correlated with molecular weight (p = 0.9).  222 

 223 

Figure 4. LUCA is enriched for smaller amino acids, with subtle differences between single 224 

copy LUCA vs. multi-copy pre-LUCA sequences. Ancestrally reconstructed amino acid 225 

frequencies in LUCA and pre-LUCA clans are shown relative to those in ancient post-LUCA 226 

clans. a) LUCA clans and b) pre-LUCA clans are enriched for amino acids of smaller molecular 227 

weight. Weighted model 1 regression lines are shown in black with 95% confidence interval grey 228 
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shading. Error bars indicate standard errors. c)  Character colors show the assignments of 229 

Moosmann (5); colored circles indicate our re-assignments. We reclassify phenylalanine (F) 230 

because it is enriched in proteins in mesophiles compared to their orthologs in thermophiles and 231 

hyperthermophiles (98). We reclassify aspartic acid (D) because the surfaces of proteins within 232 

halophilic bacteria are highly enriched in aspartic acid compared to in the surfaces of non-233 

halophilic mesophilic and thermophilic bacteria, in a manner that cannot be accounted for by the 234 

dinucleotide composition of the halophilic genomes (99). The brown circle around methionine 235 

highlights that while it might not be utilized against reactive oxygen species, it might once have 236 

been against ancient reactive sulfur species. d) Model 2 Deming regression (accounting for 237 

standard errors in both variables, implemented in deming() version 1.4-1 (100)) in blue shows that 238 

pre-LUCA enrichments are not more extreme versions of LUCA enrichments, lying on the wrong 239 

side of the y=x red line. We include the imidazole-ring-containing H as aromatic. Asterisks (*) 240 

indicate statistically different amino acid frequencies between pre-LUCA and LUCA (Welch two 241 

sample t-test, p<0.05 and p<0.01). 242 

Revised Order of Amino Acid Recruitment 243 

Figure 4c visualizes how LUCA’s amino acid enrichments compare to Trifonov’s consensus order 244 

(4). While they are correlated (weighted R2 = 0.37, p = 0.003), this association disappears in a 245 

weighted multiple regression with both molecular weight (p = 0.03) and Trifonov’s (4) order (p = 246 

0.9) as predictors (weighted R2 = 0.48). This is also true using Trifonov’s revised 2004 order 247 

based on 60 metrics (38) (weighted R2 = 0.34, p = 0.006 on its own; p = 0.9 when molecular 248 

weight is also a predictor of LUCA usage). This suggests that some of Trifonov’s 40-60 metrics 249 

made his estimates of the order of recruitment worse rather than better. We use enrichment in 250 

LUCA to re-classify VGIMTAHEPC as ‘early’ and depletion to classify KSDLNRFYQW as ‘late’. 251 

More precise estimation of the order of recruitment, with standard errors, is given in Table 1.  252 

We place glutamine (Q or Gln) as the second last amino acid, much later than Trifonov (4) 253 

inferred. Consistent with its late addition, Gln-tRNA synthetase (GlnRS) is either absent in 254 

prokaryotes, or acquired via horizontal gene transfer from eukaryotes (39). Prokaryotes that lack 255 

GlnRS perform tRNA-dependent amidation of Glu mischarged to Gln-tRNA by GluRS, forming 256 

Gln-acylated Gln-tRNA via amidotransferase. The core catalytic domain (PF00587), shared 257 

between the GlnRS and GluRS paralogs, is present in LUCA and can indiscriminately acylate 258 

both Gln-tRNA and Glu-tRNAs with Glu (40).   259 

Metal-binding and sulfur-containing amino acids were added early to the genetic code 260 

Methionine (M), cysteine (C), and histidine (H) are all enriched in LUCA, despite previous 261 

annotation as late additions to the genetic code (Figure 4c). C and H are the most frequently used 262 

amino acids for binding iron, zinc, copper, and molybdenum, and H, aspartic acid (D) and 263 

glutamic acid (E or Glu) for binding manganese and cobalt (Figure 2D of (41)). Binding can either 264 

be to a metal ion, or to iron-sulfur (FeS) clusters, usually via C but sometimes via H or D (42). 265 

Binding these transition metals is key to catalysis (43). Figure 4a is incompatible with C, H, D, or 266 

E being late additions, and indeed H is more enriched than one would expect from its molecular 267 

weight.  268 

C and M are the only sulfur-containing amino acids in the contemporary genetic code. 269 

Contemporary prokaryotes living in H2S-rich environments use more C and M than matched 270 

species (Supplementary Figure 4); LUCA’s C and M enrichment might thus reflect an 271 

environment rich in H2S.  272 

Moosmann (5) classified M, tryptophan (W), and tyrosine (Y) as antioxidants, because he 273 

believed them to protect the overall protein structure from oxidative stress via sacrificial 274 

oxidization. For instance, surface M residues can be reversibly oxidized to form methionine 275 
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sulfoxide (44). This might have driven isoleucine recoding to methionine in mitochondria (45, 46). 276 

However, proteins in aerobes are enriched in W and Y but not in M (47). Our results also 277 

separate early M from late Y and W (Figure 4). We speculate that methionine, abundant due to 278 

early life’s use of SAM, might have protected against reactive sulfur species such as sulfide (S2-), 279 

which were present in early, H2S-rich environments (48). Our results are then partially compatible 280 

with Granold et al.’s (49) view that Y and W (but not M) were added to complete the modern 281 

genetic code after reactive oxygen species became the main oxidizing threat. 282 

Amino acid LUCA usage LUCA usage  

standard 

error 

Pre-LUCA usage Pre-LUCA usage 

standard error 

V 1.12 0.0241 1.04 0.0205 

G 1.11 0.0283 1.09 0.0241 

I 1.1 0.0325 1.07 0.0351 

M 1.08 0.0386 1.1 0.0383 

A 1.07 0.0317 1.03 0.0297 

T 1.07 0.0369 1.05 0.0362 

H 1.04 0.0416 1.17 0.0486 

E 1.03 0.0357 0.911 0.0357 

C 1.01 0.0722 1.03 0.0844 

P 1.01 0.0282 1.04 0.0255 

K 0.974 0.038 0.901 0.0334 

S 0.972 0.0265 1.02 0.0239 

D 0.968 0.027 0.988 0.0363 

L 0.942 0.0256 0.962 0.032 

N 0.934 0.0374 0.996 0.0432 

R 0.916 0.0265 0.915 0.0271 

F 0.895 0.032 1.02 0.0394 

Y 0.858 0.0341 0.982 0.0309 

Q 0.827 0.031 0.847 0.0304 

W 0.649 0.0476 0.865 0.0526 

Table 1. LUCA and pre-LUCA clans’ ancestral amino acid frequencies are divided by post-LUCA 283 

clan’s ancestral amino acid frequencies to produce measures of relative usage. The standard 284 

errors of the amino acid usages were calculated using an approximation derived from a Taylor 285 

expansion of the ratio (90). For each of the 20 ancestral amino acid frequencies, the standard 286 

errors of the weighted means across all the clans within the LUCA and pre-LUCA phylostrata 287 

(weighted by the maximum number of ancestral sites across all Pfams in a given clan) were 288 

calculated using the weighted_se() function in the diagis R package (89)(See Methods for more 289 

detail). 290 

 291 

Pre-LUCA clans hint at more ancient genetic codes 292 

We expected pre-LUCA enrichments and depletions to be more extreme than for LUCA, but only 293 

H fits this prediction (Figure 4d), with significantly higher frequencies in pre-LUCA than in LUCA. 294 
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There is nevertheless a strong overall correlation between LUCA and pre-LUCA usages (R2 = 295 

0.51, p = 0.0003). Pre-LUCA, like LUCA, is strongly depleted in Q, supporting the inference that 296 

Q, not Y, was the 19th amino acid recruited into the standard genetic code. Pre-LUCA usage does 297 

not correlate with Trifonov’s consensus order (4) (p = 0.2), and correlates more weakly with 298 

molecular weight (Figure 4b) (weighted R2 = 0.33, p = 0.007). 299 

H is one of six amino acids with significantly different frequencies in pre-LUCA vs. LUCA. All 300 

three of the canonical, benzene-ring bearing, aromatic amino acids (W, Y, and phenylalanine (F)), 301 

as well as the imidazole-ring containing H, are more common in pre-LUCA than in LUCA (Figure 302 

4d, Welch 2-sample t-test; p = 0.03, 0.001, 0.03 and 0.01, respectively; 2.4% vs 2.1% H, 1.2% vs 303 

0.9% W, 3.1% vs. 2.8% Y, and 4.1% vs. 3.7% F). Glutamic acid (E) and Valine (V) are less 304 

common in pre-LUCA than in LUCA (Welch 2-sample t-test; p = 0.01 and 0.004, respectively; 305 

7.3% vs. 8.2% E, 7.5% vs. 8.1% V).  306 

More W in pre-LUCA than LUCA is particularly surprising, because there is scientific consensus 307 

that W was the last of the 20 canonical amino acids to be added to the genetic code. Therefore, 308 

we manually inspected the pre-LUCA Pfam with the highest tryptophan frequency (3.1%):   309 

PF00133, the core catalytic domain of the tRNA synthetases of leucine (L), isoleucine (I), and 310 

valine (V). Each of these three synthetases has well-separated archaeal and bacterial branches, 311 

confirming its pre-LUCA dating (Supplementary Figure 5). Highly conserved tryptophan sites 312 

regulate the size of the amino acid binding pocket, allowing the synthetases to discriminate 313 

among I, L, and V (50). There are also conserved I and V sites in the common ancestor of the I 314 

and V tRNA synthetases, indicating that discrimination between the two happened prior to the 315 

evolution of the synthetases currently responsible for the discrimination (51). This suggests that 316 

an alternative, more ancient system predated the modern genetic code, and in particular predated 317 

the evolution of super-specific, cognate aaRSs (51).  318 

 319 

Discussion  320 

The evolution of the current genetic code proceeded via stepwise incorporation of amino acids, 321 

driven in part by changes in early life’s environment and requirements. Contemporary proteins 322 

retain information about which amino acids were part of the code at the time of their birth, 323 

allowing us to infer the order of recruitment on the basis of enrichment or depletion in LUCA’s 324 

protein domains. Smaller amino acids were added to the code first, and when this is accounted 325 

for, there is no further information in Trifonov’s (4) widely used ‘consensus’ order based on 40 326 

metrics, some of dubious relevance. The sulfur-containing amino acids C and M were 327 

incorporated earlier than previously thought, likely because those metrics included experiments 328 

conducted in the absence of sulfur. Q was added later than previously thought, in agreement with 329 

evidence from glutamyl-tRNA synthetases. M and H were added to the code earlier than 330 

expected from their molecular weights, and Q later. Even more ancient amino acid usage, in 331 

sequences that had already duplicated and diverged pre-LUCA, shows significantly higher 332 

frequencies of the aromatic amino acids W, Y, F, and H, and significantly lower frequencies of E 333 

and V. 334 

If LUCA lived in a H2S-rich environment (48, 52), M residues could have protected proteins 335 

against sulfur-mediated oxidative stress. M would furthermore have had high biotic availability as 336 

the precursor (53) and product (54) of SAM, given our finding that LUCA made and used SAM. 337 

The potentially sulfur-rich nature of early terrestrial life is context for astrobiology investigations of 338 

sulfur-rich environments on Mars and Europa, with associated biosignatures key to life detection 339 

(55).  340 

An early role for H is compatible with a key role for metal binding in early life. It also resolves the 341 

previous puzzle that the ancestral, conserved region of all Class I aaRSs contains a histidine-rich 342 

HIGH motif (56, 57). The lack of abiotic availability was key to H’s previous annotation as late, but 343 

biotic availability of H in an RNA-dominant biotic context would have been sufficient. The 344 
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importance of abiotic availability (58, 59) to the origins of the genetic code remains unclear. We 345 

note that ongoing research on plausible prebiotic syntheses in cyanosulfidic environments (60) 346 

and alkaline hydrothermal vents (61) is reshaping our understanding of which amino acids were 347 

accessible to early life. Amino acid abundances obtained from asteroid sample returns will also 348 

soon contribute (62).  349 

Our results offer an improved approximation of the order of recruitment of the twenty amino acids 350 

into the genetic code under which contemporary protein-coding sequences were born. This order 351 

need not match the importance or abundance with which amino acids were used by still earlier 352 

life forms, nor during the prebiotic to biotic transition. Instead of using Trifonov’s assignments (4) 353 

to capture the order in which amino acids were recruited into our genetic code, we recommend 354 

using the LUCA amino acid enrichment values plotted on the y-axis of Figure 4a, which can be 355 

found together with their standard errors in Table 1.  356 

More broadly, coding for different amino acids might have emerged at similar times but in 357 

different biogeochemical environments. The temporal order of recruitment that we infer based on 358 

LUCA sequences is not the temporal order for coding as a whole, but for the ancestor of the 359 

modern translation machinery. Indeed, horizontal gene transfer of the tRNAs coupled with their 360 

cognate aminoacyl tRNA synthetases might have brought the diverse components of the modern 361 

translation machinery together (63). This further emphasizes that the time of origin of the 362 

translation machinery’s components need not match the time of their incorporation into the 363 

surviving ancestral lineage.  364 

The construction of the genetic code was tethered to the evolution of the ribosome (64). If the 365 

ribosome’s exit tunnel, whose formation and subsequent extension was key to ribosome evolution 366 

(65), limited the size of the amino acids passing through, its progressive dilation could explain the 367 

strong relationship between amino acid size and order of recruitment evidenced in LUCA clans. If 368 

older, alternative codes were not similarly limited, this would explain why amino acid size is a 369 

weaker predictor of pre-LUCA’s amino acid usage compared to LUCA’s amino acid usage.  370 

To explain the different enrichments of pre-LUCA versus LUCA sequences, as well as the 371 

surprising conservation of some sites prior to the emergence of the aaRSs that distinguish the 372 

relevant amino acids, we propose that some pre-LUCA sequences are older than the current 373 

genetic code, perhaps even tracing back to a peptide world at the dawn of precellular life (7). 374 

Stepwise construction of the current code and competition among ancient codes could have 375 

occurred simultaneously (66, 67). Ancient codes might also have used non-canonical amino 376 

acids, such as norvaline and norleucine (68) which can be recognized by LeuRS (69, 70). Along 377 

with having different genetic codes, we speculate that pre-LUCA and LUCA might have existed in 378 

different geochemical settings. For instance, if pre-LUCA ancestors inhabited alkaline 379 

hydrothermal vents, where abiotically produced aromatic amino acids have been found (61), this 380 

would explain their enrichment in pre-LUCA relative to LUCA. We note that abiotic synthesis of 381 

aromatic amino acids might be possible in the water-rock interface of Enceladus’s subsurface 382 

ocean, which is speculated to be analogous to terrestrial alkaline hydrothermal vents (71). 383 

Perhaps the biggest mystery is how sequences such as the common ancestor of L/I/V-tRNA 384 

synthetase, which were translated via alternative or incomplete genetic codes, ended up being re-385 

coded for translation by the direct ancestor of the canonical genetic code. Harmonization of 386 

genetic codes facilitated innovation sharing via HGT, making it advantageous to use the most 387 

common code, driving code convergence (72, 73). Only once a common code was established 388 

did HGT drop to levels such that a species tree became apparent, i.e. the LUCA coalescence 389 

point corresponds to convergence on a code (72). Our identification of pre-LUCA sequences 390 

provides a rare source of data about early, alternative codes. 391 

 392 

Materials and Method 393 

Pfam sequences 394 
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We downloaded genomes of 3562 prokaryotic species from NCBI that were present in the Web of 395 

Life (WoL): Reference phylogeny of microbes (74) in August 2022. We classified them into five 396 

bacterial supergroups (FCB, PVC, CPR, Terrabacteria and Proteobacteria (75, 76)) and four 397 

archaeal supergroups (TACK, DPANN, Asgard and Euryarchaeota (77, 78)). We included 398 

incomplete genomes, to enhance coverage of underrepresented supergroups. 399 

We assign ages not to whole proteins but to each of their protein domain constituents. We used 400 

InterProScan (79) to identify instances of each Pfam domain (24). We excluded Pfams with fewer 401 

than 50 instances across all downloaded genomes. We also excluded 9 Pfams marked “obsolete” 402 

starting July 2023. Among the remaining 8282 Pfams, 2496 Pfams had more than 1000 403 

instances. We downsampled these to balance representation across the two taxonomic domains 404 

(archaea and bacteria). For instance, a Pfam with 2000 bacterial and 500 archaeal instances was 405 

downsampled by retaining all 500 archaeal sequences plus a subset (randomly sampled without 406 

replacement) of 500 bacterial sequences.  407 

The Pfam database includes annotations of “clans” of Pfams that share a common ancestor 408 

despite limited sequence similarity; for many analyses, we used clans rather than Pfams to 409 

ensure independent datapoints. We treated Pfams that were not annotated as part of a clan as 410 

single-entry clans, with clan ID equal to their Pfam ID. 411 

 412 

Pfam trees 413 

We aligned downsampled sequences for each Pfam using MAFFT v.7 (80), to infer a preliminary 414 

tree with IQ-Tree (81), using a time non-reversible amino acid substitution matrix trained on the 415 

Pfam database (NQ.PFAM) (82), and no rate heterogeneity among sites. Because most Pfams 416 

are too short for reliable tree inference, we next reconciled preliminary Pfam trees with the WoL 417 

prokaryotic species tree (74) using GeneRax (19). While there is no perfect species tree for 418 

prokaryotes, reconciliation even with a roughly approximate tree can still provide benefits. We ran 419 

GeneRax twice. The first run used the LG amino acid substitution model, a gamma distribution 420 

with four discrete rate categories, and a Subtree Prune and Regraft (SPR) radius of 3. The 421 

second run used the output of reconciled trees from the first run as input, and switched to an SPR 422 

radius of 5, and the Q.PFAM amino acid substitution model (83), which was trained on the Pfam 423 

dataset. We did not use NQ.PFAM, because time non-reversible models are only implemented in 424 

IQ-Tree (82), and not in GeneRax. In both runs, we used the UndatedDTL probabilistic model to 425 

compute the reconciliation likelihood. The second run of GeneRax reduced estimated transfer 426 

rates by an additional 7% (Welch two sample t-test, p = 10-12), indicating continued improvements 427 

to the phylogenies.  428 

We re-estimated the branch lengths of the reconciled Pfam trees in IQ-Tree using the NQ.PFAM 429 

substitution model with no rate heterogeneity, then performed midpoint rooting using the phytools 430 

R package (84) on these re-estimated branch lengths. As alternative rooting methods, we also 431 

explored and rejected minimum variance (85), minimal ancestral deviation (86), and rootstraps 432 

based on time non-reversible substitution models (87). The first two methods work best when 433 

deviations from the molecular clock average out on longer timescales, which is not true for 434 

phylogenies in which evolution e.g. at different temperatures causes sustained differences in 435 

evolutionary rate. Indeed, minimum variance failed to resolve the prokaryotic supergroups as 436 

separate clades, in visual inspection of PF00001, due to presumed genuine rate variation among 437 

taxa. The latter produced very low confidence roots. In contrast, midpoint rooting largely 438 

conformed to expectations for aaRSs once we implemented the procedure for outlier removal 439 

described under “Classifying Pfam domains into ancient phylostrata” below. 440 

We then implemented a new --enforce-gene-tree-root option in GeneRax, and ran GeneRax in 441 

evaluation mode, with Q.PFAM+G as the substitution and rate heterogeneity models, 442 

respectively. Evaluation mode re-estimates the reconciliation likelihood and the duplication, 443 

transfer and loss (DTL) rates on a fixed tree, without initiating a tree search. Fifteen reconciled 444 
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Pfam trees had inferred transfer rates higher than 0.6, three times the seed transfer rate 445 

implemented by GeneRax. We took this as a sign of poor tree quality, and annotated these 15 446 

Pfams as of unclassifiable age. 447 

 448 

Filtering out HGT between archaea and bacteria 449 

Exclusion of horizontal gene transfer (HGT) between bacteria and archaea facilitates the 450 

classification of a Pfam into LUCA (Figure 2a). To achieve this, we divided sequences into 451 

“homogeneous groups”, meaning the largest monophyletic group in the Pfam tree for which the 452 

corresponding species all belong to the same prokaryotic supergroup. Each homogeneous group 453 

was considered as a candidate for exclusion, via its “focal node” separating it from its sister 454 

group. To avoid over-pruning, we do not consider deep focal nodes that are 2 or fewer nodes 455 

away from the root. 456 

To be excluded, we first require the focal node to be ‘mixed’, meaning its descendants are found 457 

within both Bacteria and Archaea. We next require the focal node to be labelled by GeneRax as 458 

most likely a transfer (T), rather than a duplication (D) or speciation (S). Finally, to identify 459 

homogeneous groups likely to be receivers rather than the donors of transferred sequences, we 460 

require the sister lineage to contain no sequences present in the same supergroup as that 461 

defining the homogeneous group in question. An example of filtering is shown in Figure 2b. 462 

We ran the filtering process twice to address rare occasions of an intradomain HGT nested within 463 

another intradomain HGT group. In the second filter, we apply the third criterion after pruning the 464 

homogenous groups identified as HGT during the first filter. 465 

 466 

Classifying Pfam domains into ancient phylostrata 467 

We re-rooted the HGT-pruned Pfam trees using the midpoint.root function in the ‘phytools’ R 468 

package (84), before classifying them into phylostrata (i.e. cohort of sequences of similar age). 469 

Classification was based on the locations of the most recent common ancestors (MRCAs) of each 470 

supergroup. For a LUCA Pfam, we require the root to separate the MRCAs of all bacterial 471 

supergroups from the MRCAs of all archaeal supergroups (Figure 2a).  472 

If there were no horizontal transfer, and the tree of a Pfam present in one copy in LUCA were 473 

error-free, then the MRCAs for the nine supergroups would be two to four branches away from 474 

the root. This is true even if our Pfam tree and/or species tree do not correctly capture the true 475 

phylogenetic relationships among supergroups. However, we cannot ignore HGT; we did not filter 476 

out the products of HGT between supergroups within Archaea or within Bacteria, only that of HGT 477 

between Archaea and Bacteria. HGT from a more derived supergroup to a more basal 478 

supergroup will move the inferred MRCA of the former further back in time. Given rampant HGT, 479 

whether real or erroneously implied by Pfam tree error, we required Pfams to have their 480 

supergroups’ MRCA two branches away from the root (Figure 2a). 481 

Phylogenies with three or more basal bacterial supergroups and two or more basal archaeal 482 

supergroups were classified as LUCA. In other words, we allow the absence of up to two 483 

supergroups per taxonomic domain, as compatible with ancestral presence followed by 484 

subsequent loss. Trees with three or more basal bacterial supergroups but fewer than two basal 485 

archaeal supergroups, as well as trees with two or more basal archaeal supergroups but fewer 486 

than three basal bacterial supergroups, were classified as ancient but post-LUCA. These are 487 

candidate Pfams for the Last Bacterial Common Ancestor (LBCA) and the Last Archaeal 488 

Common Ancestor (LACA) phylostrata, respectively, but the necessary HGT filtering for sufficient 489 

confidence in this classification is beyond the scope of the current work. If only one basal 490 

supergroup is present, then the Pfam is classified into the corresponding supergroup-specific 491 

phylostratum, meaning it emerged relatively recently (modern post-LUCA). If two basal bacterial 492 

supergroups (and no archaeal supergroups) were present, the Pfam was classified as post-LBCA 493 
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which was also considered modern post-LUCA (younger than LBCA but older than the 494 

supergroup-specific phylostrata). The remaining Pfams were considered unclassifiable. 495 

We also classify into a pre-LUCA phylostratum the subset of LUCA-classified Pfams for which 496 

there is evidence that LUCA contained at least two copies that left distinct descendants. This is 497 

motivated by the assumption that LUCA domains that were born earlier are more likely to have 498 

duplicated and diverged prior to the archaeal-bacterial split (88). We require that both the nodes 499 

that are only one branch from the root be classified as LUCA nodes. This means that each of 500 

these nodes should, after HGT filtering: i) split a pure-bacterial lineage from a pure-archaeal 501 

lineage, and ii) include as descendants at least three bacterial and two archaeal basal MRCAs no 502 

more than two nodes downstream of the potential LUCA nodes (Figure 2c).  503 

Assignment of a Pfam to a phylostratum is sensitive to the root’s position. Midpoint rooting is 504 

based on the longest distance between two extant sequences. A single inaccurately placed 505 

sequence can yield an abnormally long terminal branch, upon which the root is then based. This 506 

phenomenon was readily apparent upon manual inspection of rooted Pfam trees. To ensure the 507 

robustness of age classifications to the occasional misplaced sequence, we removed the Pfam 508 

instance with the longest root-to-tip branch length in each HGT-filtered tree as potentially faulty, 509 

re-calculated the midpoint root, and then re-classified each Pfam. We repeated this for ten 510 

iterations, then retained only those Pfams that were classified into the same phylostratum at least 511 

7 out of 10 times. Our HGT filtering algorithm does not act on nodes near the root, making it 512 

robust to small differences in root position; we therefore did not repeat the HGT-filtering during 513 

these iterations.  514 

We classified clans that contained at least two LUCA Pfams as pre-LUCA clans. Clans that 515 

contained both ancient archaeal and ancient bacterial post-LUCA Pfams (i.e. candidate LACA 516 

and LBCA Pfams) were classified as LUCA. Clans that contained at least two different archaeal 517 

but no bacterial supergroup-specific Pfams, or three different bacterial supergroup-specific Pfams 518 

but no archaeal supergroup-specific Pfams, were classified as ancient post-LUCA clans. Clans 519 

that meet neither of these criteria, and that contain at least one unclassified Pfam, were 520 

considered unclassifiable due to the possibility that the unclassified Pfam might be older than the 521 

classified Pfams present in the clan. All other clans were assigned the age of their oldest Pfam.  522 

For a more stringent analysis of amino acid usage, we restrict our Pfam dataset to those present 523 

in proteins annotated by Moody et al. (21) as >75% likely to be in LUCA. We then re-classified 524 

clan ages. Data on the likelihood of Pfams being present in LUCA, as annotated by Moody et al. 525 

(21),  can be found in ‘MoodyPfams_probabilities.csv’ on GitHub. 526 

 527 

Ancestral amino acid usages 528 

Ancestral sequence reconstruction (ASR) can introduce a variety of biases. ASR methods do not 529 

resolve alignment gaps well, to infer indel evolution, instead inferring ancestral sequences far 530 

longer than any contemporary descendant. To avoid bias among amino acids regarding which 531 

contemporary sequences appear in the ancestral sequence more often than they should, we 532 

retain only sites where more than 50% of the sequences contain an amino acid (i.e. no indel). 533 

This ensures that no amino acid can be double counted. 534 

For Pfams classified as pre-LUCA or LUCA, we require that a given site contain an amino acid 535 

and not a gap in at least five bacterial sequences and five archaeal sequences. This additional 536 

filter helps ensure that the ancestrally reconstructed sites were not inserted post-LUCA (even 537 

when the Pfam itself dates back to LUCA). It also reduces the impact of any Pfams misclassified 538 

as ancient on the inferred ancient amino acid usage. 539 

Following these filters, we ran the remaining sites in each Pfam alignment (prior to HGT filtering) 540 

through IQ-Tree with the -asr option, the NQ.PFAM substitution model, and R10 rate 541 

heterogeneity. We then excluded low confidence sites from subsequent analyses, based on the 542 
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most likely amino acid having an ancestral probability estimate <0.4. Combined with the other two 543 

filters described above, the concatenated sequence length for all four phylostrata (pre-LUCA, 544 

LUCA, post-LUCA, and modern) fell by ~11%, presumably preferentially excluding rapidly 545 

evolving sites to a similar degree in all four cases, such that amino acid exclusion biases cancel 546 

out when ratios are taken.  547 

We then summed over the amino acid probability distributions at each site at the deepest node, 548 

and divided by the number of sites, to obtain per-Pfam estimated ancestral amino acid 549 

frequencies. For each clan, we took the ancestral amino acid frequencies across Pfams, 550 

weighted by the number of ancestral sites in the Pfams. For each phylostratum, we averaged 551 

across clans, weighted by the maximum number of ancestral sites across all Pfams in a given 552 

clan. We calculated a standard error associated with each phylostratum mean using the 553 

weighted_se() function in the diagis R package (89).  554 

We divided ancestral amino acid frequencies for the LUCA and pre-LUCA phylostrata by post-555 

LUCA ancestral amino acid frequencies to produce measures of relative usage. Standard errors 556 

of each of these ratios �/� were calculated using an approximation derived from a Taylor 557 

expansion of the ratio: ���
�

��
� ����

�

��
 (90).  These were used in weighted linear model 1 558 

regressions, using the lm() function with the ‘weights’ argument in the ‘stats’ package in base R 559 

(91). Uncertainty in the ancestral states arising over 4 billion years of evolution is expected to 560 

bring values of �/� closer to one, without entirely erasing the signal. As a negative control for 561 

bias, we calculate the relative amino acid usage of post-LUCA clans by dividing the ancestral 562 

amino acid frequencies for post-LUCA clans by the ancestral amino acid frequencies for modern 563 

clans. 564 

Standard errors in Trifonov’s (4) average rank reflect but underestimate uncertainty; we therefore 565 

treat Trifonov’s (4) rankings as the dependent variable and use its weights rather than errors on 566 

�/� to weight the regression model in Figure 4c. Standard errors are not available for alternative 567 

results based on Trifonov’s 2004 order (38). 568 

 569 

Hydrophobic interspersion 570 

The degree to which hydrophobic are clustered vs. interspersed along the primary sequence was 571 

calculated as a normalized index of dispersion for each Pfam instance (35). This metric uses the 572 

ratio of the variance to the mean in the number of the most hydrophobic amino acids (leucine, 573 

isoleucine, valine, phenylalanine, methionine, and tryptophan) within consecutive blocks of six 574 

amino acids. The values of this index of dispersion were then normalized, to make them 575 

comparable across Pfams with different lengths and hydrophobicities. In cases where the Pfam 576 

length was not a multiple of 6, the average across all possible 6-amino acid frames was 577 

computed, trimming the ends as needed. For additional details, see Foy et al. (36) or James et al. 578 

(14). For each Pfam, we then took the average across all its instances (prior to downsampling 579 

species). 580 

 581 

Transmembrane annotation 582 

We identified transmembrane sites within each Pfam using DeepTMHMM (92) on a consensus 583 

sequence generated from the original multiple sequence alignments (prior to HGT filtering) using 584 

the majority-rule seq_consensus() function in the R package ‘bioseq’ (93).  585 

 586 

  587 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2024. ; https://doi.org/10.1101/2024.04.13.589375doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.13.589375
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

16 

 

Data and Code Availability 588 

Data files and R scripts used to generate the results and figures are available at 589 

sawsanwehbi/Pfam-age-classification GitHub repository. Pfam sequences, alignments, trees and 590 

mappings to protein IDs are available at https://figshare.com/projects/Pfam-age-classification-591 

data/201630. 592 
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