
Protein codes promote selective subcellular compartmentalization 
 

Henry R. Kilgore1, †,*, , Itamar Chinn2,†, Peter G. Mikhael2,†, Ilan Mitnikov2,†, Catherine Van Dongen1, Guy 
Zylberberg2, Lena Afeyan 1,3, Salman Banani1,4, Susana Wilson-Hawken1,5, Tong Ihn Lee1, Regina Barzilay2,*, 

Richard A. Young1,3,* 
 

1Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. 
 

2Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 
02139, USA. 

 
3Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. 

 

4Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. 
 

5Program of Computational & Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, 
USA 

 
†These authors contributed equally to this work. 

*Corresponding author. Email: hkilgore@wi.mit.edu (H.R.K), regina@csail.mit.edu (R.B.), young@wi.mit.edu 
(R.A.Y). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 22, 2024. ; https://doi.org/10.1101/2024.04.15.589616doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.15.589616
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Abstract 
Cells have evolved mechanisms to distribute ~10 billion protein molecules to subcellular compartments where 
diverse proteins involved in shared functions must efficiently assemble. Here, we demonstrate that proteins with 
shared functions share amino acid sequence codes that guide them to compartment destinations. A protein language 
model, ProtGPS, was developed that predicts with high performance the compartment localization of human 
proteins excluded from the training set. ProtGPS successfully guided generation of novel protein sequences that 
selectively assemble in targeted subcellular compartments. ProtGPS also identified pathological mutations that 
change this code and lead to altered subcellular localization of proteins. Our results indicate that protein sequences 
contain not only a folding code, but also a previously unrecognized code governing their distribution in specific 
cellular compartments. 
 
Introduction 
 Groups of proteins involved in shared functions must efficiently assemble to fulfill their physiological 
functions1. For example, the fidelity of gene transcription hinges on the assembly of over a hundred different 
proteins at promoters, where some bind DNA sequences directly and others interact with DNA-bound proteins 
instead2,3. Selective protein-protein and protein-nucleic acid interactions are thought to be the predominant driving 
force leading to the assembly of specific proteins at locations where they carry out diverse functions4-7. Shape 
complementarity among structurally stable portions of proteins have dominated models of protein assembly, but 
there is now considerable evidence that large assemblies of proteins with shared functions also occur through weak 
multivalent noncovalent interactions8-15. Nearly all cellular functions involve formation of such assemblies, which 
have been described as condensates, aggregates, puncta, hubs and non-membrane bound compartments (Fig. 1A). In 
a recent study, we used small chemical probes to demonstrate that different condensates can harbor distinct internal 
chemical environments, suggesting that such assemblies have different solvent properties16. It is thus possible that 
protein molecules that assemble selectively with others in a condensate do so, in part, as a consequence of their 
compatibility with the internal solvating environment of that compartment17-20. Integration of contributions from 
specific interactions (e.g., DNA-protein binding, protein-protein interactions) and nonspecific interactions (e.g., 
transient noncovalent interactions) is challenging to model, but protein language models provide a mechanism for 
generally incorporating diverse contributions. If such a protein language model could be developed, it would have 
important implications for our understanding of cellular function and dysfunction by providing evidence of a protein 
code embedded in amino acid sequences guiding distribution.  
 
Evidence for shared protein codes in condensate compartments 
 To learn whether collections of proteins that assemble into specific condensate compartments have shared 
protein codes, we adapted an evolutionary scale protein transformer language model (ESM2) to predict protein 
assembly into distinct compartments21,22. The transformer architecture of ESM2 allows for simultaneous 
relationships between all amino acids in an input sequence to be learned, providing a general strategy to detect 
protein codes embedded in the amino acid sequence of a protein. We focused our studies on a set of 5,541 human 
protein sequences that have been annotated for twelve condensate compartments using the  UNIPROT23 and CD-
Code24 databases (Fig. 1B). The compartment identities of the proteins in these databases were determined with 
various experimental techniques and curated by experts in compartment annotation and whole sequences were used 
as input44. Compartment annotated whole protein sequences were used as input. A neural network classifier was 
jointly trained with ESM2 to develop a model, termed ProtGPS, which computes the independent probability of a 
protein being found within each of the twelve different condensate compartments (Fig. 1C). The area under the 
receiver operator curve (AUC-ROC) showed that protein compartments could be predicted with remarkable 
accuracy (0.83-0.95) across the 12 different compartments (Fig. 1D). The performance of the ProtGPS model 
indicates it detects patterns in the protein primary structure that differentiates these condensate compartments. 
 
Guided generation of novel protein sequences for compartment selectivity  

 In order to validate that ProtGPS has learned the protein codes associated with condensate localization, we 
sought to design novel protein sequences that, when produced in cells, would selectively assemble into a 
compartment of interest. To test this idea, we initially designed protein sequences using an autoregressive greedy 
search algorithm (GS)25. We repeatedly feed a growing sequence into ProtGPS and extend the sequence with 
additional residues at the N-terminus up to a desired length, choosing an amino acid at each step that causes a 
protein to be classified as a match for the desired compartment (Fig. S1). For each protein, a plasmid was 
constructed that encoded a generated polypeptide of up to 150 amino acids with an N-terminal nuclear localization 
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sequence to ensure transport into the nucleus and a C-terminal mCherry protein to ascertain the location of the 
protein by microscopy. In all, we generated eight novel protein sequences were designed to assemble selectively into 
nucleoli (Table S1). However, although these proteins entered the nucleus, they failed to assemble selectively into 
nucleoli (Fig. S1). 
 The failure of our initial efforts to generate proteins that selectively compartmentalize in nucleoli led us to 
consider how the GS algorithm might be imperfect for this task and motivated the design of another approach that 
might be more successful. With GS and ProtGPS, protein sequences are generated without consideration of the 
chemical space of proteins found in nature, but are over optimized towards prediction of subcellular compartments. 
We sought to create an approach that could overcome this limitation by applying a concept borrowed from 
medicinal chemistry, where it is common to consider whether a molecule shares desirable physicochemical 
properties with others26,27. We also chose to favor the use of “intrinsically disordered” domains because they have 
been implicated in protein association with condensates and because they are less likely to introduce competing 
folded states28,29. To apply these concepts toward protein generation, we sought to constrain generation to (1) 
proteins in the chemical space30 learned by ESM2, (2) domains that are intrinsically disordered, and (3) sequences 
that should localize to the intended compartment. Thus, we used additional features of protein chemical space and 
intrinsic disorder for our Markov Chain Monte Carlo algorithm (MCMC) (Fig. 2A). 
 We then used MCMC to perform guided generation of proteins, using the additional features described above, 
that would selectively assemble into two condensate assemblies, nucleoli9 and nuclear speckles31, that were selected 
because they are well-studied, have distinctive functions and morphologies, and possess unambiguous marker 
proteins (Fig. 2A). A total of twenty 100 amino acid long protein sequences, ten targeted to nucleoli and ten to 
nuclear speckles, were generated using the MCMC (Table S2, Fig. 2A). Specifically, we use blocked Gibbs 
sampling with MCMC where we start from a random subsequence and iteratively select residues to mutate such that 
the final sequence follows the data distribution defined by the proteins that ESM2 was trained on and with ProtGPS 
and DRBERT32 to obtain the localization and disordered properties desired, respectively. For each protein, a plasmid 
was constructed that encoded the generated protein attached to an N-terminal nuclear localization sequence and a C-
terminal mCherry protein. Each of the proteins were expressed in human cells together with the nucleolus marker 
NPM1-GFP or the nuclear speckle marker SRSF2-GFP and cells expressing both a test protein (mCherry) and the 
condensate marker (GFP) were isolated using flow cytometry.  
 Imaging of cells revealed that all ten proteins designed to assemble into nucleoli (NUC1-10) did indeed 
concentrate in nucleoli (Fig. 2B-D, S2). Imaging of cells expressing the ten proteins designed by MCMC to 
assemble into speckles revealed that six of ten (SPL1, 5, 7, 8,10) were enriched in nuclear speckles and two of ten 
were enriched in cytoplasmic bodies (Fig. 2D).  The partition ratios of the SPL proteins in speckles were smaller 
than those observed for NUC proteins in nucleoli, which may be a consequence of the known distribution of speckle 
proteins into both nuclear speckles and much smaller RNA splicing condensates at nascent transcripts33. Two of the 
SPL proteins (SPL2 and SPL3) formed cytoplasmic foci that recruited at least one key speckle protein to the body 
(Fig. 2D, S4), suggesting that SPL2 and SPL3 have chemical features that assemble speckle proteins outside of the 
nucleus. We conclude that most proteins designed by MCMC to assemble into the two condensate compartments 
studied here - nucleoli and nuclear speckles – have indeed gained features that promote their concentration into these 
compartments.  
 We next conducted a sensitivity analysis for the generative process. In the multistep optimization process for 
each generated protein, we might expect that continuous improvement in the score computed during the 
optimization process should reflect the ability to generate proteins with improved compartmentalization phenotypes. 
As a test of this prediction, we investigated nucleolar partitioning of proteins generated at different steps during the 
optimization trajectory for NUC1 and NUC6 (Fig. 2E, Fig. S5A-C). Random sequences appended to mCherry, those 
at step 0, did not show nucleolar compartmentalization. Greater scores produced precursors to NUC1 and NUC6 
proteins that tended to show improved nucleolar compartmentalization, although improvement was not continuous 
(Fig. 2E, Fig. S5A-C). These results suggest sampling for greater periods of time will tend to increase the likelihood 
of generating protein sequences with desired properties.   
 
Pathogenic mutations can alter protein codes  
 Mutations can create pathogenic effects by altering a protein’s function or altering a protein’s subcellular 
distribution. Because ProtGPS can accurately predict the subcellular localization of normal proteins, it might be able 
to identify pathogenic mutations that cause a change in the subcellular location of a mutant protein. To test this 
possibility, we turned to the ClinVar34 database, a public archive of a vast number of human variations classified for 
diseases.  Data was collected for 205,182 mutations and ProtGPS was used to predict if the changes in amino acid 
sequences alter the subcellular distribution of the mutant proteins (Fig. 3A).  
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 We began our analysis by considering how mutations might influence the information content of condensate 
compartments. We computed the change in Shannon entropy35 of the twelve condensate compartments to learn 
whether the predicted information content was altered by mutation. We conducted this analysis separately for the 
truncation mutations (83,211), which we assumed would have major effects, from the single point mutations 
(121,971), which we assumed would have much smaller effects. We find that the compartment entropy is 
consistently higher with mutant proteins compared to the normal proteins across all compartments, with truncations 
producing larger effects than point mutations (Fig. 3B). Furthermore, we find that pathogenic truncation and single 
point mutations, when compared to normal proteins, tend to increase the Wasserstein distance36, a metric of 
dissimilarity between two probability distributions (Fig. 3B). These measures indicate that within this collection of 
pathogenic proteins, sequence variation may alter the predicted compartments of proteins in ProtGPS, suggesting 
that some mutant proteins may no longer partition selectively into compartments in the same manner as their normal 
counterparts. 
 To experimentally test the prediction that some pathogenic variants cause a change in subcellular localization, 
we selected for study 20 pathogenic mutations (10 truncation and 10 single point mutations) in proteins involved in 
a broad range of biological functions and diseases, whose normal cellular compartmentalization was well-known, 
and that scored across the range of Wasserstein distances (0.162-0.000) (Table S4). We then generated a panel of 
mouse embryonic stem cell (V6.5) lines stably expressing each protein from a doxycycline-inducible expression 
cassette, treated cells with doxycycline and conducted live cell confocal microscopy analysis. Differences in the 
subcellular localization between normal and mutant proteins would appear as changes in the fluorescence patterns 
displayed in micrographs. We noted that signals for all the normal proteins occurred in the subcellular locations 
where they are known to reside. When comparing images of normal proteins with their mutant counterparts, we 
found striking differences in compartment appearance for almost all truncation mutation proteins, and less striking 
but clear differences in compartment appearance for point mutation proteins, except for RBM10(V354M)], which 
scored with a Wasserstein distance of zero (Fig. 3C, Fig. S6, Table S4). Thus, it appeared that proteins calculated to 
have a large Wasserstein Distance tended to exhibit more dramatic changes in compartment appearance, although 
this relationship was imperfect. The effects of truncation mutations on nuclear localization sequences could not 
account for these results (Table S4). These results support the notion that ProtGPS can detect changes in protein 
codes due to pathogenic mutations that are demonstrable in an experimental setting.  
 
Discussion 
 Our studies suggest that proteins have evolved to harbor at least two types of codes, one for folding and 
another for intracellular compartmentalization.  Deep-learning algorithms such as AlphaFold2, RoseTTAFold, 
Chroma, EvoDiff, ESM2, and others can predict a protein’s 3D structure from its linear amino acid sequence22,37-42.  
We here describe ProtGPS, which can predict a protein’s selective assembly into specific condensate compartments 
in cells and be used to guide generation of novel protein sequences whose cellular compartmentalization could 
largely be experimentally validated. The complexity of the underlying physiochemical rules for both protein folding 
and protein localization have proven difficult to parse using human interpretable approaches, and these deep-
learning approaches therefore provide valuable predictive and analytical tools for the study of protein structure and 
function. 
 Previous studies of protein compartmentalization have suggested amino acid codes exist for some 
compartments.  For the membrane-bound nucleus, for example, there are well-known nuclear localization sequences 
that facilitate the transport of protein from the cytoplasm to the nucleus43-45.  More recently, models were used to 
identify patterns in protein sequences associated with specific compartments, especially those bounded by a 
membrane, but these did not sample a broad range of compartments and lacked generative experiments46-48. For 
nonmembrane compartments, here called condensates, there is recent evidence of patterned amino acid sequence 
features that can engender selective assembly of certain proteins into transcriptional and nucleolar condensates49-51.  
These observations are consistent with the concept of a protein code in amino acid sequences that promotes the 
selective distribution of proteins into specific compartments. Furthermore, there is recent evidence of distinctive 
chemical environments within condensates, suggesting that these compartments have different solvent properties 
16,51,52. Thus, the patterns of amino acid sequences in proteins would be expected to both promote specific folding 
behaviors and to favor residence in compartments compatible with their solvent properties.  
 The patterns of amino acid sequences that occur in proteins appear overall to be highly constrained in 
biology53-55, and we suggest that this is due, in part, to the requirements for both proper folding and subcellular 
distribution. In our efforts to develop ProtGPS as a guide for generating novel protein sequences that promote 
selective subcellular distribution, we found that protein sequences sampled from collections of natural proteins were 
far more successful at concentrating in the desired compartment than those generated without this consideration. 
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Analogous to the medicinal chemist’s aspiration to increase drug-like attributes such as on-target specificity and low 
off-target effects when developing small molecule therapeutics, designing proteins to preferentially distribute in 
biochemically relevant regions of the targeted cell population might improve upon their therapeutic properties16,52,56. 
In addition, exploring the chemical space of proteins naturally present in specific biological compartments may 
provide an especially valuable guide to the generation of optimal chemical matter directed to target proteins in 
specific compartments. Indeed, there are widely used and efficacious anti-cancer therapeutics that concentrate in 
transcriptional condensates at oncogenes56 due to the chemical environment of those compartments16,52. It is evident 
that similar considerations will apply to the design of protein therapeutics. We suggest that further understanding of 
the chemical environment established by amino acid patterns in proteins will lead to more efficacious disease 
therapeutics.  
 We conclude that ProtGPS can predict a protein’s selective assembly into specific condensates and guide 
generation of novel protein sequences whose cellular compartmentalization can be experimentally validated.  We 
anticipate that future studies will advance this field by improving compartment annotation, conducting additional 
tests of generated proteins, deploying alternative machine learning approaches, and further exploring the effects of 
pathogenic mutations. 
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Fig 1. ProtGPS classifies protein compartment with high performance. A. Graphical depiction of some cellular 
compartments found in eukaryotic cells, compartments in bold were studied in this work. B. Bar graph showing the 
number of protein sequences gathered from UNIPROT and the CD-code database used in the development of 
ProtGPS. C. Schematic showing the approach toward developing ProtGPS. D. Bar graph showing the area under the 
receiver-operator curve for classification of withheld test data (15 % of total) with ProtGPS.   
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Fig. 2. Generative modeling creates novel proteins that concentrate in a desired condensate. A. Schematic 
showing the use of Naturally constrained Markov Chain Monte Carlo to generate proteins and assay them in live 
cells (MCMC) (see supporting information for more details). B. Live cell image of a colon cancer cell (HCT-116) 
tagged at the endogenous NPM1 locus with GFP and expressing nucleolus targeted protein NUC1-mCherry, scale: 
10 microns. C. Live cell confocal micrographs of NUCX-mCherry proteins in HCT-116 cells expressing NPM1-
GFP from the endogenous locus cells, scale: 10 microns. D. Dot plots showing the measured partition ratios of 
NUCX (Kx =Inucleolus / Inucleoplasm) and SPLX-mCherry (Kx = ISRSF2 / Inucleoplasm or = ISRSF2 / Icytoplasm, as indicated by *) 
proteins relative to the NLS-mCherry control protein, dotted line is the average value of NLS-mCherry protein. See 
Table S3 for more information. E. Live cell images and quantification showing the relationship of measured 
partition ratios (Kx = Inucleolus / Inucleoplasm) into the nucleolus by proteins on the NUC6-mCherry trajectory to its 
computed probability of partitioning.  
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Fig 3. Pathogenic mutations are predicted to alter protein compartmentalization. A. Schematic of information 
flow, pathogenic ClinVar mutants caused by single point or truncation mutations were classified with ProtGPS to 
determine if the detected protein code was changed in the pathogenic variant. B. (Left) Dot plot showing the 
Shannon entropy change in compartment prediction due to single point or truncation mutation. (Right) Histogram 
showing the Wasserstein distance between the wild-type and mutant protein compartment probabilities. C. Live cell 
images of mESCs ectopically expressing wild type and truncated pathogenic variants fused to GFP, Wasserstein 
distance is given for each mutant as w, scale 10 microns. 
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