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ABSTRACT 1 
The human gut pathogen Clostridioides difficile displays extreme genetic variability and 2 
confronts a changeable nutrient landscape in the gut. We mapped gut microbiota inter-3 
species interactions impacting the growth and toxin production of diverse C. difficile 4 
strains in different nutrient environments. Although negative interactions impacting C. 5 
difficile are prevalent in environments promoting resource competition, they are sparse in 6 
an environment containing C. difficile-preferred carbohydrates. C. difficile strains display 7 
differences in interactions with Clostridium scindens and the ability to compete for proline. 8 
C. difficile toxin production displays substantial community-context dependent variation 9 
and does not trend with growth-mediated inter-species interactions. C. difficile shows 10 
substantial differences in transcriptional profiles in the presence of the closely related 11 
species C. hiranonis or C. scindens. In co-culture with C. hiranonis, C. difficile exhibits 12 
massive alterations in metabolism and other cellular processes, consistent with their high 13 
metabolic overlap. Further, Clostridium hiranonis inhibits the growth and toxin production 14 
of diverse C. difficile strains across different nutrient environments and ameliorates the 15 
disease severity of a C. difficile challenge in a murine model. In sum, strain-level variability 16 
and nutrient environments are major variables shaping gut microbiota interactions with C. 17 
difficile. 18 

 19 

INTRODUCTION 20 

The human gut microbiome exists in a dynamic balance between homeostasis and 21 
disruption due to the contrasting evolutionary objectives of the host and the resident gut 22 
bacteria. Clostridioides difficile is an opportunistic human gut pathogen that can cause 23 
life-threatening damage to the colon. Antibiotics are the first-line treatment for C. difficile 24 
infection (CDI). However, they also damage the commensal gut microbiota that provides 25 
C. difficile colonization resistance and could cause the recurrence of CDI (rCDI) 1-3. Fecal 26 
microbiota transplantation (FMT) has proven to be effective for treating rCDI, but the 27 
effect of FMT on a patient can vary due to uncharacterized factors and donor microbiota 28 
variability 4. FMT can also result in the unintentional transfer of antibiotic-resistant bacteria, 29 
including other opportunistic pathogens 5,6. To overcome these limitations, defined 30 
communities of commensal bacteria can be designed to inhibit C. difficile. However, low 31 
richness communities do not display robustness of anti-C. difficile activity to changes in 32 
environmental contexts 7,8. This in turn could contribute to the variability in efficacy in 33 
clinical trials of certain living bacterial therapeutics for treating CDI 9. We lack an 34 
understanding of how environmental context, such as the genetics of C. difficile strains 35 
and nutrient environments, impacts the anti-C. difficile activity of human gut communities 36 
10,11.   37 

C. difficile has a diverse population structure comprising hundreds of strain types 38 
12 that are distributed across at least 8 phylogenetic clades 13. This species is defined by 39 
a large pangenome 14, with an ultralow core genome (as low as 16% based on 73 40 
genomes 15) and extreme levels of evolutionary plasticity that have been molded over 41 
long periods through frequent exchange with bacterial gene pools in multiple host 42 
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environments via horizontal gene transfer 16-19. This substantial genetic variation among 43 
C. difficile strains has downstream impacts on the regulation of metabolic pathways and 44 
virulence 16,20-22. For instance, the emergence of the hypervirulent epidemic strain 45 
ribotype 027 has been proposed as the major driver of the increase in the prevalence of 46 
CDI 23,24. Notably, rCDI is not always due to infection with the same strain, where new 47 
strains were observed in 33-56% of recurrent episodes 25-29. This suggests that the 48 
degree of colonization resistance could vary across different C. difficile strains, potentially 49 
leading to differences in patient outcomes.  50 

Interactions with gut microbiota are critical determinants of C. difficile colonization 51 
and toxin production, as evidenced by the colonization resistance variability of different 52 
microbiome compositions to C. difficile30. Previous studies have elucidated principles that 53 
influence C. difficile growth in human gut communities in vitro, such as a strong negative 54 
dependence on species richness 31, and identified specific mechanisms of C. difficile 55 
inhibition. For example, certain species compete with C. difficile for limiting resources, 56 
such as the consumption of specific mucus-derived sugars by Akkermansia muciniphila 57 
32 or the utilization of Stickland metabolism amino acids by Clostridium species (e.g. 58 
Clostridium bifermentans 33,34 and Clostridium scindens 33). In addition, C. scindens can 59 
produce tryptophan-derived antibiotics that inhibit C. difficile growth 35. Clostridium 60 
hiranonis was shown to inhibit C. difficile in vitro through more than one mechanism in a 61 
single nutrient environment 31. However, the contribution of C. difficile strain-level 62 
variability to these interactions is currently unknown 31,36,37.  63 

The bottom-up construction of synthetic microbiomes combined with 64 
computational modeling 38,39 and principled experimental design techniques 40 can be 65 
used to efficiently navigate large design landscapes of combinations of species. In 66 
addition, these bottom-up approaches can provide a deeper understanding of important 67 
molecular and ecological mechanisms. For example, a widely used dynamic ecological 68 
model referred to as generalized Lotka–Volterra (gLV) can be used to unravel growth-69 
mediated microbial interactions shaping community assembly 41-43. By informing the 70 
model with properly collected experimental data, the gLV model can accurately forecast 71 
community dynamics as a function of the intrinsic growth of individual species and 72 
pairwise interactions with all constituent community members 38,44.   73 

To understand how nutrient and strain-level variability shapes interaction networks 74 
with C. difficile, we used a bottom-up approach to build microbial communities combined 75 
with computational modeling. We elucidated strain-level differences in inter-species 76 
interactions at the transcriptional level using genome-wide transcriptional profiling. In 77 
addition, we discovered that the large variation in toxin production of C. difficile in 78 
communities was not correlated with growth-mediated inter-species interactions. Our 79 
workflow identifies Clostridium hiranonis as a “universal” C. difficile growth and toxin 80 
production inhibitor that is robust to variation in strain backgrounds and nutrient 81 
environments. This robust inhibition is consistent with its high metabolic niche overlap 82 
with C. difficile, which in turn could block the utilization of C. difficile-preferred substrates. 83 
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Consistent with this notion, genome-wide transcriptional profiling reveals a unique 84 
massive alteration of C. difficile metabolism in the presence of C. hiranonis, which is not 85 
observed in co-culture with another closely related species, C. scindens. Furthermore, C. 86 
hiranonis ameliorated the C. difficile-induced disease severity of mice due to reduced 87 
abundance and toxin production. In sum, we demonstrate that strain-level variability and 88 
nutrient environments play an important role in shaping the interactions between C. 89 
difficile and human gut communities, and highlight C. hiranonis as a promising candidate 90 
to include in the design of robust anti-C. difficile defined consortia. 91 

 92 

RESULTS 93 

C. difficile strains display substantial phenotypic and genetic variability  94 

To understand how the strain-level genetic variability influences C. difficile phenotypes, 95 
we characterized 18 C. difficile strains (9 from diseased patients that were diagnosed and 96 
treated for CDI and 9 from healthy individuals) and C. difficile DSM 27147 (R20291 97 
reference strain of the epidemic ribotype 027). We individually profiled their growth in a 98 
chemically defined media supplemented with carbohydrate sources shown to promote 99 
colonization or virulence activities including succinate 45,46, trehalose 21,22, mannitol 46,47, 100 
sorbitol 46,47, and various mucus-derived sugars such as sialic acid and n-acetyl-D-101 
glucosamine 36,48 (Fig. S1a-d; Table S1, 2). The growth of all C. difficile strains was 102 
supported in defined media without any carbohydrate source due to their ability to utilize 103 
amino acids through Stickland metabolism. In general, supplementation of glucose, 104 
mannitol, n-acetyl-D-glucosamine (GlcNAc), and sialic acid enhanced the growth of all C. 105 
difficile strains compared to media without carbohydrate sources.  106 

In most single carbohydrate media, C. difficile displayed a unique growth profile 107 
that is distinct from the other commensal gut bacteria, where the culture grew rapidly at 108 
the beginning followed by a steep decline in OD600 during stationary phase at ~24 h of 109 
growth (i.e. non-monotonic growth response). While the variance in monoculture growth 110 
biological replicates is low in the first 24 h, this variability increases substantially at the 111 
time when OD600 declines in stationary phase (Fig. S1g-h). This implies that sporulation 112 
and cell lysis, in addition to halted cell division as observed by fluorescence microscopy 113 
contribute to the observed reduction and variability in OD600 (Fig. S2). To quantify the 114 
variability in growth profiles across C. difficile strains, we fit each growth curve to a logistic 115 
model to determine the growth rate (𝑟) and carrying capacity (𝐾) of each strain excluding 116 
data points with a >10% reduction in OD600 in the late stationary phase (Fig. 1a-b, S1e, 117 
see Methods). Overall, the logistic model displayed a high goodness of fit to the data 118 
(Pearson R=0.98, P<10E-05) (Fig. S1f). 119 

 120 
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 121 

Figure 1. Phenotypic and genotypic characterization of diverse C. difficile isolates from 122 
diseased and healthy individuals. a, Fitting of monoculture growth data from 19 C. difficile 123 
strains (including 18 C. difficile isolates from diseased and healthy individuals, Table S1) in 12 124 
media containing different carbohydrate sources (Fig. S1a-b) to the logistic model. Mathematical 125 
description of the logistic growth model was shown, where 𝑥!  is the absolute abundance of 126 
species 𝑖, parameter 𝑟! is its maximum growth rate, and 𝐾! is the carrying capacity. When fitting 127 
the experimental data to the model, we cut time points where OD600 drops above 10% to exclude 128 
the highly variable phase. b, Biclustering heatmap of the carrying capacity (𝐾!) of the C. difficile 129 
isolates. Strains marked with red asterisks were isolated from diseased patients whereas the ones 130 
marked with blue asterisks were isolated from healthy individuals. c, Heatmap showing the 131 
presence and absence of all genes identified across the 19 C. difficile strains (pangenome). The 132 
columns indicate the genes, and the rows indicate the C. difficile strains. Blue means gene present 133 
and white means gene absent. Genes present in all of the 19 strains are the core genome, 134 
whereas genes present in a subset of the strains are the accessory genome. d, Biclustering 135 
heatmap of the Average Nucleotide Identity (ANI) of C. difficile isolate pairs based on their whole-136 
genome sequence. The horizontal boxes indicate 100% ANI. e, Scatter plot of the Total Growth 137 
Difference (TGD) between isolate pairs and the number of orthologous genes between isolate 138 
pairs. Mathematical formula to calculate the TGD between isolate pairs is shown on the top, which 139 
is the sum of all AUC differences from 24 h of growth in the twelve media. Parts of the figure are 140 
generated using Biorender. 141 

 142 

We performed whole-genome sequencing on each isolate to provide insights into 143 
the genetic variation driving the observed phenotypic variability. The C. difficile genome 144 
is comprised of a well-conserved core genome (3,165 orthologous genes) and substantial 145 
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variation in its accessory genome (Fig. 1c). Metabolic genes varied substantially across 146 
the 19 C. difficile strains, where only ~63% of metabolic genes were shared (Fig. S3a). 147 
Clustering based on ANI, which represents the Average Nucleotide Identity of all 148 
orthologous genes shared between any two genomes, highlighted strains that are more 149 
genetically similar to each other (Fig. 1d), such as DSM 27147 and MS014. In addition 150 
to other genome similarities, these two strains possessed a mutation in the treR gene 151 
(L172I) that confers enhanced trehalose metabolism identified in hypervirulent C. difficile 152 
strains 22, consistent with their higher capability to utilize trehalose (Fig. 1b). Further, 153 
MS001 is clustered separately from the rest of the group based on ANI. MS001 has a 154 
much higher number of genes (4110) compared to the other strains (ranging from 3629 155 
to 3892) (Table S3), and uniquely lacks the toxins TcdA and TcdB. Indeed, non-toxigenic 156 
C. difficile strains have distinct phenotypes compared to toxigenic strains, as a 157 
consequence of the variability in their genome 49. In general, there is no pattern between 158 
the C. difficile isolates from healthy and sick individuals in terms of their genotype. 159 

To quantify if the genotypic variation displays an informative relationship with 160 
phenotypic variation in monoculture, we define the growth difference (GD) as the absolute 161 
value of the difference in the AUC of pairs of strains in a specific media. The total growth 162 
difference (TGD) is the sum of GD across the 12 media. The TGD and the number of 163 
orthologous genes (OGs) or ANI of pairs of C. difficile strains displayed a moderate 164 
negative correlation (Fig. 1e, S4a-b). In addition, growth in glucose, trehalose, galactose, 165 
and sorbitol was negatively correlated with ANI and the number of OGs (Fig. S4c-d). 166 
These results suggest that the genotypic variability quantified by these metrics displays 167 
an informative relationship with the utilization of certain carbohydrates.  168 

 Although the number of genes responsible for most core processes beyond 169 
metabolism is similar across isolates, there was large variability in the number of genes 170 
related to DNA recombination and integration, which are markers of mobile genetic 171 
elements (MGEs) (Fig. S3e). This suggests that MGEs play a major role in driving C. 172 
difficile genotypic differences, consistent with previous reports 50,51. To characterize the 173 
contribution of plasmids to the genome of C. difficile, we searched for high-coverage 174 
contigs within genome assemblies and discovered 11 of such instances in 7 of 19 175 
genomes (Fig. S5a-c). These putative plasmids contained direct repeats on their termini 176 
indicative of being circular. In addition, the putative plasmids do not contain genes that 177 
could provide a selective advantage to these strains such as antibiotic resistance or 178 
virulence factors (Table S5). Interestingly, 4 of the 11 high-coverage contigs map to the 179 
same plasmid that is present in four different genetically distant C. difficile isolates from 180 
different patients. These isolates also have a highly variable number of conjugative 181 
systems and phages, covering 1.4-16.5% of their genomes (Fig. S3f, Table S6-7). In 182 
sum, the C. difficile isolates have highly diverse genomes with substantial variability in 183 
metabolic genes and mobile genetic elements. 184 

 185 

Human gut communities containing different C. difficile isolates display differences in 186 
interaction networks 187 

Since human gut microbiota interactions are critical determinants of C. difficile growth and 188 
colonization, we investigated how C. difficile genetic variation shapes gut microbiota 189 
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interspecies interactions. To this end, we built human gut communities from the bottom 190 
up with one of 4 diverse C. difficile strains (DSM 27147, MS001, MS008, and MS014) 191 
and combinations of 7 gut species (C. scindens (CS), C. hiranonis (CH), Desulfovibrio 192 
piger (DP), Bacteroidetes thetaiotaomicron (BT), Phocaeicola vulgatus (PV), 193 
Bacteroidetes uniformis (BU), and Collinsella aerofaciens (CA)) (Fig. 2a). Many of these 194 
species are prevalent across individuals and span major phyla of the human gut 195 
microbiome. These species displayed variation in growth in media with different 196 
carbohydrates (Fig. S1a-b). The community features CS, previously shown to inhibit the 197 
growth of C. difficile in gnotobiotic mice 37, CH which can inhibit C. difficile growth through 198 
unknown mechanism 31, and Bacteroides species, which have the potential for C. difficile 199 
inhibition in different environments 36,45,52,53.  200 

To infer the inter-species interaction networks, we down selected a set of 201 
representative C. difficile strains based on their genotypic and phenotypic variations. 202 
Strains that have similar genotypes and metabolic genes may display similar interaction 203 
networks, whereas interactions may be divergent for strains with large differences in 204 
genotype. MS014 shows a similar genotype to DSM 27147 and thus might evolve from 205 
the same ancestor, but MS014 was more recently isolated. By contrast, the non-toxigenic 206 
strain MS001 has the most different genotype than the other strains, suggesting 207 
potentially larger differences in inter-species interactions. Finally, MS008 is genotypically 208 
and phenotypically distinct from the other 3 strains (Fig. 1b-d). In addition, MS008 209 
clustered differently from MS014, DSM 27147 and MS001 based on metabolic genes, 210 
suggesting divergent metabolic capabilities (Fig. S3a). 211 

Given the key role of resource competition in the ecology of C. difficile 32-34,54, the 212 
extent of metabolic niche overlap with C. difficile may be a major variable influencing 213 
interactions with human gut bacteria. To quantify the extent of metabolic niche overlap 214 
between each gut species and C. difficile, we calculated the Jaccard Similarity of 215 
carbohydrate utilization based on the change in growth in the presence and absence of 216 
the given carbohydrate (Fig. 2b). Notably, CH displayed the largest metabolic niche 217 
overlap of carbohydrate utilization with C. difficile (Jaccard Index=0.8). In addition to the 218 
similarities in carbohydrate utilization, CH has been shown to use amino acids via 219 
Stickland metabolism, similar to C. difficile 33.  220 
 221 
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 222 

 223 

Figure 2. Interspecies interactions between C. difficile strains and the human gut bacteria 224 
in different nutrient environments. a, Phylogenetic tree of the 7-member resident synthetic gut 225 
community and C. difficile. The phylogenetic tree was generated from the 16S rRNA sequence of 226 
each species using the Clustal Omega multiple sequence alignment tool. b, Bipartite network of 227 
carbohydrate utilization by C. difficile and gut bacteria based on their monoculture growth profiles 228 
in Fig. S1a-b. The edge thickness indicates the AUC24h of the gut species grown in specific 229 
carbohydrates subtracted by the AUC24h of the gut species grown in media without any 230 
carbohydrates. Only edges with a magnitude larger than 2 are shown. For C. difficile, the growth 231 
profile of the DSM27147 strain is used as a representative. The Jaccard Similarity values of each 232 
gut species with C. difficile were computed based on the number of carbohydrates being utilized, 233 
where higher Jaccard Similarity values mean larger niche overlap with C. difficile. Different colors 234 
represent different species. c, Schematic of the experimental workflow to assess interactions 235 
between different C. difficile strains and human gut bacteria in the glucose media. Experimental 236 
communities were assembled using the Bayesian experimental design by utilizing monoculture 237 
growth data as prior information (See Methods). A total of 147 subcommunities (2 to 8 species) 238 
containing combinations of gut species and one of the C. difficile strains were cultured at an equal 239 
absolute abundance ratio in the glucose media. Cultures were grown in microtiter plates in 240 
anaerobic conditions and incubated at 37°C. After 12 h and 24 h of growth, aliquots of the culture 241 
were taken for multiplexed 16S rRNA sequencing to determine community composition and cell 242 
density measurement at 600 nm (OD600) to calculate the absolute abundance of each species. 243 
Absolute abundance data are used to infer the parameters of a generalized Lotka–Volterra (gLV) 244 
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model and elucidate the interaction networks of the communities. d-e, Inferred interspecies 245 
interaction networks between the 7 gut species and each of the representative C. difficile strains 246 
when grown in the glucose media (d) or the mixed carbohydrates media (e). Node size represents 247 
species carrying capacity in monoculture (mean of all biological replicates) and edge width 248 
represents the magnitude of the interspecies interaction coefficient (aij). Edges represent 249 
parameters whose absolute values were significantly constrained to be non-zero based on the 250 
Wald test (Fig. S8 for glucose media and Fig. S10 for mixed carbohydrates media). Percentage 251 
of positive (blue) and negative (red) interactions for each community are shown. The right panel 252 
shows the heatmap of interspecies interaction coefficients of the gLV model between the different 253 
C. difficile strains and the 7 gut species in the glucose media (d) or the mixed carbohydrates 254 
media (e). f-g, Scatter plots of C. difficile absolute abundance at 24 h as a function of initial 255 
species richness in all possible subcommunities of 2–8 species simulated by the gLV (gray data 256 
points) and in experimentally measured subcommunities (mean value of biological replicates, 257 
black data points). Panel f are model predictions and experimental data of communities grown in 258 
the glucose media, whereas Panel g are those grown in the mixed carbohydrates media. Red 259 
dashed line indicates the linear regression between the species richness at 0 h and C. difficile 260 
absolute abundance at 24 h, with the 95% confidence bounds shown as red shading. Pearson’s 261 
correlation coefficient (r) and p-values are shown, which were computed using the pearsonr from 262 
the scipy package in Python. Parts of the figure are generated using Biorender.  263 

 264 

 To study community inter-species interactions in a gut environment with high 265 
resource competition, we used a defined media containing glucose as the sole 266 
carbohydrate source. Glucose can support the growth of most species in monoculture 267 
including C. difficile, and thus promotes inter-species competition (Fig. S6a-c). To 268 
quantify the differences in the inter-species interaction networks, we cultured different 269 
combinations of species with one of the four C. difficile strains (DSM 27147, MS001, 270 
MS008, and MS014) (Fig. 2c). Since there are too many community combinations to be 271 
comprehensively explored (635 combinations), we used a Bayesian experimental design 272 
approach to select combinations of bacteria that would maximize information content as 273 
quantified by the expected Kullback-Leibler divergence between the posterior and prior 274 
parameter distributions (see Methods and Supplementary text) 40. Briefly, a preliminary 275 
gLV model was fit to the monoculture growth in glucose media. We used a Bayesian 276 
inference approach to approximate the posterior parameter distribution as a multivariate 277 
Gaussian. The parameter distribution inferred for the preliminary model was used as a 278 
prior to guide the design of 147 combinations of 2 to 8-member sub-communities 279 
containing one of the four C. difficile strains (DSM 27147, MS001, MS008, and MS014). 280 
Species absolute abundance was determined by multiplying the relative abundance 281 
fraction via multiplexed 16S rRNA sequencing by the total biomass obtained by OD600 as 282 
previously described 31,38. The parameters of the gLV model were inferred based on time-283 
series data of species abundances (0, 12, and 24 h) (Fig. S7a, DATASET001 in Table 284 
S8). Based on the parameter posterior distributions, we analyzed parameters with 285 
absolute values that were significantly constrained to be non-zero based on the Wald test 286 
55 (Fig. S8, Supplementary text). The Wald test compares the parameter mean to its 287 
standard deviation to evaluate whether the peak of the posterior parameter distribution is 288 
significantly higher or lower than zero compared to the width of the distribution. The 289 
percentage of constrained parameters is 76.6%, 73.4%, 75%, and 75% for communities 290 
containing DSM, MS001, MS008, or MS014 respectively. To evaluate model prediction 291 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 17, 2024. ; https://doi.org/10.1101/2024.04.13.589383doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.13.589383
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 10 of 42 
 

performance on held-out data, we performed 10-fold cross-validation where only 292 
community samples were subjected to testing (see Methods). Using a 10-fold cross-293 
validation, the model prediction exhibited good agreement with the measured species 294 
abundance in all communities with different C. difficile strains (Pearson’s R=0.93-0.95, 295 
P<10E-05), demonstrating that our model can capture and predict the trends in species 296 
abundance (Fig. S7b). 297 

Consistent with a high competition resource environment, the interaction networks 298 
for distinct C. difficile strains displayed a high fraction of negative interactions (68-71%) 299 
and inhibition of C. difficile by all species (Fig. 2d). CS and CH display a high magnitude 300 
of negative inhibition towards C. difficile, consistent with their ability to compete for amino 301 
acids via Stickland fermentation. Notably, the C. difficile DSM 27147 hypervirulent strain 302 
exhibits the largest differences in interaction profile from other C. difficile strains (e.g. BT, 303 
DP, and CH).  304 

In addition to the observed changes in pairwise interactions with C. difficile, other 305 
inter-species interactions displayed strain-specific differences. A higher order interaction 306 
(HOI) is defined as a substantial change in a pairwise interaction due to the presence of 307 
a third community member 56,57. Changes in pairwise interactions due to the presence of 308 
different C. difficile strains may suggest HOI. For instance, the interaction coefficients 309 
between CA and BT are substantially impacted by the specific C. difficile strain that is 310 
present in the community (Fig. S7c). To further explore whether C. difficile strain 311 
variations could impact CA-BT interactions, we cultured the CA-BT pairwise community 312 
in the sterilized spent media of C. difficile (Fig. S7d). The abundances of CA and BT in 313 
the community were statistically different when cultured in the sterile conditioned media 314 
of the different C. difficile strains. This implies that different strains of C. difficile 315 
differentially altered the chemical environment, which in turn impacted the interactions 316 
between CA and BT. In sum, inferred inter-species interaction networks containing 317 
distinct C. difficile strains displayed infrequent direct and indirect differences. 318 

 319 

Human gut bacteria infrequently inhibit C. difficile in the presence of preferred 320 
carbohydrates  321 

Antibiotic treatments lead to massive gut bacterial mortality, alternations in the resource 322 
landscape, and changes in community composition. This new environment can be 323 
exploited by C. difficile 45,48,58-61. To explore community interactions in media that mirrors 324 
post-antibiotic environments, we designed a media containing multiple carbohydrates that 325 
could be utilized by C. difficile (mixed carbohydrates media) (Fig. S9a). In this media, C. 326 
difficile strains displayed substantial growth and a diminished decline in OD600 in late 327 
stationary phase than glucose media (Fig. S9b). In pairwise communities, the relative 328 
abundance of C. difficile was high in all communities (>50% in all cases) except when 329 
grown with BT. The absolute abundance of C. difficile remained high after three 24 h 330 
growth cycles, except for the community containing PV (Fig. S9c-d). In the 7-member 331 
community, C. difficile displayed a relative abundance of ~20-50% following 24 h of 332 
growth (Fig. S9e). This contrasts with the low abundance of C. difficile in the glucose 333 
media (~1 to 5%) (Fig. S7a).  334 
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To determine the inter-species interaction network in the presence of multiple 335 
preferred carbohydrates, we built a gLV model using a design-test-learn (DTL) cycle (Fig. 336 
S9f). A DTL cycle was used to account for potentially more complex interactions in the 337 
presence of a complex resource environment, which may require additional data to 338 
constrain the model parameters. Each cycle consisted of (i) Bayesian experimental 339 
design informed by prior experimental observations to select combinations of species that 340 
minimize parameter uncertainty (design), (ii) experimental characterization of sub-341 
communities (test), and (iii) updates to the gLV model parameters based on new 342 
experimental data (learn) (Methods and Supplementary text) 44. In the initial experiment, 343 
we constructed 82 communities consisting of all possible pairwise, leave-one-out, and full 344 
communities containing the gut bacteria and individual C. difficile strains (Table S8, 345 
DATASET002). Using 10-fold cross-validation, the model displayed a low to moderate 346 
prediction performance of individual species (Fig. S9g). To select informative 347 
experimental conditions for the second DTL cycle, Bayesian experimental design based 348 
on the inferred parameter uncertainties guided the design of 94 new combinations of 349 
medium richness communities (3-6 members) (Table S8, DATASET003). Using these 350 
data, the prediction performance of most individual species was improved (Pearson’s 351 
R=0.90 to 0.91, P<10E-05) (Fig. S9g). The parameter uncertainty distributions are shown 352 
in Fig. S10. In comparison to the media with glucose, the constrained non-zero 353 
parameters are lower in the mixed carbohydrates media (60.9%, 71.8%, 68.8%, and 67.2% 354 
for communities containing DSM, MS001, MS008, and MS014 respectively). To 355 
determine whether species predictive performance could be improved with additional data, 356 
we performed a sensitivity analysis of the model’s prediction performance by varying how 357 
the training and validation data was partitioned (k in k-fold) (Fig. S11). The model 358 
prediction performance increased with k and saturated for most species. This implies that 359 
additional data for moderately predicted species (e.g. CH and DP) will not substantially 360 
improve the model prediction performance. Poor or moderate prediction performance 361 
could be due to insufficient variation of the particular species abundance across 362 
communities or limited flexibility of the gLV model to capture complex interaction 363 
modalities 39.  364 

The inferred interaction networks in the mixed carbohydrates media display a 365 
higher frequency of positive interactions (4-18%) compared to media containing only 366 
glucose (2-5%) (Fig. 2e), and C. difficile displayed higher absolute abundance across 367 
communities (Fig. S12). While DSM 27147 exhibited the most different interaction profile 368 
in glucose media, this strain displayed similar interaction patterns to MS008 and MS014 369 
in the mixed carbohydrates media. By contrast, MS001 displayed the largest differences 370 
in inter-species interactions in the mixed carbohydrates media than the other C. difficile 371 
strains. Thus, the differential interaction profiles between the C. difficile strains and human 372 
gut microbiota are nutrient dependent. Of 7 diverse human gut species, only CH displayed 373 
negative interactions with each C. difficile strain. Several communities used to train the 374 
model (3-6 members) containing CH displayed a higher magnitude of C. difficile inhibition 375 
than the C. difficile–CH pairwise community (Fig. 2g, S13a). In particular, CS, DP, CA, 376 
and PV are enriched in these communities. This suggests that the inhibitory activity of CH 377 
can be further enhanced by the presence of specific gut bacteria.  378 
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To further investigate inter-species interactions in the mixed carbohydrate media, 379 
we cultured different C. difficile strains in the sterilized spent media of the gut bacteria 380 
and fresh media as a control (Fig. S14a-b). Overall, the qualitative effects of the pH-381 
adjusted conditioned media were largely consistent with the signs of the inferred gLV 382 
pairwise interaction coefficients (71% agreement compared to 32% in the non-pH-383 
adjusted conditioned media) (Fig. S14c). Without pH adjustment, C. difficile growth was 384 
substantially reduced in Bacteroides spp. conditioned media due to the acidification of the 385 
environment (pH of 5.0-5.2), and this inhibition was eliminated in the pH-adjusted 386 
Bacteroides spp. conditions. Since pH changes over time in co-culture, the large variation 387 
in the initial pH of the spent media may not be physiologically relevant to microbial 388 
community interactions. Notably, C. difficile growth was reduced in CS-conditioned media 389 
but not in co-culture with CS. This inconsistency suggests that the feedback of metabolite 390 
exchange and/or metabolic niche partitioning plays a role in the C. difficile-CS pair in the 391 
mixed carbohydrates media. Although CS can utilize many of the same carbohydrates as 392 
C. difficile, CS has a wider range of carbohydrate utilization capabilities than C. difficile in 393 
the tested media (Fig. 2b). This implies that C. difficile and CS may prefer utilizing similar 394 
resources in monoculture and display distinct metabolic niches in co-culture. 395 

 396 

Model accurately predicts C. difficile inhibition potential in human gut communities 397 

Using the model trained on all data, we forecasted the abundance of C. difficile at 24 h in 398 
all possible communities (Fig. 2f-g). A previous study showed a strong negative 399 
dependence between C. difficile growth and species richness in a rich media 31, 400 
consistent with a negative relationship between these variables in glucose media. 401 
However, this trend was not present in the presence of mixed carbohydrates. This 402 
suggests that high-richness communities may not universally inhibit C. difficile in 403 
environments with C. difficile preferred substrates, and the identity of the species in the 404 
community may be more impactful than the number of species.  405 

To determine if our model could design communities to inhibit C. difficile, we used 406 
our gLV model trained on community data in the mixed carbohydrates media (Table S8, 407 
DATASET003) to predict C. difficile abundance in all possible 2 to 8-member communities 408 
(Fig. S15a). Based on the model prediction, we selected a 3-member weak inhibitory 409 
community (WIC, consisting of BU, CA, and DP) and a strong inhibitory community (SIC, 410 
consisting of CH, CS, and DP). The WIC was selected due to its low inhibition potential 411 
of C. difficile, whereas the SIC was selected for its high inhibition potential against diverse 412 
C. difficile strains. Although CH was the only species that could strongly inhibit C. difficile 413 
in the mixed carbohydrates media, CH, CS, and DP were the three most inhibitory species 414 
in the glucose media (Fig. 2d-e). The interaction networks revealed sparse and almost 415 
negligible incoming negative interactions towards C. difficile in the WIC. By contrast, the 416 
SIC displayed stronger negative interactions towards C. difficile, especially from CH (Fig. 417 
S15b). To validate the model predictions, we cultured WIC and SIC in the absence and 418 
presence of different C. difficile strains (Fig. S15c). We observed that the abundance of 419 
all C. difficile strains in SIC was significantly lower than those in the WIC (~2.1 to 4.2-fold 420 
lower), corroborating the differential inhibitory potential of the SIC and WIC communities 421 
and highlighting that the inhibition of the SIC is robust to strain-level variability. This 422 
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indicates that the model could predict the C. difficile inhibition potential of different 423 
communities.  424 

 425 

C. difficile strains have a differential ability to compete with C. scindens over proline 426 

Although CS can inhibit the growth of C. difficile via competition for limiting pools of amino 427 
acids via Stickland metabolism 33, inhibition of most C. difficile strains by CS was not 428 
observed in the mixed carbohydrates media (Fig. 2e). This suggests that these C. difficile 429 
strains occupied alternative metabolic niches in co-culture with CS. The inferred 430 
interaction from CS to MS001 was larger in magnitude than to MS008 or MS014. By 431 
contrast, CS moderately inhibited the growth of the DSM strain. Model predictions of co-432 
cultures of CS and individual C. difficile strains displayed consistent trends with 433 
independent in vitro experiments that did not inform the gLV model (Fig. 3a).  434 

 435 

 436 

Figure 3. Genome-wide transcriptional profiling of C. difficile DSM27147 and C. difficile 437 
MS001 in the presence of C. scindens. a, Model prediction and independent experimental 438 
validation (not included in model fitting) of the relative abundance of pairwise communities 439 
containing CS and one of the four C. difficile strains. Each bar represents the average absolute 440 
abundance of each species, and the error bars on the in vitro data represent s.d. (n=3). Asterisks 441 
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above the bars indicate the p-value from unpaired t-test of species relative abundance between 442 
co-cultures: ** indicates p<0.01, *** indicates p<0.001. b, Schematic of the genome-wide 443 
transcriptional profiling experiment of two C. difficile strains in the presence of C. scindens. 444 
Monocultures of C. difficile DSM and MS001 strain, and cocultures of DSM+CS and MS001+CS 445 
were grown in the mixed carbohydrates media for ~7 h until they reached exponential phase. 446 
Aliquots were taken for DNA extraction for next-generation sequencing to determine the 447 
cocultures’ composition, and aliquots were taken for RNA extraction for RNA-Seq. 448 
Transcriptomes of C. difficile in cocultures (DSM+CS and MS001+CS) were compared to the C. 449 
difficile monocultures’ transcriptome. The panel on the right shows the stacked bar plot of the 450 
composition of the samples subjected to RNA-Seq as determined by 16S sequencing. c-d, 451 
Volcano plots of log-transformed transcriptional fold changes for C. difficile DSM27147 (c) and 452 
MS001 strain (d) in the presence of C. scindens. Vertical dashed lines indicate 2-fold change, 453 
and the horizontal dashed line indicates the statistical significance threshold (p = 0.05). Blue 454 
indicates up-regulated genes and red indicates down-regulated genes. e, Bar plot of the log-455 
transformed fold changes of the proline reductase (prd) genes of the DSM strain in the presence 456 
of CS compared to monoculture (blue) and the MS001 strain in the presence of CS compared to 457 
monoculture (pink). Asterisks above the bars indicate the adjusted p-value from DESeq2 458 
differential gene expression analysis: * indicates p<0.05, *** indicates p<0.001, ns indicates not 459 
significant (p>0.05). f, Sensitivity of C. difficile DSM27147, MS001, and C. scindens monoculture 460 
growth towards proline concentration in the mixed carbohydrates media. AUC48h was calculated 461 
from the growth curves in Fig. S17a. Data were shown as mean and 95% c.i. (shading), n = 3 462 
biological replicates. Asterisks indicate the p-value from unpaired t-test of the AUC48h between 463 
DSM and MS001 strain at specific proline concentration: * indicates p<0.05, ** indicates p<0.01, 464 
*** indicates p<0.001. g, Stacked bar plot of the relative abundance of C. difficile DSM27147 or 465 
MS001 grown with CS in media supplemented with different proline concentrations. Each bar 466 
represents the average relative abundance of each species, and the error bars represent s.d. 467 
(n=3). Asterisks above the bars indicate the p-value from unpaired t-test of the relative abundance 468 
between MS001-CS and DSM-CS coculture at a specific proline concentration: ** indicates 469 
p<0.01, *** indicates p<0.001. h, Percentage reduction of C. difficile abundance in media 470 
supplemented with different concentrations of proline compared to media without proline. 471 
Percentage reduction was calculated based on data from Fig. S17d. Error bars represent s.d. 472 
(n=3). 473 

 474 

To provide insights into the transcriptional activities that mediate the observed 475 
differences in inter-species interactions, we performed genome-wide transcriptional 476 
profiling of C. difficile strains DSM27147 and MS001 in the presence and absence of CS 477 
(Fig. 3b, S16a). For both DSM and MS001 strains, ~45% of transcripts were differentially 478 
expressed in the presence of CS than in monoculture, indicating that the presence of CS 479 
caused a global shift in the transcriptome of C. difficile (Fig. 3c-d, Table S9-10).  480 

To identify significant changes in transcriptional activities, we performed gene set 481 
enrichment analysis (GSEA) using Kyoto Encyclopedia of Genes and Genomes (KEGG) 482 
modules. Many biological pathways such as the amino-acid transport system, pimeloyl-483 
ACP biosynthesis, and iron complex transport system displayed similar patterns in DSM 484 
and MS001 (Fig. S16b-e). In addition, both C. difficile strains up-regulated genes for 485 
mannitol utilization, consistent with the inability of CS to utilize mannitol (Fig. 2b). This 486 
implies that C. difficile and CS display niche partitioning in co-culture, thus reducing 487 
competition for limiting substrates. In addition, both strains down-regulated the grd operon 488 
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which is involved in glycine utilization via Stickland metabolism. Notably, only the MS001 489 
strain up-regulated the proline reductase (prd) genes for Stickland metabolism via the 490 
proline pathway (~10 to 32-fold) (Fig. 3e). This implies that these C. difficile strains display 491 
differential utilization of proline in the presence of CS. 492 

 The growth of C. difficile increased with supplemented proline (Fig. 3f, S17a). The 493 
MS001 strain displayed a significantly larger increase in growth than the DSM strain in 494 
the presence of intermediate proline concentrations. Although there are some variations 495 
in the sequence of the prd operon genes among C. difficile isolates, their protein-coding 496 
sequences are largely similar (Fig. S17b-c). By contrast, variation in supplemented 497 
proline did not alter the growth of CS. This demonstrates that proline metabolism via the 498 
Stickland pathway is crucial for C. difficile growth, but not a major resource utilized by CS 499 
in monoculture. However, we observed an opposite trend in co-cultures where increasing 500 
proline concentrations reduced C. difficile growth in the community (Fig. 3g, S17d). 501 
These results suggest that CS competed more efficiently with C. difficile over proline in 502 
co-culture, which was distinct from its metabolic niche in monoculture. The absolute 503 
abundance of CS increased with supplemented proline only in co-culture with the MS001 504 
strain, but not the DSM strain (Fig. S17d). Consistent with the monoculture data, the 505 
MS001 strain displayed higher growth than DSM in co-culture with CS (Fig. S17d), and 506 
its abundance was reduced to a lower degree as a function of proline compared to the 507 
DSM strain (Fig. 3h). These data suggest that MS001 can compete better with CS over 508 
limited proline to perform Stickland metabolism than DSM, consistent with the higher fold 509 
change in the expression of the prd operon (Fig. 3e). These trends are consistent with 510 
the stronger inhibition of CS by MS001 compared to DSM in the inferred gLV interaction 511 
network (Fig. 2e). 512 
 513 

C. difficile toxin production in communities is not explained by growth-mediated inter-514 
species interactions 515 

A myriad of environmental factors including specific nutrients 62-66, pH 67, and 516 
environmental stressors including alteration of the redox potential, antibiotic exposure, 517 
and temperature increase 68 shape the production of toxins in C. difficile. By modifying 518 
the environment, certain bacterial species may impact the toxin production of C. difficile 519 
69,70. However, we lack an understanding of how toxin production is shaped by diverse 520 
human gut species. To investigate this question, we characterized C. difficile toxin 521 
expression in the presence of 25 individual diverse human gut species. Many of these 522 
species are prevalent and abundant in the human gut microbiome and are linked to 523 
human health and disease 44 (Fig. 4a, S18a-b). Individual species were co-cultured with 524 
distinct C. difficile strains that we previously used to study community-level interactions 525 
(DSM27147, MS008, and MS014), as well as two other C. difficile strains isolated from 526 
healthy individuals (Strain 292 and Strain 296) which are clustered differently from the 527 
previous strains in terms of genotype and phenotype (Fig. 1b-d). We measured OD600 528 
and performed 16S sequencing to determine species absolute abundances, and end-529 
point toxin quantification using ELISA (Fig. 4b). A gLV model was fit to the time-resolved 530 
absolute abundance data (0, 12, 24 h) to infer inter-species interactions (Fig. S18c-d, 531 
DATASET004 in Table S8). The inferred interaction parameters using this dataset 532 
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displayed an informative relationship with the parameters inferred in Fig. 2e 533 
(DATASET003) (Fig. S18e). 534 

 535 

 536 

Figure 4. C. hiranonis inhibits the growth and toxin production of diverse C. difficile strains. 537 
a, Phylogenetic tree of 25-member resident synthetic gut community and C. difficile. b, Schematic 538 
of the experimental workflow. C. difficile was grown with gut communities and samples were taken 539 
at 12 and 24 h. Samples were subjected to OD600 measurement and 16S sequencing to determine 540 
species absolute abundance. Time series abundance measurements were fitted to the gLV model 541 
to obtain the interaction parameters of the community members. Samples at 24 h were subjected 542 
to toxin quantification via ELISA. c, Heatmap of toxin yield (toxin production per C. difficile 543 
abundance at 24 h) of different C. difficile strains when grown in pairwise and 26-member 544 
communities with human gut bacteria in the mixed carbohydrates media. Toxin concentrations 545 
(TcdA and TcdB) were measured in monocultures or communities after 24 h of growth using 546 
ELISA (n=3) (Fig. S19a). Asterisks on the heatmap indicate the p-value from unpaired t-test of 547 
the toxin yield in cocultures compared to C. difficile monocultures: * indicates p<0.05, ** indicates 548 
p<0.01, *** indicates p<0.001, NT indicates No Toxin (toxin concentration per CD absolute 549 
abundance = 0 ng/ml). d, Scatter plots of the interspecies interaction coefficients (aij where C. 550 
difficile is the recipient) versus toxin production in cocultures. Solid data points indicate the mean 551 
of the biological replicates which are represented by transparent data points connected to the 552 
mean with transparent lines. The lower the toxin concentration indicates a better toxin inhibitor 553 
and the more negative the aij indicates a better C. difficile growth inhibitor. Spearman’s rho and 554 
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p-value are shown, which were computed using the spearmanr from the scipy package in Python. 555 
Parts of the figure are generated using Biorender. 556 

 557 

Toxin yield (toxin concentration normalized by the C. difficile absolute abundance 558 
at 24 hr) provides insight into context-dependent changes in toxin production, whereas 559 
the toxin concentration may be more physiologically relevant. In 16.2% of conditions, toxin 560 
yields were enhanced in communities than in monoculture (36.2% for toxin concentration) 561 
(Fig. 4c, S19a). Meanwhile, in 26.2% of conditions, toxin yields were reduced in 562 
communities compared to monoculture (25.4% for toxin concentration). Genotype and 563 
toxin production did not display an informative relationship since the similar hypervirulent 564 
strains DSM27147 and MS014 displayed very different toxin production profiles in 565 
communities. Overall, C. difficile strains exhibited substantial variability in toxin production 566 
with Strain 296, MS008, and MS014 displaying greater similarity to each other than the 567 
other strains (Spearman’s rho=0.53-0.75, P=5.4E-03 to 1.1E-05) (Fig. 4c, S19b). These 568 
strains displayed higher toxin production in many pairwise communities (e.g. BT, BU, PV, 569 
PC, BP, BA, BC, BL, CC, and BF) and the 26-member community. The similarities in toxin 570 
production profiles were not explained by toxin protein-coding sequences (Fig. S19c). 571 
While Strain 296 and MS014 clustered together based on their metabolic genes, MS008 572 
has distinct metabolic genes (Fig. S3a). These imply that toxin production in communities 573 
is likely impacted by regulatory networks and other cellular processes 71-73 that are shaped 574 
by gut microbiota inter-species interactions.  575 

Some stresses including nutrient limitations have been reported to induce C. 576 
difficile toxin production 72,74. Strong negative inter-species interactions may activate 577 
stress response networks leading to an increase in toxin production. However, our results 578 
revealed that toxin production and the inferred pairwise gLV interaction coefficients 579 
impacting C. difficile growth in communities did not display an informative relationship 580 
(Fig. 4d). For instance, although the abundance of C. difficile Strain 296 was lower than 581 
DSM, MS008, and MS014 in the 26-member community (Fig. S18d), this strain displayed 582 
the highest toxin expression level (Fig. S19a, d). In sum, C. difficile strain-level variability 583 
and human gut microbiota inter-species interactions beyond growth were major variables 584 
shaping toxin production. 585 

 586 

C. difficile metabolism, growth, and toxin production are substantially impacted by C. 587 
hiranonis 588 

Based on the inferred inter-species interaction network, CH inhibited distinct C. difficile 589 
strains regardless of whether the nutrient environment favored competition or C. difficile 590 
growth (Fig. 2d-e). Of 25 diverse gut bacteria, CH is the only species that robustly 591 
inhibited both C. difficile growth and toxin production of diverse C. difficile strains (Fig. 592 
4c-d), highlighting its potential as a “universal” C. difficile inhibitor. This robustness of 593 
inhibitory interaction across the two nutrient environments and strain background may be 594 
attributed to the substantial metabolic niche overlap for carbohydrate utilization (Fig. 2b) 595 
and capability for amino acid Stickland metabolism. In addition, introducing C. hiranonis 596 
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into communities with specific human gut species enhanced C. difficile growth and toxin 597 
inhibition than in co-culture with only C. hiranonis (Fig. S13a-b). 598 

To provide insights into the mechanisms by which CH inhibits C. difficile, we 599 
performed genome-wide transcriptional profiling of C. difficile DSM27147 in the presence 600 
and absence of CH (Fig. 5a, S16a, f). In the presence of CH, 36% of C. difficile genes 601 
were differentially expressed compared to monoculture (Fig. 5b, Table S11). The 602 
transcriptional profile of C. difficile in the presence of CH was largely different compared 603 
to the co-culture with CS (17% of genes have an opposite sign of fold change) (Fig. 5c).  604 

 605 

 606 

Figure 5. C. hiranonis altered C. difficile metabolism and other important cellular 607 
processes. a, Schematic of the genome-wide transcriptional profiling experiment of C. difficile 608 
DSM 27147 strain in the presence of C. hiranonis. Monocultures of C. difficile DSM and cocultures 609 
of DSM+CH were grown in the mixed carbohydrates media for ~7 h until they reached the 610 
exponential phase. Aliquots were taken for DNA extraction for next-generation sequencing to 611 
determine the cocultures’ composition, and aliquots were taken for RNA extraction for RNA-Seq. 612 
Transcriptome of C. difficile in coculture is compared to the C. difficile monocultures’ 613 
transcriptome. b, Volcano plot of log-transformed transcriptional fold changes for C. difficile DSM 614 
strain in the presence of C. hiranonis. Vertical dashed lines indicate a 2-fold change, and the 615 
horizontal dashed line indicates the statistical significance threshold (p = 0.05). Blue indicates up-616 
regulated genes and red indicates down-regulated genes. c, Scatter plot of fold changes of C. 617 
difficile DSM 27147 differentially expressed genes in the presence of CS and CH. Only genes 618 
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with p-value less than 0.05 are shown. Blue indicates a consistent sign of fold changes whereas 619 
red indicates an opposite sign of fold changes. Grey indicates genes that are not differentially 620 
expressed in the presence of CS and CH (less than 2-fold change marked by the dashed lines). 621 
Spearman’s rho and p-value are shown, which were computed using the spearmanr from the 622 
scipy package in Python. d, Differentially expressed genes that are involved in C. difficile’s 623 
fermentation and energy metabolism. The fold changes were shown next to the gene annotations. 624 
Blue indicates up-regulated genes and red indicates down-regulated genes. e, Bar plot of the log-625 
transformed fold changes of selected highly differentially expressed genes of C. difficile DSM in 626 
the presence of C. hiranonis. Horizontal dashed lines indicate a 2-fold change. f, Schematic 627 
highlighting substantial transcriptional changes in C. difficile in the presence of CH compared to 628 
CS. g, Schematic of the mice experiment. Mice were orally gavaged with CH for one week prior 629 
to C. difficile DSM27147 challenge (n=5). As a control, one group of mice without CH was 630 
challenged C. difficile (n=4). h, Percent survival of the mice after C. difficile gavage. i, Percent of 631 
initial weight after C. difficile gavage. Data points indicate individual mice, and the line indicates 632 
the average of all mice in the group. The horizontal dashed line indicates the weight limit of 75%. 633 
Mice with weights that dropped below the limit were sacrificed. Asterisks indicate the p-value from 634 
unpaired t-test between the weight of mice gavaged with CH and mice without CH: * indicates 635 
p<0.05. j, C. difficile abundance in the fecal and cecal content over time as determined by CFU 636 
counting on C. difficile selective plates. The horizontal dashed line indicates the limit of detection. 637 
Asterisks indicate the p-value from unpaired t-test between the CFU of C. difficile of mice gavaged 638 
with CH and mice without CH: ** indicates p<0.01, * indicates p<0.05. k, Total amount of C. difficile 639 
toxin per mg of cecal content. Data were shown as mean ± s.d. (n=5). Asterisks indicate the p-640 
value from unpaired t-test between the toxin amount from the cecal samples of mice gavaged 641 
with CH and mice without CH: * indicates p<0.05. Parts of the figure are generated using 642 
Biorender. 643 

 644 

Notably, co-culturing with CH yielded a massive alteration in the expression of 645 
fermentation and energy metabolism genes in C. difficile (Fig. 5d). Many genes involved 646 
in glycolysis, pentose phosphate pathway, Stickland metabolism, Wood-Ljungdahl 647 
Pathway (WLP), and fermentation pathway were highly up-regulated in the presence of 648 
CH. Since ATP synthases were down-regulated, it is possible that the cells were forced 649 
to generate ATP through the aforementioned pathways to perform essential cellular 650 
functions. C. difficile couples certain fermentation pathways, such as the butyrate 651 
fermentation, to the generation of a sodium/proton gradient using electron bifurcation in 652 
combination with the membrane-spanning Rnf complex 75. Electron bifurcation couples 653 
the NADH-dependent reduction of a substrate to the reduction of ferredoxin. The free 654 
energy resulting from the redox potential difference between ferredoxin and NAD+ is used 655 
to transport ions across the membrane through the Rnf complex, generating NADH in the 656 
process. Since electron bifurcating enzymes were down-regulated, Rnf complex genes 657 
were up-regulated, and glycolysis genes were highly up-regulated, C. difficile likely 658 
needed to generate NAD+ in the presence of CH. This could be achieved by the reductive 659 
Stickland metabolism or the WLP coupled to fermentation pathways. C. difficile heavily 660 
relies on Stickland reactions for reductive pathways 76. When there are abundant 661 
preferred electron acceptor substrates such as proline and glycine, the WLP is not used 662 
by C. difficile. However, C. difficile uses WLP as its terminal electron sink to support 663 
growth on glucose when C. difficile lacks Stickland amino acid acceptors 76. Therefore, 664 
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the concomitant up-regulation of the proline and glycine reductases and genes involved 665 
in the WLP suggests that C. difficile competed with CH over proline and glycine and thus 666 
resorted to the WLP as an alternative electron-accepting pathway.  667 

 In addition to altering C. difficile‘s metabolism, CH impacted the expression of 668 
genes involved in various important cellular pathways such as stress responses (Fig. 5e, 669 
S16g). For instance, genes related to two-component systems that enable bacteria to 670 
adapt to diverse environmental changes, and many stress response genes including recA 671 
and relA were highly up-regulated. Consistent with the inhibition of C. difficile’s toxin 672 
production in the presence of CH as measured by ELISA, the toxin A (tcdA) gene was 673 
down-regulated in the presence of CH. Since C. difficile toxin expression is tightly linked 674 
with metabolic activity 72, toxin inhibition by CH could be associated with the massive 675 
changes in C. difficile’s metabolism. In sum, CH blocked access of C. difficile to alternative 676 
resource niches and led to a global alteration in the metabolic activities of C. difficile, 677 
providing insights into mechanisms that could mediate inhibitory inter-species interactions 678 
that are robust to strain and nutrient variability (Fig. 5f). In contrast, another closely 679 
related species, CS, loses its inhibitory activity in the presence of multiple carbohydrates 680 
since C. difficile can utilize mannitol, which is not utilized by CS. 681 

 682 

C. hiranonis ameliorates the effects of C. difficile in germ-free mice 683 

To examine whether CH could inhibit C. difficile in vivo, we used gnotobiotic mice and 684 
orally gavaged them with CH for one week to allow time for colonization and immune 685 
development 77 (Fig. 5g). After one week, the mice were orally gavaged with the 686 
hypervirulent C. difficile DSM27147. As a control, we also gavaged germ-free mice with 687 
C. difficile (no CH group). Four days after C. difficile inoculation, 50% of the mice from the 688 
control group (no CH) died (Fig. 5h). Although mice orally gavaged with CH also exhibited 689 
a decreasing trend in weight during the first few days of C. difficile gavage, the relative 690 
reduction in weight was lower than the control group (5.3% and 8.5% higher after 3 and 691 
4 days of C. difficile challenge respectively) (Fig. 5i). While CH has a low relative 692 
abundance when co-cultured with C. difficile DSM27147 in vitro (~11% in the glucose 693 
media and ~18% in the mixed carbohydrates media after 24 h of growth), CH was highly 694 
abundant in mice (~72% after 7 days of C. difficile challenge) (Fig. S20). The mice 695 
harboring CH also displayed lower C. difficile abundance and toxin concentration than in 696 
the absence of CH (Fig. 5j-k). Thus, CH ameliorates the disease severity of a C. difficile 697 
challenge in a murine model. 698 

 699 

DISCUSSION 700 

Defined communities that have been optimized to inhibit C. difficile hold tremendous 701 
promise to overcome the limitations of FMT for treating CDI. For instance, oral consortia 702 
from VE303 (Vedanta Biosciences) has passed the phase 2 clinical trial for rCDI 11 and 703 
is currently undergoing phase 3. Robustness of anti-C. difficile activity to environmental 704 
variability is not typically considered in the design process. This potential lack of 705 
robustness may contribute to the failure of the community to successfully treat a fraction 706 
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of patients (~14% after a few months) 78,79. The C. difficile inhibitory activity of defined 707 
communities may be more variable than fecal communities used during FMT due to their 708 
reduced functional redundancy, richness, and diversity 7,8. Therefore, there is a need to 709 
understand how anti-C. difficile activity of human gut communities varies in response to 710 
diverse C. difficile strain backgrounds and environmental contexts (e.g. variations in diet).  711 

 Systems biology approaches combining experiments and computational modeling 712 
have been used to understand C. difficile metabolism and virulence 80, study interactions 713 
with human gut communities 31, and design a bacterial consortium that protects against 714 
CDI 81. For instance, genome-scale metabolic models were used to guide the design of 715 
communities with enriched amino acid metabolism pathways associated with successful 716 
FMTs for rCDI treatment 81. However, the robustness of the designed communities to 717 
environmental context was not evaluated, and thus it is unknown whether they are 718 
effective across different strain or nutrient contexts. We used a data-driven approach to 719 
dissect interspecies interactions and toxin production of genotypically diverse C. difficile 720 
strains in human gut communities under different nutrient environments. We combined 721 
high-throughput in vitro experiments with computational modeling to deduce interaction 722 
networks impacting each C. difficile strain in different media conditions. We showed that 723 
C. difficile strain variation could directly or indirectly shape interspecies interactions of 724 
human gut microbiota. In addition, strain-level variability has a major impact on toxin 725 
production in communities, adding another layer of complexity to the design of robust 726 
anti-C. difficile consortia. The nutrient environment also plays a key role in shaping the 727 
interactions between C. difficile and the gut communities. Although it has been reported 728 
that C. difficile inhibition is prevalent in media that promote resource competition 31, we 729 
showed that it is sparse when there are multiple preferred carbohydrates for C. difficile. 730 
Our study showcases our quantitative systems-biology approach to map context-731 
dependent interactions and provides insights into the mechanisms that could enhance 732 
the robustness of inhibition across strains and environments. Based on our results, 733 
interactions that lead to global shifts in metabolism and other cellular processes may 734 
exhibit greater robustness to environmental variability. More broadly, this framework 735 
considering robustness as a feature could be applied to the design of anti-pathogen 736 
bacterial therapeutics.   737 

Of the 7 gut bacteria used to study community interactions, CS and CH are the 738 
only two species that can utilize amino acids to perform Stickland metabolism, similar to 739 
C. difficile. In the media supplemented with only glucose as a sole carbohydrate, CS and 740 
CH have a stronger magnitude of C. difficile inhibition compared to the other species (Fig. 741 
2d). These inhibitory interactions may stem from competition over Stickland amino acids 742 
in addition to glucose, whereas the other gut bacteria only compete for glucose. Previous 743 
work has shown that introducing Stickland amino acid competitors can protect mice from 744 
CDI 33. In sum, competition over Stickland amino acids is an attractive strategy to enhance 745 
inhibition against C. difficile. However, in the media containing multiple carbohydrates, 746 
CH is the only species that can inhibit C. difficile whereas CS lost this inhibition capability 747 
(Fig. 2e). In a different rich media, CH inhibition of C. difficile was proposed to arise 748 
partially from resource competition and not via external pH change or extracellular protein 749 
release 31. Our results go beyond this study by demonstrating that CH suppresses the 750 
growth and toxin production of diverse C. difficile strains in two distinct nutrient 751 
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environments, yields a massive change in the metabolic activity of C. difficile, and 752 
improves disease severity in germ-free mice (Fig. 5). Although, to our knowledge there is 753 
no evidence regarding the role of CH on CDI outcomes in humans, the presence of CH 754 
is negatively associated with C. difficile colonization in dogs and cats 82-84.  755 

A key question is how CH maintains its inhibitory effect on C. difficile when 756 
provided with multiple C. difficile-preferred carbohydrates, whereas the inhibitory 757 
capability is abolished for CS. Since CH and CS are closely related, we would expect a 758 
similar transcriptional response in C. difficile in the presence of these two species. 759 
Genome-wide transcriptional profiling revealed that C. difficile exhibited a substantial 760 
difference in gene expression in the presence of CH and CS (Fig. 5c). These data 761 
provided insights into the unique transcriptional signature of CH’s inhibition mechanism, 762 
which was not observed in the presence of CS. Although our results support the 763 
hypothesis that C. difficile competes for Stickland amino acids with CS, C. difficile could 764 
switch to mannitol as an alternative nutrient source, which cannot be utilized by CS (Fig. 765 
5f). By contrast, CH and C. difficile share highly similar metabolic niches, which may 766 
substantially limit the available resources for C. difficile. Therefore, C. difficile increased 767 
expression of enzymes in core energy-generating metabolic pathways in the presence of 768 
CH, including glycolysis, pentose phosphate pathway, Stickland metabolism, Wood-769 
Ljungdahl Pathway (WLP), and fermentation (acetate, ethanol, and butyrate production) 770 
(Fig. 5d), which were not observed when CS was present. Because C. difficile normally 771 
favors Stickland fermentation over WLP as their main electron-accepting pathway, the 772 
activation of WLP suggests that CH successfully competes for reductive Stickland amino 773 
acids and forces C. difficile to use WLP as their alternative electron sink 76. These massive 774 
alterations in C. difficile core metabolism also impact virulence such as toxin production. 775 
Further, C. difficile upregulated stressed-related pathways (Fig. 5e), which were not 776 
observed in the presence of CS (Fig. S16d-e). Beyond resource competition, CH may 777 
produce an antimicrobial targeting C. difficile as previously hypothesized 31 that 778 
contributes to this unique transcriptional response. Future work could mine the 779 
biosynthetic gene clusters in CH for potential antimicrobial compounds and perform 780 
targeted and untargeted metabolomics to provide deeper insights into the mechanisms 781 
of inter-species interaction.  782 

Certain bacteria in the gut have been reported to increase C. difficile toxin 783 
production and enhance their fitness and virulence in vivo, such as the opportunistic 784 
pathogen Enterococcus faecalis 70. Some metabolites produced by gut microbes such as 785 
butyrate could also increase C. difficile toxin, albeit moderately 85. However, we found 786 
that the enhancement of C. difficile toxin is sparse among human gut commensals (toxin 787 
production per unit biomass is enhanced in only ~16% of all communities compared to 788 
monocultures). In addition, strain-level variability played a larger role in toxin production 789 
in communities than inferred gLV growth-mediated inter-species interactions. Since toxin 790 
production is tightly linked with metabolism 73,86, genotypic variations among C. difficile 791 
strains would impact their toxin production profiles. The lack of an informative relationship 792 
between growth-mediated inter-species interactions and toxin production suggests that 793 
inhibiting C. difficile growth may not always protect against CDI unless C. difficile is 794 
excluded from the community. Thus, the identification of C. difficile inhibitors should 795 
consider both inhibition of growth and toxin production. Further, we discovered that C. 796 
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difficile strains with similar hypervirulent genotypes (DSM 27147 and MS014) have 797 
different toxin production profiles in communities. By contrast, an isolate from a healthy 798 
individual (Strain 296) has a similar toxin production profile with genetically distinct 799 
isolates from patients with CDI (MS008 and MS014) (Fig. 4c, S19a-b). This indicates that 800 
rather than the genotype of C. difficile alone, community context is a major variable 801 
shaping C. difficile toxin production.  802 

A grand challenge for microbiome engineering is the rational design of microbial 803 
communities as living therapeutics for treating multiple human diseases involving 804 
alterations in the human gut microbiome. For CDI, a potential driver of the efficacy of FMT 805 
is the high richness and diversity of species in the fecal samples, which could repopulate 806 
the gut flora and restore colonization resistance. This is further supported by the fact that 807 
most of the products with successful outcomes in clinical trials so far are communities 808 
derived from stool samples, thus having high species richness 87. However, due to heavy 809 
reliance on donors, these stool-derived communities suffer from batch-to-batch variations 810 
and are designed without any knowledge of molecular mechanisms of C. difficile inhibition. 811 
This could be overcome by using defined communities that are standardized and 812 
optimized to inhibit C. difficile. However, the number of strains in a bacterial therapeutic 813 
currently scales with manufacturing cost. Our study shows that in the media with multiple 814 
carbohydrates preferred by C. difficile mimicking a perturbed gut condition, species 815 
richness is no longer a strong determinant of C. difficile inhibition, but rather the identity 816 
of the species in the community (Fig. 2g). Therefore, it is conceivable that small bacterial 817 
communities with high anti-C. difficile activity that is robust to environmental variability 818 
could be identified. We identified CH as a “universal” C. difficile growth and toxin inhibitor 819 
of genotypically diverse C. difficile strains and nutrient environments. Therefore, CH may 820 
represent a unique class of species that could be used to build a robust anti-C. difficile 821 
bacterial therapeutics to environmental variability. Future work will elucidate how to 822 
expand the number of species communities containing CH to further enhance the anti-C. 823 
difficile activity and robustness to environmental variability in the mammalian gut.  824 

 825 

METHODS 826 

Strain, media, and growth conditions 827 

The strains used in this work were obtained from the sources listed in Table S1. There 828 
are a total of 18 C. difficile isolates. Nine of them were obtained from diseased patients 829 
who were diagnosed and treated for C. difficile infection (CDI) in the UW-Madison 830 
Hospital 88. These isolates were subjected to C. difficile nucleic acid amplification test 831 
(NAAT) (GeneXpert) via admission stool sample, and bacterial identification was 832 
confirmed via sequencing of the 16S rRNA gene. The other nine isolates were obtained 833 
from healthy individuals from the Winning the War on Antibiotic Resistance (WARRIOR) 834 
project 89. Briefly, the WARRIOR project collects biological specimens, including nasal, 835 
oral, and skin swabs and saliva and stool samples, along with extensive data on diet and 836 
MDRO risk factors, as an ancillary study of the Survey of the Health of Wisconsin (SHOW) 837 
90. WARRIOR participants include 600 randomly selected Wisconsin residents aged 18 838 
and over, and C. difficile isolates were identified by anaerobic inoculation of stool samples 839 
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in prereduced C. difficile Brucella Broth and then plated on Brucella agar plates. Colonies 840 
with correct morphology were identified using Gram staining and catalase testing. The 841 
presence of toxin genes is assessed using an in-house PCR assay and bacterial 842 
identification is confirmed via sequencing of the 16S rRNA gene. 843 

Single-use glycerol stocks were prepared as described previously 44. The media 844 
used in this work are anaerobic basal broth (ABB, Oxoid) for growing starter cultures, and 845 
in-house defined media (DM) for all of the experiments. DM29 is the defined media 846 
without any carbohydrate source (recipe listed in Table S2), which was formulated to 847 
support the growth of phylogenetically diverse human gut bacteria 44 and has been used 848 
to study inter-species interactions of human gut communities 91,92. For supplementation 849 
of single carbohydrate sources to DM29, the carbohydrates were added to a final 850 
concentration of 5 g/L. For mixed carbohydrates media that mimics a perturbed gut 851 
condition, we modified DM29 by adding carbohydrate sources that are preferred by C. 852 
difficile and could increase in abundance upon antibiotic treatment 45,48,58-61, which are 853 
glucose, sorbitol, mannitol, trehalose, succinate, galactose, GalNAc, GlcNAc, and sialic 854 
acid at a concentration of 2 g/L each. 855 

For all experiments, cells were cultured in an anaerobic chamber (Coy Lab 856 
products) with an atmosphere of 2.0 ± 0.5% H2, 15 ± 1% CO2, and balance N2 at 37 °C. 857 
Starter cultures were inoculated by adding 200 μL of a single-use 25% glycerol stock to 858 
5 mL of anaerobic basal broth media (ABB) and grown at 37 °C without shaking. 859 

 860 

Growth characterization in media with different carbohydrate sources 861 

Starter cultures of C. difficile isolates and gut commensal bacteria were prepared. The 862 
cell pellets from starter cultures were collected by centrifugation at 3,000 x g for 10 min, 863 
and then washed with DM29 media. The washed cell pellets were resuspended into 864 
DM29 media to a final OD600 of approximately 0.1. These cultures were inoculated into a 865 
96-well plate (Greiner Bio-One) containing DM29 supplemented with specific 866 
carbohydrate sources at a concentration of 5 g/L to an initial OD600 of 0.01 (3 biological 867 
replicates for each strain). These plates were covered with a gas-permeable seal 868 
(Breathe-Easy® sealing membrane) and incubated at 37 ºC anaerobically. Cell growth 869 
determined by OD600 was monitored using Tecan F200 plate reader every 3 h using 870 
robotic manipulator arm (RoMa) integrated with our Tecan Freedom Evo 100 instrument. 871 

 872 

Logistic growth model 873 

The logistic growth model was used to describe C. difficile population growth dynamics in 874 
monoculture experiments. The logistic growth model for species 𝑖 takes the following form: 875 

𝑑𝑥!
𝑑𝑡 = 𝑥! )𝑟! −

𝑟!
𝐾!
𝑥!+ 876 

where 𝑥! is the absolute abundance of species 𝑖, parameter 𝑟! is its maximum growth rate, 877 
and 𝐾! is its carrying capacity. Due to the unique growth profile of C. difficile isolates, we 878 
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cut time points where the OD600 drops below > 10% to exclude the highly variable phase. 879 
Thus, the steady-state solution of the model is the carrying capacity (𝐾!) (i.e. the value of 880 
𝑥! when "#!

"$
 equals 0). We also excluded data points less than 120% of the initial OD600 881 

(OD600 at t=0) to exclude the lag phase which is not captured in the logistic model. A 882 
custom MATLAB script is used to estimate the parameters θ! = [𝑟! , 𝐾!] in the logistic 883 
growth model. For each species i, the model is fitted to experimental data with L2 884 
regularization. Specifically, given a series of m experimental OD600 measurements, 𝒙𝒊 =885 
1𝑥!,', ⋯ , 𝑥!,(3 , and a series of OD600 simulated using parameter θ!  at the same time 886 
intervals,  𝒙4𝒊(𝜽𝒊) = 1𝑥8!,'(𝜃!),⋯ , 𝑥8!,((𝜃!)3 , the optimization scheme minimizes the cost 887 
function: 888 

𝐶(θ!) = |𝑋)=(θ!) − 𝑋!|* + λ|θ!|*, 889 

where λ is the L2 regularization parameter, which was set to be 0.02 for all species, and 890 
| ⋅ |* indicates vector 2-norm. Solutions to the logistic growth model were obtained using 891 
the ode15s solver and the optimization problem was solved using FMINCON in MATLAB 892 
(R2022a). 893 

 894 

Fluorescence microscopy of C. difficile 895 

Starter cultures of several C. difficile strains were prepared. The cell pellets from starter 896 
cultures were collected by centrifugation at 3,000 x g for 10 min, and then washed with 897 
DM29 media. The washed cell pellets were resuspended into DM29 media to a final OD600 898 
of approximately 0.1. These cultures were inoculated into new culture tubes containing 899 
either DM29 media or DM29 supplemented with 5 g/L glucose to an initial OD600 of 0.01 900 
by adding 500 μl of washed starter cultures to 4.5 mL media. After 16 h and 40 h of growth, 901 
100 μl aliquots were taken, stained with SYBR Green dye, and viewed with a microscope 902 
(Nikon Eclipse Ti-E inverted microscope) at 20× dry objective with appropriate filter sets. 903 
Images were captured with Photometrics CoolSNAP Dyno CCD camera and associated 904 
software (NIS-Elements Ver. 4.51.00). 905 

 906 

Whole genome sequencing of C. difficile isolates 907 

C. difficile DSM 27147 and the 18 isolates used in this study were subjected to whole-908 
genome sequencing. Strains were grown from a single colony to OD600 of 0.3, and then 909 
centrifuged to obtain the cell pellets. Genomic DNA was extracted using Qiagen DNeasy 910 
Blood and Tissue Kit according to the manufacturer’s protocol. The harvested DNA was 911 
detected by the agarose gel electrophoresis and quantified by a Qubit fluorometer. The 912 
genomic DNA was sent to SeqCenter (Pittsburgh, PA, USA) for paired-ends Illumina 913 
sequencing. Sample libraries were prepared using the Illumina DNA Prep kit and IDT 10 914 
bp UDI indices, and sequenced on an Illumina NextSeq 2000, producing 2 x 151 bp reads. 915 
Demultiplexing, quality control, and adapter trimming were performed with bcl-convert 916 
(v3.9.3) Illumina software. The clean bases of each sample are ~1 billion bp. The WGS 917 
raw data was submitted and is accessible in BioProject PRJNA902807. 918 
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 919 

Whole-genome sequencing data analysis 920 

SPAdes Genome Assembler 93 is used to assemble contigs from the whole-genome 921 
sequencing data with the following parameters: spades.py --pe1-1 (forward read fastq file) 922 
--pe1-2 (reverse read fastq file) --isolate -o (output name). The --isolate option was used 923 
due to the high-coverage sequencing data. We then used FastANI 94 to compute the 924 
whole-genome Average Nucleotide Identity (ANI) values between pairs of isolates, which 925 
is defined as the mean nucleotide identity of orthologous gene pairs shared between two 926 
microbial genomes. The following parameters are used: fastANI --ql (list of contigs.fasta 927 
files of all isolates from SPAdes) --rl (list of contigs.fasta files of all isolates from SPAdes) 928 
–matrix -o (output name). The newly sequenced genomes are high-quality drafts with a 929 
low number of contigs (median 61 [range 40–458]) and high N50 (median 285,062 [range 930 
146,596–782,135]) (Table S3). 931 

Annotation of the contigs was performed using DFAST 95. For further comparative 932 
genomic analyses, the gene content across 19 C. difficile strains was analyzed by 933 
clustering all predicted coding sequences into orthologous groups 96 (Fig. S3b). 934 
Clustering of gene orthologs was carried out using ProteinOrtho6 96 across variable 935 
coverage and identity settings using BlastP for alignment. Distributions of OGs show a 936 
high degree of strain variability with many genes in a limited subset of strains (Fig. S3c). 937 

To get Gene Ontology (GO) information, we used BlastP of the NCBI Blast Suite 938 
97 against the proteins from all C. difficile strains that exist in UniProt database 939 
(downloaded from UniProtKB on 10th November 2022) at 1E-3 E-value cutoff. Following 940 
BlastP, GO information such as biological process, molecular function, and cellular 941 
compartment of each protein was extracted from UniProt. To align the sequence of 942 
specific genes such as Toxin A (tcdA), Toxin B (tcdB), RNA polymerase (rpoB, rpoB’), we 943 
used Clustal Omega multiple sequence alignment tool 98. 944 

We evaluated the genetic diversity of our C. difficile strains in the context of the 945 
other 118 publicly available C. difficile genomes (Table S4). Phylogenomic analysis was 946 
performed using GToTree 99 on the C. difficile isolates dataset along with 118 public 947 
strains. SPAdes FASTA files were used as inputs to GToTree analysis and the resulting 948 
tree was visualized using the Interactive Tree of Life web-based tool 100. Our isolates span 949 
64% of the C. difficile phylogeny of this dataset (9 of 14 major tree branches) (Fig. S3d).  950 

To get the relative copy number of the genes in each isolate, the Illumina paired-951 
end reads were aligned to the gene list from DFAST using Bowtie2 101. The detection of 952 
conjugative systems was performed using CONJScan 102 module of MacSyFinder. The 953 
detection of phages was performed using VirSorter 103. 954 

 955 

Construction of strain-specific genome-scale metabolic models to assess 956 
variations in metabolism 957 

Raw sequencing data was first preprocessed using fastp 0.22.0 104, trimming the 958 
first 5bp at the 5’ end and trimming the 3’ end with a sliding window approach, maintaining 959 
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a minimum quality score of 20. Reads shorter than 60bps were omitted. 85%-95% of 960 
reads passed all filters across samples, yielding 2.9M to 7.1M reads per sample. 961 
Preprocessed reads were assembled using MEGAHIT 1.2.9 105 using default k-mer sizes 962 
and a minimum contig length of 1000bps. Completeness and contamination were 963 
assessed using CheckM2 1.0.1 106 yielding completeness of >99.9% for all assemblies 964 
while maintaining contamination below 1.5%. Bacterial species identity was verified using 965 
the GTDB toolkit 2.1.0 107 using the database version 207. All assemblies were classified 966 
as Clostridioides difficile by average nucleotide identity and placement in the GTDB 967 
reference tree. 968 

De novo gene predictions of the assemblies were performed by Prodigal 2.6.3 108. 969 
Metabolic draft models were built using CarveMe 1.5.2 109 from the isolate gene 970 
predictions using DIAMOND 2.1.6 110 with additional options of “--more-sensitive –top 971 
10 ”. Media composition was translated by manual mapping to the BiGG database 111. 972 
Salts were decomposed into their aqueous phase ions to mimic the effect of hydrolysis in 973 
the translated medium. Draft models were then gapfilled to be able to grow on the mapped 974 
media. During gapfilling, no more than 10 new reactions and 6 new metabolites were 975 
added to each model. Model quality was assessed using MEMOTE 0.13.0 112. Metabolic 976 
reaction content was assessed using the “metabolic_dist” function from MICOM 0.32.5 977 
113 where metabolic distances were calculated by the Jaccard distance of metabolic 978 
reaction absence/presence (1 - shared reactions / total reactions) for each pair of 979 
reconstructed models. 980 

 981 

Bacterial genome DNA extraction for 16S amplicon sequencing 982 

All the genomic DNA (gDNA) extraction and next-generation sequencing sample 983 
preparation were performed as described previously 31,44. Bacterial gDNA extractions 984 
were carried out using a modified version of the Qiagen DNeasy Blood and Tissue Kit 985 
protocol in 96-well plates. Briefly, cell pellets were resuspended in 180-μl enzymatic lysis 986 
buffer containing 20 mg/ml lysozyme (Sigma-Aldrich), 20 mM Tris–HCl pH 8 (Invitrogen), 987 
2 mM EDTA (Sigma-Aldrich), and 1.2% Triton X-100 (Sigma-Aldrich), and then incubated 988 
at 37°C at 600 RPM for 30 min. Samples were treated with 25 μL 20 mg/ml Proteinase K 989 
(VWR) and 200 μL buffer AL (Qiagen), mixed by pipette, and then incubated at 56°C at 990 
600 RPM for 30 min. Samples were treated with 200 μL 200 proof ethanol (Koptec), mixed 991 
by pipette, and transferred to 96-well nucleic acid binding plates (Pall). After washing with 992 
500 μL buffer AW1 and AW2 (Qiagen), a vacuum was applied for 10 min to dry excess 993 
ethanol. Genomic DNA was eluted with 110 μL buffer AE (Qiagen) preheated to 56°C and 994 
then stored at −20°C. 995 

Genomic DNA concentrations were measured using the Quant-iT™ dsDNA Assay 996 
Kit (Invitrogen) with a 6-point DNA standard curve (0, 0.5, 1, 2, 4, 6 ng/μL biotium). 1 μL 997 
of samples and 5 μL of standards were diluted into 95 μL of 1× SYBR green (Invitrogen) 998 
in TE buffer and mixed by pipette. Fluorescence was measured with an 999 
excitation/emission of 485/535 nm (Tecan Spark). Genomic DNA was then normalized to 1000 
2 ng/µL by diluting in molecular grade water (VWR International) using a Tecan Evo Liquid 1001 
Handling Robot.  1002 
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Dual-indexed primers for multiplexed amplicon sequencing of the V3-V4 region of 1003 
the 16S rRNA gene were designed as described previously 38,44. PCR was performed 1004 
using the normalized gDNA as template and Phusion High-Fidelity DNA Polymerase 1005 
(Thermo Fisher) for 25 cycles with 0.05 μM of each primer. Samples were pooled by plate, 1006 
purified using the DNA Clean & Concentrator™-5 kit (Zymo) and eluted in water, 1007 
quantified by NanoDrop, and combined in equal proportions into a library. The library was 1008 
quantified using Qubit 1× HS Assay (Invitrogen), diluted to 4.2 nM, and loaded at 10 pM 1009 
onto Illumina MiSeq platform for 300-bp paired-end sequencing using MiSeq Reagent Kit 1010 
v2 (500-cycle), or loaded at 21 pM using MiSeq Reagent Kit v3 (600-cycle) depending on 1011 
the desired sequencing reads. 1012 

 1013 

16S amplicon sequencing data analysis to determine community composition 1014 

Sequencing data were analyzed as described previously 31,38. Briefly, reads were 1015 
demultiplexed with Basespace FastQ Generation, and the FastQ files were analyzed 1016 
using custom Python scripts. Paired reads were merged using PEAR (Paired-End reAd 1017 
mergeR) v0.9.0 114. A reference database containing 16S V3-V4 region of each species 1018 
in the study was created by assembling consensus sequence based on sequencing 1019 
results of each monospecies. Reads were mapped to the reference database using the 1020 
mothur v1.40.5 command classify.seqs using the Wang method with bootstrap cutoff 1021 
value of 60% 115,116. Relative abundance was calculated by dividing the read counts 1022 
mapped to each organism by the total reads in the sample. Absolute abundance was 1023 
calculated by multiplying the relative abundance of an organism by the OD600 of the 1024 
sample. Samples were excluded from further analysis if > 1% of the reads were assigned 1025 
to a species not expected to be in the community (indicating contamination). 1026 

 1027 

Parameter estimation of generalized Lotka-Volterra models 1028 

The generalized Lotka-Volterra (gLV) model is a set of coupled ordinary differential 1029 
equations that describe the growth of interacting species over time,  1030 

𝑑𝑥!
𝑑𝑡 = 𝑥! A𝑟! +B𝑎!+𝑥+

,"

+-'

D 1031 

where 𝑥!  is the abundance of species 𝑖  and 𝑛.  is the total number of species. Model 1032 
parameters that need to be estimated from data include the species growth rate, denoted 1033 
as 𝑟! , and coefficients that determine how species 𝑗  affects the growth of species 𝑖 , 1034 
denoted as 𝑎!+. The data used for parameter estimation is the growth of species over time 1035 
under different inoculation conditions. For monoculture growth data, we use OD600 1036 
measurements only, whereas for community data, this was obtained by multiplying the 1037 
relative abundance obtained from 16S sequencing by the total OD600.  1038 

A prior over the parameter distribution is set so that growth rates have a mean of 1039 
0.3, self-interaction terms have a mean of -1, and inter-species interaction terms have a 1040 
mean of -0.1. Given a dataset of measured species abundances over time after 1041 
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inoculating different combinations of species, the model parameters are determined by 1042 
minimizing a cost function given by a weighted squared difference between model-1043 
predicted species abundances and measured abundances and a penalty for deviations 1044 
from the prior mean. Using the fitted parameter estimates, the covariance of the posterior 1045 
parameter distribution is approximated as the inverse of the Hessian (matrix of second 1046 
derivatives) of the cost function with respect to the model parameters. The Expectation-1047 
Maximization (EM) algorithm is used to optimize the precision of the prior parameter 1048 
distribution and the precision of the noise distribution, which collectively determine the 1049 
degree to which estimated parameters are penalized for deviations from the prior mean 1050 
117. In other words, the precision of the prior and noise are hyperparameters that 1051 
determine the degree of regularization. To evaluate model prediction performance on 1052 
held-out data, we performed 10-fold cross validation where the degree of regularization 1053 
was optimized using the EM algorithm and only community samples were subjected to 1054 
testing (i.e. monoculture data was reserved only for model training). See Supplementary 1055 
Text for a more detailed description of parameter estimation and the EM algorithm.  1056 

 1057 

Bayesian experimental design to guide community experiments  1058 

We define an experimental design as a set of unique inoculation conditions, where in 1059 
each condition each species may be present or absent, and the total inoculation density 1060 
sums to OD600 of 0.01. We used a Bayesian experimental design approach to select 1061 
experimental conditions that were expected to collectively minimize parameter 1062 
uncertainty as quantified by the expected Kullback-Leibler (KL) divergence between the 1063 
posterior parameter distribution and the prior parameter distribution (See Equation 20 in 1064 
Supplementary Text).      1065 

 1066 

Growth of synthetic gut communities with C. difficile isolates 1067 

Starter cultures of all C. difficile isolates and commensal gut bacteria were prepared. The 1068 
cell pellets from starter cultures were collected by centrifugation at 3,000 x g for 10 min, 1069 
and then washed with DM29 media. The washed cell pellets were resuspended into 1070 
DM29 media to a final OD600 of approximately 0.1.  1071 

For the growth experiment of each of the 19 C. difficile strains with 8-member gut 1072 
bacteria at a single timepoint (Fig. S6b-c), the monocultures of individual C. difficile 1073 
strains and each gut species were mixed in equal proportions based on OD600 and 1074 
inoculated into 2 mL 96-deep-well plates (Nest Scientific) containing DM29 supplemented 1075 
with specific carbohydrate sources (glucose, mannitol, galactose, or mucin) to an initial 1076 
OD600 of 0.01. The initial OD600 of each species is therefore 0.0011 (0.01 divided by 9, 1077 
the number of species in the community). As a control, we also inoculated a mixture of 1078 
gut species without C. difficile to the same initial OD600 of 0.01. There are a total of 4 1079 
plates for media with different carbohydrate sources, each containing 20 communities (18 1080 
for different C. difficile isolates, 1 for C. difficile DSM 27147 strain, and 1 for the gut 1081 
community without C. difficile), with 3 biological replicates for each community. These 1082 
plates were covered with a gas-permeable seal (Breathe-Easy® sealing membrane) and 1083 
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incubated at 37 ºC anaerobically for 24 hours to capture C. difficile growth prior to the 1084 
highly variable late stationary phase response. At the end of the experiment, OD600 was 1085 
measured with a Tecan F200, and cell pellets were collected for DNA extraction, PCR 1086 
amplification, and NGS sequencing. 1087 

For the growth experiment of each of the 19 C. difficile strains with 7-member gut 1088 
bacteria at a single time point in the mixed carbohydrates media (Fig. S9e), the 1089 
monocultures of individual C. difficile strains and each gut species were mixed in equal 1090 
proportions based on OD600 and inoculated into 2 mL 96-deep-well plate (Nest Scientific) 1091 
containing the mixed carbohydrates media to an initial OD600 of 0.01. The initial OD600 of 1092 
each species is therefore 0.00125 (0.01 divided by 8, the number of species in the 1093 
community). As a control, we also inoculated a mixture of gut species without C. difficile 1094 
to the same initial OD600 of 0.01. The deep-well plate was covered with a gas-permeable 1095 
seal (Breathe-Easy® sealing membrane) and incubated at 37 ºC anaerobically for 24 1096 
hours. At the end of the experiment, OD600 was measured with a Tecan F200, and cell 1097 
pellets were collected for DNA extraction, PCR amplification, and NGS sequencing. 1098 

For time-course growth experiment of 4 different C. difficile strains with 7 gut 1099 
bacteria in the glucose media (Fig. 2d) or mixed carbohydrates media (Fig. 2e), C. difficile 1100 
and gut bacteria were mixed and grown in 2-8 member communities. The community 1101 
combinations were generated from the Bayesian experimental design (Table S8). The 1102 
monocultures of C. difficile strains and each gut species were mixed in equal proportions 1103 
based on OD600 and inoculated into 2 mL 96-deep-well plates (Nest Scientific) containing 1104 
the glucose media (Fig. 2d), or the mixed carbohydrates media (Fig. 2e) to an initial 1105 
OD600 of 0.01. For instance, the initial OD600 of each species in a 2-member community 1106 
is therefore 0.005 (0.01 divided by 2, the number of species in the community). These 1107 
plates were covered with a gas-permeable seal (Breathe-Easy® sealing membrane) and 1108 
incubated at 37 ºC anaerobically. After 12 and 24 hours of growth, OD600 was measured 1109 
with a Tecan F200, and cell pellets were collected for DNA extraction, PCR amplification, 1110 
and NGS sequencing. For longer-term growth experiments in Fig. S9c-d, the 1111 
communities were grown for 72 hours and passaged using a 1:20 dilution at 24 and 48 h 1112 
to observe community assembly over three batch culture growth cycles and capture the 1113 
longer-term behavior of the consortia. 1114 

For time-course growth experiment of 5 different C. difficile strains with 25 gut 1115 
bacteria in the mixed carbohydrates media (Fig. 4), individual C. difficile strain and gut 1116 
bacteria were mixed and grown in pairwise and full 26-member communities. The 1117 
monocultures of C. difficile strains and each gut species were mixed in equal proportions 1118 
based on OD600 and inoculated into 2 mL 96-deep-well plates (Nest Scientific) containing 1119 
the mixed carbohydrates media to an initial OD600 of 0.01. For pairwise communities, the 1120 
initial OD600 of each species is 0.005 (0.01 divided by 2), and for 26-member communities, 1121 
the initial OD600 of each species is 0.000385 (0.01 divided by 26). These plates were 1122 
covered with a gas-permeable seal (Breathe-Easy® sealing membrane) and incubated at 1123 
37 ºC anaerobically. After 12 and 24 hours of growth, OD600 was measured with a Tecan 1124 
F200, and cell pellets were collected for DNA extraction, PCR amplification, and NGS 1125 
sequencing. Supernatants of communities at 24 hours of growth were collected for toxin 1126 
quantification using ELISA.  1127 
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 1128 

C. difficile toxin measurements using ELISA 1129 

Toxin (both TcdA and TcdB) concentrations in C. difficile monocultures or co-cultures, 1130 
and toxin titer in mice cecal samples were determined by comparison to a standard curve 1131 
using ELISA (tgcBiomics, Germany). The blank media used to grow the cultures were 1132 
also included in the assay to measure any background noise. Samples subjected to toxin 1133 
measurements in this study were processed in parallel at the same time using the same 1134 
batch of ELISA kits to minimize batch-to-batch variations and ensure comparable results.  1135 

 1136 

Growth of C. aerofaciens and B. thetaiotaomicron in the sterilized spent media of 1137 
different C. difficile strains 1138 

Starter cultures of C. difficile DSM27147, MS001, MS008, and MS014 were prepared. 1139 
The cell pellets from starter cultures were collected by centrifugation at 3,000 x g for 10 1140 
min, and then washed with DM29 media. The washed cell pellets were resuspended into 1141 
DM29 media to a final OD600 of approximately 0.1. Each of the C. difficile strains was 1142 
inoculated into new culture tubes containing DM29 media supplemented with 5g/L 1143 
glucose to an initial OD600 of 0.01. Culture tubes were incubated at 37°C with no shaking. 1144 
After an incubation time of 24 h, cultures were spun down aerobically at 3,000 x g for 20 1145 
min and sterile filtered using Steriflip 0.2-μM filters (Millipore- Sigma) before returning to 1146 
the anaerobic chamber. 1147 

Then, starter cultures of C. aerofaciens and B. thetaiotaomicron were prepared. 1148 
The cell pellets from starter cultures were collected by centrifugation at 3,000 x g for 10 1149 
min, and then washed with DM29 media. The washed cell pellets were resuspended into 1150 
DM29 media to a final OD600 of approximately 0.1. CA-BT coculture was inoculated in the 1151 
sterilized spent media of each C. difficile strain mixed with fresh media (DM29 1152 
supplemented with 5g/L glucose) at an equal ratio to replenish the nutrients. CA and BT 1153 
were inoculated at an equal initial abundance to a final OD600 of 0.01 in 2 mL 96-deep-1154 
well plates (Nest Scientific) that were covered with gas-permeable seals (BreatheEasy), 1155 
and incubated at 37°C with shaking. After 24 h, OD600 of the cultures were measured and 1156 
the cell pellets were collected for DNA extraction, PCR amplification, and NGS 1157 
sequencing. 1158 

 1159 

Growth of C. difficile strains in the sterilized spent media of gut bacteria 1160 

Starter cultures of commensal gut bacteria were prepared. The cell pellets from starter 1161 
cultures were collected by centrifugation at 3,000 x g for 10 min, and then washed with 1162 
DM29 media. The washed cell pellets were resuspended into DM29 media to a final OD600 1163 
of approximately 0.1. Each of the gut bacteria was inoculated into new culture tubes 1164 
containing the mixed carbohydrates media to an initial OD600 of 0.01. Culture tubes were 1165 
incubated at 37°C with no shaking. After an incubation time of 24 h, cultures were spun 1166 
down at 3,000 x g for 20 min and sterile-filtered using Steriflip 0.2-μM filters (Millipore- 1167 
Sigma). Media control (mixed carbohydrates media) was spun down and filtered in 1168 
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parallel with samples. The pH of the sterilized spent media was adjusted to the same 1169 
value as the media control. 1170 

Then, starter cultures of C. difficile strains were prepared. The cell pellets from 1171 
starter cultures were collected by centrifugation at 3,000 x g for 10 min, and then washed 1172 
with DM29 media. The washed cell pellets were resuspended into DM29 media to a final 1173 
OD600 of approximately 0.1. The C. difficile strains were inoculated in the sterilized spent 1174 
media of each gut bacteria (and the mixed carbohydrates media as a control) to a final 1175 
OD600 of 0.01 in 96-well microplates that were covered with gas-permeable seals 1176 
(BreatheEasy). The plates were incubated at 37°C with shaking, and OD600 was 1177 
measured every 3 h (Tecan Infinite Pro F200). 1178 

 1179 

Transcriptome profiling  1180 

C. difficile DSM27147 monoculture, C. difficile MS001 monoculture, CD DSM-CS 1181 
coculture, CD MS001-CS coculture, and CD DSM-CH coculture conditions were 1182 
inoculated from starter cultures into individual culture tubes containing the mixed 1183 
carbohydrates media. For monoculture conditions, C. difficile was inoculated to an OD600 1184 
of 0.01. For cocultures, C. difficile and CS or CH were inoculated to an equal ratio (OD600 1185 
of 0.005 each). The cultures were incubated anaerobically at 37°C with no shaking for ~7 1186 
h until the culture reached the exponential phase (OD600 ~0.2). 1000 μL of the culture was 1187 
taken for OD600 measurement and total DNA extraction for next-generation sequencing, 1188 
and 2000 μL of the culture was taken for total RNA extraction for transcriptomics. 4000 1189 
μL of RNAprotect (Qiagen) was added to 2000 μL of culture and incubated for 5 min at 1190 
room temperature. Cultures were then centrifuged at room temperature for 10 min at 3000 1191 
g and the supernatant was carefully removed. Cell pellets were immediately subjected to 1192 
RNA extraction using acidic phenol bead-beating method. Pellets were resuspended in 1193 
500 μL 2× Buffer B (200 mM sodium chloride, 20 mM ethylenediaminetetraacetic acid) 1194 
and transferred to 2 mL microcentrifuge tubes containing 500 μL Phenol:Chloroform:IAA 1195 
(125:24:1, pH 4.5) and 210 μL 20% sodium dodecyl sulfate and were bead-beated with 1196 
acid washed beads (Sigma G1277) for 3 min. All solutions used for RNA extraction were 1197 
RNAse-free. Samples were centrifuged at 4°C for 5 min at 7,200 g, and 600 μL of the 1198 
upper aqueous phase was added to 60 μL 3 M sodium acetate and 660 μL cold 1199 
isopropanol and chilled on ice for 5 min before freezing for 5 min at −80°C. Samples were 1200 
centrifuged at 4°C for 15 min at 18,200 g, the supernatant was decanted, and the pellet 1201 
was washed with cold 100% ethanol. The pellets were dried in a biosafety cabinet for 15 1202 
min and then resuspended in 100 μL RNAse-free water. Samples were purified using 1203 
RNeasy Mini Kit (Qiagen) and genomic DNA was removed using RNAse-Free DNase Set 1204 
(Qiagen). Two replicates of each condition were sent to Novogene Corporation Inc 1205 
(Sacramaneto, CA, United States of America) for rRNA depletion, cDNA library 1206 
preparation, and sequencing on Illumina NovaSeq. Data was de-multiplexed using 1207 
Illumina’s bcl2fastq 2.17 software, where one mismatch was allowed for index sequence 1208 
identification. 1209 

The compressed FASTQ files were quality-checked using the FastQC tool v0.12.1 1210 
118. The BBDuk, BBSplit, and BBMap tools from BBTools suite (v38.42) 119 were used to 1211 
trim adapters, deplete rRNA, and map the remaining mRNA reads to the reference 1212 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 17, 2024. ; https://doi.org/10.1101/2024.04.13.589383doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.13.589383
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 33 of 42 
 

genomes. For monoculture or cocultures containing C. difficile DSM27147, the reference 1213 
genome was obtained from GenBank (FN545816.1). For monoculture or cocultures 1214 
containing C. difficile MS001 isolate, the reference genome was obtained from the whole-1215 
genome sequencing data that was assembled and annotated using SPAdes Genome 1216 
Assembler 93. The feature-Counts package v1.6.4 120 from the SubRead suite was used 1217 
to map reads to features on the genome and quantify raw counts for each transcript. 1218 
Reads per kilobase million (RPKM) values were computed using a custom Python script 1219 
to see the agreement of gene expression between biological replicates. The gene 1220 
expression (represented by RPKM values) shows a good correlation between biological 1221 
replicates (Pearson’s R=0.95-0.98, P<10E-05) (Fig. S16a). The DESeq2 Bioconductor 1222 
library v4.0.3 121 was used in R v4.0.4 to quantify differential gene expression using a 1223 
negative binomial generalized linear models with apeglm shrinkage estimator 122. When 1224 
calculating RPKM of C. difficile genes in the CD-CS and CD-CH coculture, the “reads 1225 
mapped” in the denominator was the number of reads mapped to the C. difficile genome. 1226 
Similarly, when quantifying differential gene expression for C. difficile genes in the CD-1227 
CS and CD-CH coculture, only reads mapped to the C. difficile genome were provided to 1228 
DeSeq2. We define differentially expressed genes (DEGs) as those with >2-fold change 1229 
and a p-value less than 0.05. The RNA-seq data was submitted and is accessible in 1230 
BioProject PRJNA983758. 1231 

 1232 

Gene Set Enrichment Analysis (GSEA) 1233 

GSEA was performed using the GSEA method of the ClusterProfiler R package (v4.2.2) 1234 
123. KEGG modules for C. difficile were used as gene sets and were supplied as a user-1235 
defined annotation with the TERM2GENE field. The analysis was run with the log2FCs 1236 
calculated by DeSeq2. The p-value cutoff used was 0.05 and the minimum gene set size 1237 
used was 3. 1238 

 1239 

Gnotobiotic mouse experiments 1240 

All germ-free mouse experiments were performed following protocols approved by the 1241 
University of Wisconsin-Madison Animal Care and Use Committee. We used 10-week-1242 
old C57BL/6 gnotobiotic male mice (wild-type) and a regular diet (Chow diet, Purina, 1243 
LabDiet 5021). All strains were grown at 37 ºC anaerobically in Anaerobe Basal Broth 1244 
(ABB, Oxoid) to stationary phase. C. hiranonis and C. difficile DSM27147 strain for oral 1245 
gavage was diluted to ~10,000 CFU/mL, and these cultures were transferred to Hungate 1246 
tubes (Chemglass) on ice prior to oral gavage. On day 0, 0.2 mL of C. hiranonis culture 1247 
was introduced into the mice by oral gavage inside a Biological Safety Cabinet (BSC) and 1248 
the mice were housed in biocontainment cages (Allentown Inc.) for the duration of the 1249 
experiment. After one week, 0.2 mL of C. difficile (~2,000 CFU) was introduced into the 1250 
mice by oral gavage. Mice were maintained for a total of two weeks after the first 1251 
colonization with the core community (day 0). Groups of mice (4-5 mice) with the same 1252 
core community and C. difficile were co-housed in a single cage. Mice were weighed and 1253 
fecal samples were collected at specific time points after oral gavage for NGS sequencing. 1254 
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Cecal contents from mice that were dead or sacrificed in the middle of the experiment 1255 
were collected for NGS sequencing. 1256 

 1257 

Genomic DNA extraction from fecal and cecal samples 1258 

The DNA extraction for fecal and cecal samples was performed as described previously 1259 
with some modifications 124. Fecal samples (∼50 mg) were transferred into solvent-1260 
resistant screw-cap tubes (Sarstedt Inc) with 500 μL 0.1 mm zirconia/silica beads 1261 
(BioSpec Products) and one 3.2 mm stainless steel bead (BioSpec Products). The 1262 
samples were resuspended in 500 μL of Buffer A (200 mM NaCl (DOT Scientific), 20 mM 1263 
EDTA (Sigma) and 200 mM Tris·HCl pH 8.0 (Research Products International)), 210 μL 1264 
20% SDS (Alfa Aesar) and 500 μL phenol/chloroform/isoamyl alcohol (Invitrogen). Cells 1265 
were lysed by mechanical disruption with a bead-beater (BioSpec Products) for 3 min 1266 
twice, while being placed on ice for 1 min in between to prevent overheating. Next, cells 1267 
were centrifuged for 7 min at 8,000 x g at 4°C, and the supernatant was transferred to an 1268 
Eppendorf tube. We added 60 μL 3M sodium acetate (Sigma) and 600 μL isopropanol 1269 
(LabChem) to the supernatant and incubated on ice for 1 h. Next, samples were 1270 
centrifuged for 20 min at 18,000 x g at 4°C, and the supernatant was decanted. The 1271 
harvested DNA pellets were washed once with 500 μL of 100% ethanol (Koptec), and the 1272 
remaining trace ethanol was removed by air drying the samples. Finally, the DNA pellets 1273 
were resuspended into 300 μL of AE buffer (Qiagen). The crude DNA extracts were 1274 
purified by a Zymo DNA Clean & Concentrator™-5 kit (Zymo Research) prior to PCR 1275 
amplification and NGS sequencing. 1276 

 1277 

C. difficile colony-forming unit counting from fecal and cecal samples 1278 

C. difficile selective plates were prepared by autoclaving C. difficile agar (Oxoid CM0601) 1279 
and adding defibrinated horse blood (Lampire 7233401, 70 mL/1L media), norfloxacin 1280 
(Santa Cruz 215586, 120 μg/mL), moxalactam (Santa Cruz 250419, 320 μg/mL), and 1281 
erythromycin (Santa Cruz 204742, 100 μg/mL) after the media is cooled to ~55°C. Right 1282 
after mice fecal or cecal collection, around 1μL of fresh fecal samples were taken using 1283 
an inoculating loop and mixed with PBS. The samples were then serially diluted (1:10 1284 
dilution) using PBS. Four dilutions of each sample were spotted on C. difficile selective 1285 
agar plates, with 2 technical replicates per sample. Plates were incubated at 37°C for 48 1286 
h at which point colonies were counted in the dilution spot containing between 5 and 100 1287 
colonies. The CFU/mL for each sample was calculated as the average of the 2 technical 1288 
replicates times the dilution factor. The lower limit of detection for the assay was 20,000 1289 
CFU/mL. 1290 
 1291 

Data availability 1292 

Whole-genome sequence data of the C. difficile strains will be deposited in the NCBI 1293 
database. Mapped growth media and strain-specific genome scale metabolic models in 1294 
SBML format can be found at https://github.com/gibbons-lab/2023_cdiff_venturelli. 1295 
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Nextflow pipelines for assembly and metabolic model building can be found at 1296 
https://github.com/gibbons-lab/pipelines. RNA-seq data used in this study will be 1297 
deposited in the NCBI database. Raw DNA sequencing data and processed sequencing 1298 
data to determine community composition will be made available via Zenodo prior to 1299 
publication. 1300 

 1301 

Code availability 1302 

Codes for processing sequencing data, fitting the gLV models, and performing Bayesian 1303 
experimental design will be available through Github prior to publication. Until then, we 1304 
have provided the code as a supplementary file.  1305 
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