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Abstract
Appendicular osteosarcoma was diagnosed and treated in a pair of littermate Rottweiler dogs, resulting in
distinctly different clinical outcomes despite similar therapy within the context of a prospective,
randomized clinical trial (NCI-COTC021/022). Histopathology, immunohistochemistry, mRNA sequencing,
and targeted DNA hotspot sequencing techniques were applied to both dogs’ tumors to de�ne factors
that could underpin their differential response to treatment. We describe the comparison of their clinical,
histologic and molecular features, as well as those from a companion cohort of Rottweiler dogs,
providing new insight into potential prognostic biomarkers for canine osteosarcoma.

Introduction
Osteosarcoma is the most common form of primary bone cancer found in both humans and canines.1,2

Human and canine osteosarcomas share many clinical, histologic and molecular features, such as low
overall tumor mutational burden, frequent somatic translocations and mutations, and tumor site.3–5

Osteosarcoma is thought to arise from primitive bone cells and often produces an osteoid-containing
matrix.6–8 Osteosarcomas generally develop in the appendicular skeleton of both species, typically in the
distal femur or proximal tibia in humans, and the distal radius and proximal humerus in dogs.9–11

Osteosarcoma is highly aggressive and tends to rapidly metastasize to the lungs, although disease
progression to soft tissue, bone, and other internal organs, has been reported as well. Unfortunately, the
survival rates for humans and their canine counterparts are low compared to other cancers due to the
metastatic nature of osteosarcoma and the stagnation in development of effective novel therapeutic
treatments over the last several decades.12–15

Despite these similarities, the disease incidence for humans drastically differs from canines; over 10,000
mainly large breed dogs are diagnosed with osteosarcoma per year, while less than 1,000 human cases
are reported annually in the US.2–3 In addition, osteosarcomas disproportionately develop in children and
adolescents between 10 and 14 years old, pointing to periods of rapid skeletal growth as a risk factor in
tumor development.16–17 However, canines diagnosed with osteosarcoma are typically between 7 and 10
years old and fall within the adult or geriatric age group.11 Due to the rarity of osteosarcoma in children
and the high frequency of spontaneous canine cases, the pet dog has become an invaluable asset for
researching effective cancer therapies for humans with cross-species applications.18–20

Certain canine breeds reportedly possess a higher risk of developing osteosarcoma than others, such as
the Irish Wolfhound, Scottish Deerhound, and Rottweiler.21–24 While the literature con�icts over which dog
breeds are most predisposed to the disease, one study found that Rottweilers have a higher
osteosarcoma odds ratio than any other breed.24 Rottweilers are also one of three breeds included in a
large osteosarcoma Genome Wide Association Study (GWAS), making them an ideal candidate for
uncovering genomic biomarkers in dogs with translational value for humans.3,25 In addition, Rottweilers
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may perform worse than other dog breeds despite receiving the same cancer treatment, though this
evidence is observational.21

The Comparative Oncology Program (COP) within the intramural research program of the National
Institutes of Health - National Cancer Institute launched the Comparative Oncology Trial Consortium
(COTC) in 2003 to utilize the pet dog as a translational model for novel cancer treatments.26 Under the
COTC infrastructure and with support of the Morris Animal Foundation, a 2-armed prospective,
randomized trial was conducted in canine osteosarcoma patients, COTC021/22. Dogs enrolled in this
trial received either Standard of Care (SOC) therapy, or SOC + adjuvant sirolimus (SOC + S) therapy.27 The
trial enrolled 324 dogs, 18 of which were Rottweilers. Of this cohort, two Rottweiler dogs, patient ID
numbers 1410 (spayed female) and 1411 (castrated male), were littermates and were both diagnosed
with osteoblastic osteosarcomas within 3 months of each other. Both dogs, aged 6 at the time of
osteosarcoma diagnosis, were raised in the same household and received treatment from the same
veterinary teaching hospital, yet had vastly different clinical outcomes. The purpose of this case report is
to review the clinical, histopathologic, and genomic features of these dogs, and attempt to de�ne
characteristics that underlie the shared incidence of disease as well as the disparate outcomes of canine
siblings affected by osteosarcoma.

Methods
The clinical trial structure, methods and results for COTC021/022 have been reported elsewhere.27

Speci�c to the Rottweiler cohort, medical records and clinical data provided for dogs 1410 and 1411,
along with the 16 other Rottweiler dogs represented in the COTC021/022 trial were reviewed, along with
imaging studies, histopathology, and transcriptional pro�les of primary tumor tissues. Additionally,
mRNAseq data from the dogs’ primary tumors, which was generated in a prior study28, was incorporated
and included in the analysis presented here. DNA was isolated from tumors and matched normal tissue
samples from dogs 1410 and 1411 and subjected to pro�ling using a cancer genomic diagnostic assay
(SearchLight DNA; Vidium Animal Health). Pharmacokinetic pro�ling of sirolimus exposure in dog 1411
collected from the COTC021/022 trial was also reviewed.

Histopathology
Primary tumor biopsies were obtained prior to treatment at the time of limb amputation, and were
evaluated by anatomic veterinary pathologists at participating COTC institutions
(https://ccr.cancer.gov/comparative-oncology-program/consortium). Surgical histology reports of the
primary tumor were reviewed by the COP investigative pathologist (JAB). Tumor sections were labeled for
CD204 by the Animal Health Diagnostic Center at Cornell University (Cosmo Bio, KAL-KT022; 1:500).

Nucleic acid isolation and sequencing
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DNA and RNA were isolated from canine frozen tumor and normal tissue in RNAlater using Qiagen
Allprep DNA/RNA Mini Kit (Cat#80204). The total RNA quality and quantity was assessed using
Nanodrop 8000 (Thermo�sher) and Agilent 4200 Tapestation with RNA Screen Tape (Cat# 5067–5576)
and RNA Screen Tape sample Buffer (Cat#5067–5577). All samples forwarded for mRNA sequencing
had a RIN > 8 and a total RNA quantity > 100 ng. DNA quantity and quality were assessed using the Qubit
Fluorometer 2.0 with the Qubit dsDNA BR assay (ThermoFisher Scienti�c) and the TapeStation genomic
DNA assay (Agilent Technologies). Samples with a DIN > 3 and with > 50 ng total DNA were utilized for
DNA sequencing.

Library preparation and mRNA sequencing
Between 100ng to 1µg of total RNA was used as the input for the mRNA sequencing libraries. Libraries
were generated using the TruSeq Stranded mRNA library kit (Illumina) according the to the manufacturers
protocol. The libraries were pooled and sequenced on NovaSeq S1 using a 2x150 cycle kit. The HiSeq
Real Time Analysis software (RTA v.3.4.4) was used for processing raw data �les. The Illumina
bcl2fastq2.17 was used to demultiplex and convert binary base calls and qualities to fastq format. The
samples had 44 to 61 million pass �lter reads with more than 91% of bases above the quality score of
Q30. Reads of the samples were trimmed for adapters and low-quality bases using Cutadapt. The
trimmed reads were mapped to the CanFam4 reference genome (GSD_1.0 from NCBI)29 using STAR
aligner (version 2.7.0f) with two-pass alignment option. RSEM (version 1.3.1) was used for gene and
transcript quanti�cation based on the CanFam4 GTF �le. The average mapping rate of all samples was
83% with unique alignment above 66%. There were 13.13–26.26% unmapped reads. The mapping
statistics were calculated using Picard software. The samples had between 0.01–0.76% ribosomal
bases. Percent coding bases were between 58–71%. Percent UTR bases were 10–16%, and mRNA bases
were between 75–82% for all the samples. Library complexity was measured in terms of unique
fragments in the mapped reads using Picard’s MarkDuplicate utility. The samples had 48–78% non-
duplicate reads.

mRNA sequencing data analysis
The COTC021/022 trials enrolled a total of 324 dogs with appendicular osteosarcoma. The DOG2 cohort
consists of a subset of 186 canine osteosarcoma patients for which mRNAseq data from their treatment-
naïve primary tumors is available. Eleven of the n = 186 dogs were of Rottweiler breed, including dogs
1410 (poor responder) and 1411 (elite responder). Of these 11 Rottweilers, 4 dogs were assigned to a
group of “elite” responders (patient IDs 1411, 0608, 0511, 0301) with a median disease-free interval (DFI)
of 453 days (range: 210–859 days) and a median overall survival (OS) of 826 days (range: 634–909
days). Six dogs were assigned to a group of “poor” responders (Patient IDs 0402, 0712, 1022, 1103, 1409,
1410) with a median DFI of 87 days (range: 55–126 days) and a median OS of 142 days (range: 75–194
days). One Rottweiler dog, 0518, was not included in this analysis because it was taken off study at 12
days post-operatively as the owner elected not to pursue further therapy.
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Differential expression analysis from the available mRNAseq datasets described above was performed
using the R (version 4.03) package DESeq2 (version 1.30.1).30 Confounding covariates for batch effects
and sex were accounted for in the DESeq2 model. A p-value cutoff was determined using Independent
Hypothesis Weighting (IHW) with signi�cance level of 0.05 using the IHW (version 1.18.0) R package.31

Hierarchical clustering was performed with Ward’s method using the function “clustermap” function from
seaborn (version 0.10.1) Python (version 3.8.3) package using the Log 2 DESeq normalized counts per
million (CPM) expression data.

Based on our previous work with the DOG2 mRNAseq cohort, a 27 gene signature (GS-1) was shown to
cluster canine primary tumors into two groups based on their relative expression of immune-related
genes.28 Using this signature, the expression pro�les were sorted by group (Immune-high, Immune-low,
Rottweiler breed) and displayed in a heatmap composed using the seaborn (version 0.10.1) Python
(version 3.8.3) package.

DNA sequencing and data analysis
A pan-cancer genomic sequencing panel was applied to DNA extracted from treatment-naïve tumor and
matched normal tissue samples collected from both dogs at the time of limb amputation. Tumor and
matched normal samples underwent sequencing of targeted genomic regions using a proprietary panel
of hybridization-based capture probes targeting 120 cancer genes as previously described (SearchLight
DNA; Vidium Animal Health).32–34

Data was analyzed using a custom tumor-only genomics pipeline for the identi�cation of SNVs, CNVs,
and ITDs. The �rst step involved using Trimmomatic (v0.36)35 to remove adapter sequences, low-quality
bases, and other artifacts, and to generate FASTQ quality control metrics. Trimmed paired-end reads were
then aligned to the canine reference genome, CanFam v3.1.9936, using BWA-mem (v0.7.17)37. Consensus
SNV/indel calls from Mutect2 (GATK-4.1.4.0)38 and Pisces (v5.2.5.20)39 were determined, and calls
occurring at variant allele frequencies ≥ 3% were functionally annotated using SnpEff (v4.3)40 to
determine the effects of the variants on the encoded protein. The Ensembl Variant Effect Predictor
(VEP)41 was then utilized to determine the impacts of amino acid substitutions, incorporating SIFT
annotation to assess the potential functional consequences. SIFT scores range from 0 to 1, with a lower
score indicating a higher likelihood of being damaging to protein function. Substitutions with SIFT
scores < 0.05 were considered high-impact ('HIGH'), while substitutions with scores ≥ 0.05 and < 0.5 were
considered moderate impact ('MODERATE'). Substitutions with SIFT scores ≥ 0.5 were considered
tolerated and marked as 'BENIGN'.

Variants with a predicted impact of "HIGH" or "MODERATE" were subjected to additional �ltering to
exclude likely germline variants based on their presence in the European Variant Archive (EVA)42 with a
population allele frequency (AF) of ≥ 1% in studies comprising at least 10 dogs in each cohort. In
addition to these �ltering steps, we also annotated potential biomarker associations using our Precision
Oncology Knowledgebase (Vidium Animal Health). This approach enables the identi�cation of mutation
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biomarkers that have been described in human or canine cancers in published literature. Mutations
identi�ed in both the constitutional samples and the matched tumor samples were considered in
downstream analysis. Mutations were considered somatic if present only in the tumor sample and
germline if present in constitutional and tumor DNA.

Manta (v1.6)43 was used for ITD calling of KIT and FLT3 genes, and CNVkit (v0.9.6)44 for CNV calls. A
two-copy loss in tumor suppressor genes and a six-copy gain in oncogenes were assumed to have a
signi�cant impact on function. For copy number events, gains in autosomal oncogenes were retained if
the con�dence interval (CI) lower bound > 0.368, and losses in autosomal tumor suppressors were
retained if the CI upper bound < -0.238. For genes on the sex chromosomes in males, a true gain was
considered to have a CI lower bound > -0.7, and a true loss was any event with a CI lower bound < -1.3.

FASTQ �les were generated and aligned to the canine reference genome, CanFam3.147. The primary
analysis pipeline was automated to generate single-nucleotide variants (SNV), copy number variants
(CNV), and internal tandem duplications (ITD), using the DNAnexus cloud-based computing platform
(DNAnexus Inc.). Based on log2 fold change and tumor content, copy number gains or losses were
inferred as single or multiple. For both 1410 and 1411, the Spearman correlation was calculated between
the CNV variation reported from the SearchLight panel and scaled log 2 transformed DESeq normalized
gene expression data. Additionally, expression values for genes exhibiting CNV events in either 1410
(poor) and 1411 (elite) were combined and the Spearman correlation between CNV variation and
expression was calculated.

Results

Clinical �ndings
Dog 1410 (poor) presented with a 3x3x5 cm mass on the right distal femur and had a disease-free
interval (DFI) of 62 days. However, her littermate, dog 1411(elite) presented with an 8x7x7 cm mass on
the right distal tibia and had a DFI of 859 days, surviving nearly 13 times longer than their sibling. Both
dogs were diagnosed with osteoblastic osteosarcomas (Fig. 1). Neither had evidence of lymphatic or
vascular invasion in evaluated sections. A higher mitotic index was reported for 1411(elite) (20 vs. 8 in
ten 400x �elds). Serum Alkaline Phosphatase (ALP) levels for 1410 (poor) were normal but elevated for
1411; however, 1411 had a preexisting diagnosis of idiopathic epilepsy and history of phenobarbital
treatment, which may have been responsible for the baseline elevation in liver-associated ALP.
Radiographic �ndings prior to surgical limb amputation for both dogs were consistent with appendicular
osteosarcoma (Fig. 2). Metastatic progression was documented in both dogs during the study period.
1411 (elite) had metastasis to the right distal femur, detected at 122 weeks (859 days) post-amputation,
and 1410 (poor) to the lungs detected at 9 weeks (63 days) post-amputation. Neither patient underwent a
post-mortem examination.
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There were 16 other Rottweilers with osteosarcoma enrolled in COTC021/022. These dogs were not �rst-
degree relatives with 1410 and 1411 and were included in this case report as a basis of comparison to
the sibling Rottweilers and to the overall COTC021/022 cohort. The non-sibling Rottweiler cohort
comprised 5 females and 11 males with a mean age of 7.1 years. The average Rottweiler weight was
42.4 kg for females and 50.8 kg for males. Serum ALP values varied equally within the non-sibling
Rottweilers with 50% reporting elevated levels and 50% reporting normal levels. The majority of the non-
sibling cohort (69%) was treated with SOC consisting of surgical limb amputation and carboplatin
chemotherapy, while 31% also received adjuvant sirolimus (SOC + S). Most Rottweilers (75%) received 4
doses of carboplatin; the remaining dogs received fewer doses before exiting the study. The most
common reason dogs were taken off study was disease progression (94%) while the most common
method of death was euthanasia (81%). At the trial’s conclusion, all but one Rottweiler had documented
metastatic disease and 44% had metastases in multiple locations. The most common sites of
metastases were lung (81%), bone (31%), and kidney (31%). The median disease-free interval (DFI) for all
non-sibling Rottweilers was 143 days and did not vary signi�cantly from 1411 and 1410 (p = 0.6) or the
overall median DFI for the COTC 021/022 trial (Standard of Care median DFI, 180 days; Standard of Care 
+ sirolimus median DFI, 204 days).27

Sirolimus pharmacokinetics
1410 and 1411 were randomly assigned to one of two treatment arms as part of the COTC021/22 trial:
SOC or SOC + S. Dog 1411 (elite) completed 4 doses of carboplatin and 4 doses of sirolimus after limb
amputation, whereas dog 1410 (poor) received the SOC treatment after amputation and only 2 doses of
carboplatin before removal from study due to disease progression. Ultimately, the results of COTC021/22
found that there was no signi�cant difference between SOC + S and SOC with respect to DFI and overall
survival time.27 This could be due to the high variability in oral drug absorption and bioavailability of
sirolimus and is further supported by 1411’s pharmacokinetic summary (Supplemental Table 1), which
demonstrated an estimated trough level of sirolimus far below 10 ng/ml, which is the exposure threshold
for the drug thought to exert therapeutic e�cacy in sarcoma.45 Thus, although its contribution cannot be
ruled out, the treatment type 1411 received was thought not to be the primary determinant of their
extended survival time compared to 1410.

Genomic pro�les
Mean target sequencing coverage averaged 313x across both dogs’ tumor and normal samples. Few
single nucleotide variations (SNV)s were detected (Fig. 3). After �ltering out known, common, benign
single nucleotide polymorphisms (SNPs), 4 SNVs were detected in all four samples including NF2
Glu231Lys in the 1411 tumor and germline DNA (at a 50% and 44% variant allele fraction (VAF),
respectively), a somatic TP53 Ser293Phe in the 1411 (elite) tumor only (93% VAF), and a somatic TP53
Cys207fs (82% VAF) in the 1410 (poor) tumor only.

No shared mutations were detected between siblings and no pathogenic germline SNV was detected in
either dog. Although an NF2 mutation was observed in the germline and tumor of 1411, this variant is
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likely benign. The NF2 variant is a known SNP that, though rare in the general canine population (0.09%
frequency among 1,172 measured dogs46), has not previously been reported in the human or canine
cancer literature. The mutation also occurs at a 44–50% VAF, consistent with a heterozygous state with
no sign of a second hit in the tumor.

When considering copy number variations (CNVs) that were detected with a log2 fold-change equivalent
to at least a single copy gain or loss (≤ -0.35 for a loss and ≥ 0.35 for a gain), 38 genes were found to be
impacted by CNVs in both tumors. No CNVs were detected at signi�cant levels in germline samples. Thus,
no obvious shared germline pathogenic CNV was observed in SearchLight DNA regions. CNVs detected in
the tumors were mostly unique to each sample and demonstrate notable differences in copy number
alterations between the two dogs involving genes implicated in osteosarcoma. Both dogs’ tumors
exhibited a homozygous CDKN2B loss and partial loss of IKZF1, MSH3, NF1, NOTCH1 and TSC1, 1411
(elite) demonstrated partial losses of BAP1, BRCA2, MEN1, SETD2, SMARCA4, STK11, and VHL, with
gains of CCNE1 and MYCN. In contrast, 1410 (poor) demonstrated partial losses in TP53, APC, ATM, ATR,
ATRX, BRCA1, CDK12, FLCN, and MLH1, with small gains in RICTOR, AKT1, CCND1, and FGF3, and a
more signi�cant gain of chr13 that spanned MYC, KIT, KDR, and PDGFRA.

Utilizing the bulk mRNAseq and paired clinical data from n = 10 Rottweiler dogs within the DOG2 cohort,
which included both 1411 and 1410, correlations between log2 fold changes in CNV and gene expression
were explored for speci�c genes to establish a gene dose-gene expression relationship. In dog 1410
(poor), a signi�cant correlation was seen but not for dog 1411 (elite), likely due to the higher incidence of
CNV in 1410 (Fig. 4). We then sought to determine if transcriptionally-de�ned clusters and/or
differentially expressed genes (DEGs) could be identi�ed to de�ne differences between 1410 and 1411,
and how they relate to other Rottweilers with osteosarcoma based on known clinical outcomes with
equivalent standardized therapy. Our a priori de�nition of elite (DFI > 200 days) and poor (DFI < 200 days)
responder groups allowed segregation of dogs and a supervised analysis of DEGs between these two
groups (Fig. 5). Although the sample size is small, 97 DEGs (Supplemental Table 2), were identi�ed that
de�ne these two outcome-linked groups of Rottweilers. We then went on to apply a transcriptional
signature originally derived from an external canine osteosarcoma dataset, GS-1, that consists mainly of
genes involved in immune responses.5,28 This analysis indicates that Rottweilers in the DOG2 cohort,
including both siblings, appear to have under-expression of GS-1 genes (Supplemental Fig. 1A),
consistent with an ‘immune low’ environment, which has been previously shown to correlate with immune
cell in�ltration as demonstrated by labeling of immune cells including macrophages (Supplemental
Fig. 1B). Although decreased GS-1 enrichment has been associated with poor prognosis28, the DFI and
survival of the Rottweiler cohort was not signi�cantly different than the remainder of the COTC021/022
cohort (Supplemental Fig. 2).

Discussion
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Osteosarcoma is uncommon among humans, and even rarer between siblings, however, studying such a
phenomenon can provide key insight into the genetic behavior and pathogenesis of the disease.47 As of
2021, 48 case reports describe 42 human siblings from 19 families and 3 patients who had an
unaffected identical twin, with the �rst occurrence dating back to 1930.48–50 Instances of osteosarcoma
between children and parents or between cousins have been recorded as well.51,52 While the etiology of
osteosarcoma is largely unknown, research suggests heritable components may contribute to tumor
development in both canines and humans.53–56 In human osteosarcoma patients, this includes Paget’s
disease, Li-Fraumeni syndrome, hereditary retinoblastoma, ATR-X syndrome, Rothmund-Thomson
syndrome, and Werner and Bloom syndromes. In dogs, germline variants in APC2, BLM, BRCA2, TP53,
RB1, WRN, and CDKN2B have also been observed.5 Although not evident in the sibling dogs described
herein, genomic sequencing studies of related dogs may provide insight into germline variants in genes
not previously linked to OS, as described by Mirabello et al in a study of over 1200 patients with
osteosarcoma.56

The goals of this case report were to describe the clinical, histologic and molecular/genomic features
Rottweilers within the DOG2 cohort and speci�cally, a sibling pair of affected Rottweiler dogs with
disparate outcomes with similar therapy. Review of medical records and associated clinical trial data did
not identify obvious differences within their home environment, histologic or clinical features, or
therapeutic management. This directed us to examine the molecular features of their tumors. What we
describe here is the clinical and transcriptomic landscape of Rottweiler dogs from a prospective,
randomized clinical trial with evidence of a differential genomic and transcriptional program between 2
sibling Rottweiler dogs with contemporaneously occurring osteosarcoma but vastly different clinical
outcomes.

In this study, we used SearchLight to investigate CNV changes that relate to genes with known and/or
suspected association with osteosarcoma in prior canine and human literature. SearchLight DNA is a
commercially-available pan-cancer tumor genomic sequencing panel that reports on multiple mutation
types, including single-nucleotide variants, copy number variants, and internal tandem duplications in 120
pre-selected cancer genes. The assay covers 1,358 exonic regions and 429 exon-proximal regions of the
genome across 11,554 probes targeting 482.3 kbp of sequence space and was curated based upon prior
experience with canine tumors, content of comparable human gene panels, and review of canine and
human cancer genomic literature.33, 57–59 Although the data from these sibling Rottweiler dogs did not
uncover a shared germline pathogenic variant to explain their contemporaneous osteosarcoma
development, we were able to describe genomic changes in their respective osteosarcomas that may
have a role in progression or resistance to therapy.

The SearchLight results demonstrated CNV changes occurring in both dogs that relate to genes with
known and/or suspected association with osteosarcoma in prior canine and human literature. Both dogs
had shared copy number losses in a subset of genes, such as CDKN2B and NOTCH1, but the remainder
of alterations appeared mutually exclusive to each dog’s tumor. For example, in dog 1411, a segmental
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gain in CFA13 was observed that includes KDR, KIT, and PDGFRA. An analogous segmental ampli�cation
of human chromosome 4q11-12 involving KIT, KDR and PDGFRA has been identi�ed in 6–20% of
osteosarcoma patients.60 This gain has been implicated as a both druggable event and a negative
prognostic factor in some human cancers.61 Dog 1411 also demonstrated a gain in MYC, also located on
CFA 13. MYC ampli�cation has garnered much attention recently as a potentially prognostic biomarker
for human OS.62 Larger studies of this gene-dense region are needed to de�ne an association between
segmental and/or single-gene ampli�cation and prognosis in canine osteosarcoma.

The SearchLight assay provided data on TP53, a known driver of osteosarcoma in both humans and
dogs. Homologous loss-of-function mutations in TP53 were observed, with dog 1410 exhibiting both a
copy number loss and truncating mutation, and dog 1411 exhibiting a missense mutation. Alterations in
TP53 are the most common genomic lesions observed in osteosarcomas of both dogs and humans, but
the nature of the alterations varies. In dogs, point mutations appear to dominate while in humans, both
point mutations and structural variations, particularly translocations involving intron 1, are seen.63,64 As
computational tools become more widely available for assessment of structural variations in canine
genomes, more data will emerge to characterize these alterations more fully.

Losses of CDKN2A, BRCA2, SETD2, ATRX and others have also been identi�ed in cohorts of human
osteosarcoma patients.65,66 Both dogs’ tumors exhibit a homozygous CDKN2B loss but no evidence of a
germline event at this locus. Both CDKN2A and CDKN2B act as tumor suppressors through encoding
proteins p16INK4a, p14ARF and p15INK4b, which regulate G1 cell cycle arrest.66 To this point, genome-wide
association studies (GWAS) carried out in 3 high-risk breeds (Greyhounds, Rottweilers, and Irish
Wolfhounds) as well as the Leonberger dog, implicated regulatory elements upstream of the CDKN2A/B
locus as highly associated with osteosarcoma development and possibly responsible for disruption of
enhancer elements and thus altered expression of genes responsible for cell cycle control in this
region.25,67 It is possible that identi�cation of alterations upstream of the CDKN2A/B locus can be
identi�ed through whole-genome sequencing of both tumor and normal tissues from dogs 1410 and
1410, as well as other Rottweilers in the DOG2 cohort. A recent GWAS study in Bernese Mountain Dogs,
Rottweilers, golden retrievers and �at-coated retrievers across 3 hematopoietic cancers (histiocytic
sarcoma, lymphoma and mast cell tumor) also implicates the CDKN2A locus as well as other loci on
canine chromosomes 5 and 20.68

The histone methyltransferase SETD2 is a tumor-suppressor gene that has been documented to harbor
mutations in a small subset of human osteosarcomas.65 In a study of whole-exome sequencing in 66
dogs with osteosarcoma including 21 Rottweilers, SETD2 was the second most frequently mutated gene
after TP53; this was further supported by a second sequencing study which reported SETD2 mutations in
42% of 24 canine patients.5,69 Dog 1411 had copy number loss of this gene in their tumor based on the
SearchLight assay. SETD2 has been implicated as a potential driver in both canine and human
osteosarcoma, which is consistent with data that implicates epigenetic modulation in tumor progression
and differential outcomes.70 Additional work is needed to de�ne the speci�c role of SETD2 in gene
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regulation and the DNA damage response (DDR), which would be highly relevant in a cancer type that is
characterized by treatment with DNA damaging agents such as platinum chemotherapy. This could be
further exacerbated by loss of or mutations in DDR genes such as ATM, ATR, ATRX, BRCA1/2 and
BAP1.71 As compared with the genomes of other pediatric cancers, human osteosarcoma genomes have
a relatively high-level, homologous recombination–de�cient signature (typically characteristic of
BRCA1/2-de�cient cancers).71,72 It has been suggested that alterations in these genes in osteosarcoma
may be best identi�ed through copy number variation and not through whole-genome or whole-exome
sequencing10,72, which is a current focus of work within the larger DOG2 cohort. SETD2 loss in dog 1411
may also be associated with sirolimus exposure and response to mTOR inhibition. Although the
pharmacokinetic pro�le for this dog suggests inadequate exposure to the drug, it is possible that some
measure of mTOR inhibition may have occurred within tumor tissue, which may have been augmented by
the SETD2 de�cient nature of 1411’s primary tumor. SETD2 loss or inactivation has been associated with
enhanced response to mTOR inhibition through alterations in oxidative metabolism and protein synthesis
pathways.73,74

Shared loss of NOTCH1 in both dogs also carries relevance to osteosarcoma, as the NOTCH signaling
pathway plays an important role in osteogenic differentiation.75 Dysregulation of this pathway is linked
to occurrence and progression of defects involving this process.76 The functional status or expression
level of NOTCH pathway receptors and target genes has been associated with mixed impacts on
proliferation, apoptosis, and clinical variables in both human and canine osteosarcoma.77–79 This may
be due to the time-sensitive expression of NOTCH receptors during osteogenic differentiation as some
members (NOTCH1, NOTCH3) maintain the undifferentiated state of osteoprogenitor cells, while others
(NOTCH2, NOTCH4) promote osteoblastic differentiation.80

In both dogs, analysis of the bulk mRNAseq data and its relationship to copy number data for the genes
contained within the SearchLight panel provided the opportunity to link gene expression to gene dose.
Although many factors can in�uence gene expression aside from loss or gain of copies of individual
genes, this data demonstrates a signi�cant relationship between CNV and mRNAseq of selected genes
from dog 1411 (elite). Whole-genome sequencing data could be assessed alongside the bulk mRNAseq
data from these and other dogs for which paired data are available within the DOG2 cohort, to make
additional observations on the relationship between these two complementary datasets.

The dataset and case reports presented herein provides interesting insight into differential genomic
lesions that may in�uence outcomes and allowed comparison of these two sibling dogs to other non-
related Rottweilers within the larger DOG2 cohort. Our study did not uncover a shared germline pathogenic
variant which could help explain the development of osteosarcoma in related dogs. The exploration of
cancer susceptibility is best performed in the context of a genome-wide association (GWAS) study. In
contrast to humans, osteosarcoma in dogs is generally thought to be highly heritable with some large
and giant breed dogs, including Rottweilers, at > 10x fold risk of developing the disease. However, given
the high incidence across companion dogs in general and those of mixed breeding, the incidence of
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canine osteosarcoma cannot be purely explained by heritable risk. Future genomic sequencing studies of
both related and unrelated dogs should be prioritized to provide insight into germline variants in genes
not previously linked to osteosarcoma in canine and human patients. A better understanding of affected
genes and their respective pathways will facilitate the development of diagnostic and therapeutic
biomarkers and identi�cation of novel therapeutic targets for osteosarcoma patients.
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Figures

Figure 1
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Primary tumor histopathology of dog 1410 and 1411. Representative images of tumor tissue from dogs
1410 and 1411 stained with hematoxylin & eosin (H&E). Scale bar = 50 μm.

Figure 2

Radiographic images from dog 1410 and 1411. Right hindlimb radiographs of sti�e joint of dog 1410
(poor outcome) taken at the time of diagnosis (panel A: anterior-posterior projection, B: lateral projection).
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In the distal metaphysis of the right femur, there is a mild moth-eaten bone lysis and marked sclerosis
extending into the distal diaphysis and epiphysis. Radiographic images from dog 1411 (elite outcome),
also from the right hindlimb but highlighting the tarsal joint (panel C: anterior-posterior projection, panel
D: lateral projection). At the distal metaphysis and epiphysis of the tibia there is moth eaten lysis. The
cranial and caudal margins of the cortex are smooth but thinned. Within the mid diaphysis, the medullary
cavity has a mottled appearance. Circumferentially to the tarsus and within the tibiotarsal joint, there is a
severe (more severe dorsomedially) amount of soft tissue swelling.
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Figure 3

Somatic Mutations Detected by SearchLight DNA in Tumors from Dogs 1411 and 1410.  Mutations that
are shared by both dogs are shown followed by those detected only in 1411 (bottom of left column) or
1410 (right column). These mutations represent primarily somatic SNVs and CNVs detected in 120 genes
via the SearchLight DNA panel based on sequencing matched tumor and normal tissue for each dog. One
germline sequence variant was detected in NF2 in Dog 1411, but was not shared by Dog 1410. Six genes
bore similar somatic mutations in both cases whereas 27 genes bore mutations in only a single sibling’s
tumor.
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Figure 4

Copy number and gene expression relationships in tumor tissue from dogs 1410 and 1411. A. mRNA
expression vs log 2-fold change copy number variation for patient 1411 (Spearman correlation 0.4,
p=0.14) B. mRNA expression vs log 2-fold change copy number variation for patient 1410 (Spearman
correlation 0.54, p=0.0083). C. mRNA expression for both 1411 and 1410 of 33 genes exhibiting a copy
number variation in either dog (Spearman correlation -0.0137, p=0.94).
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Figure 5

Differentially expressed genes (DEGs) between Rottweilers with disparate clinical outcomes. Ward
Clusters of 10 Rottweilers in the DOG2 Cohort over 97 differentially expressed genes between Elite
responders (Blue) and Poor Responders (Red). Patient ID numbers are listed along the x axis. Dogs 1410
and 1411 are indicated by arrows. A complete gene list is also provided in Supplemental Table 2.
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