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ABSTRACT

Purpose: Automatic quantification of longitudinal changes in PET scans for lymphoma patients has
proven challenging, as residual disease in interim-therapy scans is often subtle and difficult to detect.
Our goal was to develop a longitudinally-aware segmentation network (LAS-Net) that can quantify
serial PET/CT images for pediatric Hodgkin lymphoma patients.
Materials and Methods: This retrospective study included baseline (PET1) and interim (PET2)
PET/CT images from 297 patients enrolled in two Children’s Oncology Group clinical trials
(AHOD1331 and AHOD0831). LAS-Net incorporates longitudinal cross-attention, allowing relevant
features from PET1 to inform the analysis of PET2. Model performance was evaluated using Dice
coefficients for PET1 and detection F1 scores for PET2. Additionally, we extracted and compared
quantitative PET metrics, including metabolic tumor volume (MTV) and total lesion glycolysis (TLG)
in PET1, as well as qPET and ∆SUVmax in PET2, against physician measurements. We quantified
their agreement using Spearman’s ρ correlations and employed bootstrap resampling for statistical
analysis.
Results: LAS-Net detected residual lymphoma in PET2 with an F1 score of 0.606 (precision/recall:
0.615/0.600), outperforming all comparator methods (P<0.01). For baseline segmentation, LAS-Net
achieved a mean Dice score of 0.772. In PET quantification, LAS-Net’s measurements of qPET,
∆SUVmax, MTV and TLG were strongly correlated with physician measurements, with Spearman’s
ρ of 0.78, 0.80, 0.93 and 0.96, respectively. The quantification performance remained high, with a
slight decrease, in an external testing cohort.
Conclusion: LAS-Net demonstrated significant improvements in quantifying PET metrics across
serial scans, highlighting the value of longitudinal awareness in evaluating multi-time-point imaging
datasets.

Keywords Quantitative PET · Longitudinal Analysis · Deep Learning · Image Segmentation
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1 Introduction

Among pediatric cancers, Hodgkin lymphoma (HL) is a highly curable malignancy (1), with 5-year survival exceeding
90% for patients receiving combination chemotherapy, radiation, or combined treatment (2). Despite this, pediatric
patients face a significant risk of long-term side effects from therapeutic toxicities. Emerging evidence suggests that
early responders to treatment may benefit from de-escalated therapies (3). Several clinical trials have used response
assessment on interim Fluorodeoxyglucose (18F-FDG) PET scans after two cycles of chemotherapy for risk stratification
(2,4). Currently, PET response is assessed using visual evaluation criteria, such as the Deauville score (DS) based on the
lesion with the most intense uptake (5). Compared to the qualitative assessment, quantitative PET metrics have shown
promise in guiding lymphoma treatment strategies (6,7). However, its use often relies on manual lesion segmentation,
which is difficult and time-consuming, and has been limited to clinical trial settings. Deep learning (DL) algorithms
have the potential to overcome this limitation and enable automatic PET analysis.

There have been extensive studies using DL to segment lymphoma (8–11) and extract quantitative metrics (12–14)
in PET scans. However, existing algorithms focus on quantifying baseline tumor burden, overlooking the important
role of interim PET in response assessment. Compared to baseline PET, analyzing interim PET poses significant
challenges, as tumor uptake is often subtle and difficult to differentiate from confounding physiologic or inflammatory
FDG activity. Physicians typically rely on cross comparison with baseline PET to identify residual lymphoma, but
methods for incorporating this information to interim PET analysis remain underexplored.

In this study, we aimed to develop a longitudinally-aware segmentation network (LAS-Net) for automatic quantification
of serial PET/CT images, facilitating PET-adaptive therapy for pediatric HL patients. Central to our design is a
dual-branch architecture: one branch dedicated to segmenting lymphoma in baseline PET, while the other detects
residual lymphoma in interim PET. The model was trained using PET/CT images from multiple centers as part of a
phase 3 clinical trial. To assess the performance of our method, we evaluated its detection performance in interim PET
and its segmentation performance in baseline PET. Furthermore, we extracted various quantitative PET metrics and
quantified their agreement with physician measurements. We compared LAS-Net to other methods, including those
with and without the integration of baseline PET information. Lastly, we performed external testing using data from
another multi-center clinical trial of pediatric HL.

2 Materials and Methods

2.1 Patient Cohort

This retrospective study included patients from two Children’s Oncology Group (COG) clinical trials: AHOD1331
(ClinicalTrials.gov number, NCT02166463) (2) and AHOD0831 (NCT01026220) (4). Both are phase 3 trials of
pediatric patients aged 2-21 diagnosed with high-risk HL. The AHOD1331 trial assessed the utility of incorporating
Brentuximab Vedotin with chemotherapy while the AHOD0831 trial evaluated the effects of combination chemotherapy
together with radiation therapy. Baseline and interim FDG PET/CT images were gathered and transferred from IROC
Rhode Island to our institution under data use agreements. Retrospective analysis was approved by institutional review
board with no requirement of additional consent from patients. Of the 600 patients enrolled in the AHOD1331 trial,
200 with complete PET/CT datasets were randomly selected and used as our internal cohort. Among the 166 patients
from the AHOD0831 trial, 97 had complete PET/CT datasets, and these were used for external testing.

2.2 Data Labeling

For the AHOD1331 dataset, three experienced physicians with board certification in nuclear medicine (NM) provided
lesion-level annotations for both baseline and interim PET using a semi-automated workflow (LesionID, MIM Software,
Cleveland, Ohio), following a multi-reader adjudication process. One physician (M.S. with 5 years of experience)
labelled all 200 cases while the other physicians (S.B.P. and S.Y.C., both with over 15 years of experience) each
adjudicated 100 of the cases, refining the annotations by adding, deleting, or modifying contours as necessary, which
were then reviewed and confirmed by the first reader. To assess residual tumors on interim PET scans, readers assigned
each lesion a score on a 5-point scale, using the same visual evaluation criteria as the Deauville criteria (5). It is referred
to as lesion-level Deauville score (LDS) in this study. Any residual disease scoring 3 to 5 had an associated contour.
All segmented lesions were labeled according to physician confidence (non-equivocal or equivocal). An equivocal
lesion is defined as a lesion that the physician is unsure whether its PET uptake corresponds to lymphoma or is due to
physiological activity. Annotators were trained using a labeling guide (described in Appendix S1).
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For the AHOD0831 dataset, PET images for each patient were annotated by one of two board-certified NM physicians
(J.K. and I.L., both with 5 years of experience) on Mirada XD (Oxford, UK) software as part of a prior research study
(12,15). Table 1 summarizes the characteristics of these two datasets.

Table 1: Demographics and clinical characteristics of our internal and external cohorts.

2.3 LAS-Net Architecture

We designed LAS-Net with a dual-branch architecture to accommodate baseline and interim PET/CT images, as
illustrated in Figure 1A. One branch exclusively processes baseline PET (PET1) and predicts the corresponding lesion
masks. The other branch focuses on interim PET (PET2), but also utilizes information extracted from the PET1 branch
to generate masks of residual lymphoma. This architecture enables our model to gather useful information from PET1
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to inform and improve the analysis of subsequent scans. Meanwhile, it ensures a one-way information flow, preventing
PET2 information from influencing PET1 analysis.

Like many segmentation networks, LAS-Net was adapted from a UNet-like architecture. It is based on 3D SwinUNETR
(16), a state-of-the-art (SOTA) model comprising a Swin Transformer (17) encoder and a convolutional neural network
(CNN) decoder. In LAS-Net, each convolutional block is a stack of two convolution units (3×3×3 convolution
sub-layers, instance normalization, leaky ReLU) with a residual connection. Beyond these components, we have
introduced two critical mechanisms to allow information from the PET1 branch to influence the PET2 branch. One
is the longitudinally-aware window attention (LAWA) on the encoder side, and the other is the longitudinally-aware
attention gate (LAAG) on the decoder side.

Figure 1B illustrates the structure of the LAWA module. Compared to the standard Swin Transformer block (17),
this module introduces a window-based multi-head cross-attention (W-MCA) layer with a window size of 7×7×7
in the PET2 branch. The W-MCA takes the query vectors from PET2 features and the key and value vectors from
PET1 features. It computes the attention matrix of the query and key using scaled dot product, allowing the model
to dynamically allocate focus based on the relevance of regions across PET1 and PET2. The value vectors are then
reweighted by this attention matrix and added to input PET2 features.

Figure 1C presents the design of the LAAG module. Similar to the original attention gate (18), the LAAG module
processes inputs from both the prior layer and skip connections, generating attention coefficients. To enable additional
longitudinal awareness, we concatenate the attention coefficients derived from PET1 and PET2 and convolve them with
a learnable 7×7×7 kernel to refine the PET2 attention coefficients. This CNN-based cross-attention gate allows the
LAAG module to select PET2 features using information from the PET1 branch.

LAS-Net operates on 112×112×112 patches from co-registered baseline and interim PET/CT images. Except for
the longitudinal cross-attention components, all other weights in the model are shared between the PET1 and PET2
branches. The model was jointly optimized for PET1 and PET2 lesion segmentation using a compound loss, comprised
of cross-entropy and Dice loss. Models were trained and evaluated through fivefold cross-validation (N=40 in each
fold). Implementation details can be found in Appendices S2-3.

2.4 Quantitative PET Metrics

In baseline PET analysis, we evaluated model performance using the Dice coefficient, false positive volume (FPV), and
false negative volume (FNV) per patient. The quantitative metrics computed for PET1 scans (definitions in Appendix
S4) included metabolic tumor volume (MTV) (19), total lesion glycolysis (TLG) (20), maximum lesion standardized
uptake value (SUVmax), maximum tumor dissemination (Dmax) (21), maximum distance between the lesion and the
spleen (Dspleen) (22) and the number of lesions. Since interim PET analysis primarily involves SUVmax or SUVpeak
measurements (23), accurate tumor segmentation is not needed. Consequently, for PET2 scans, we evaluated our
model’s performance using detection F1 scores, precision, and recall. The evaluation criterion for lesion detection is
defined as follows: a predicted lesion was considered a true positive if it overlapped with any true lesion identified
by the physician. A true lesion without overlap was classified as a false negative. Additionally, we included a more
stringent criterion which required the SUVmax measured for the predicted lesion to be matched with the true lesion,
otherwise the predicted lesion was classified as a false positive and the true lesion was classified as a false negative.
Lesions detected by the model that were considered as equivocal by the physicians were not counted as false positives
or true positives in our evaluation. We also extracted quantitative PET2 metrics from model predictions, including
SUVmax, percentage difference between baseline and interim SUVmax (∆SUVmax), qPET (23), and the number
of residual lesions. Notably, ∆SUVmax and qPET have been demonstrated to have predictive potential for patient
prognosis (23–25). The agreement between automated PET metrics and physician measurements was quantified by
Spearman’s ρ correlations.

2.5 Model Comparison

We compared the performance of LAS-Net to other models trained on our dataset, including DynUNet (26,27), SegRes-
Net (28) and SwinUNETR (16). No longitudinal cross-attention was incorporated into these models’ architectures. We
also evaluated Clinical Knowledge-Driven Hybrid Transformer (CKD-Trans) (29) and Spatial-Temporal Transformer
(ST-Trans) (30), both of which integrated information from PET1 into PET2 analysis using cross-attention. Notably,
CKD-Trans and ST-Trans were initially developed for tumor segmentation in multiparametric MRI. Table 2 summarizes
key differences among these models.

Furthermore, we implemented a previous technique (15,31) that used deformable registration between PET1 and
PET2 scans to reduce false positives in PET2 lesion masks. Specifically, segmentation masks predicted for PET1 are
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Figure 1: The architecture of longitudinally-aware segmentation network (LAS-Net). (A) The dual-branch design accommodates
baseline (PET1) and interim (PET2) PET/CT images. One branch is dedicated to processing PET1 while the other branch focuses on
PET2, using features extracted from PET2 as well as the features from the PET1 branch. (B) The longitudinally-aware window
attention (LAWA) module introduces multi-head cross-attention following two self-attention blocks. All attention layers have a
window size of 7. (C) The longitudinally-aware attention gate (LAAG) introduces a learnable convolutional layer (kernel size=7)
following the standard self-attention gate to refine the attention coefficients for PET2. Both LAWA and LAAG modules only allow
one-way information flow from the PET1 to the PET2 branch.

propagated to PET2 using deformable registration, and then PET2 contours that do not overlap with PET1 contours
are excluded. In our work, we refer to this technique as “mask propagation through deformable registration” (MPDR).
Quantitative results were reported both with and without MPDR. Additionally, we conducted ablation studies to assess
the effectiveness of individual components in LAS-Net.

2.6 Agreement of Predicted DSs and Physician-assigned DSs

DSs serve as an internationally accepted scoring system for assessing treatment response in interim PET. Two types of
thresholds (DS3-DS5 positive or DS4-DS5 positive) are often used to categorize patients into adequate or inadequate
response classes, depending on the clinical context (e.g., certain trials focused on treatment de-escalation may consider
DS3 as an inadequate response) (32). DS for each individual patient is determined by the residual lesion with the
highest uptake (5). Although our model was not trained to output patient-level DSs, we can estimate DSs by converting
extracted qPET values to DSs using the qPET criterion (23). In this context, the patient-level DS was inferred from the
highest-valued LDS within the patient. This indirect method allowed for a comparison of model-predicted DSs and
physician-assigned DSs. The level of agreement was quantified by the F1 score and the Kappa index.

2.7 Statistical Analysis

The 95% confidence intervals (CIs) for our results were derived using nonparametric bootstrap resampling (33) with
10,000 repetitive trials. Baseline and interim PET/CT scans were analyzed separately in all statistical evaluations.
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Table 2: Characteristics of the models evaluated in this study.

Specifically, bootstrap resampling was performed at the patient level, meaning that patients were sampled with
replacement and each patient’s baseline and interim scans were included independently in their respective analyses.
For each evaluation metric, the difference between LAS-Net and a comparator method was considered statistically
significant at the 0.05 level if the metric values computed for LAS-Net exceeded those of the comparator method in
95% of trials.

2.8 Data Availability

The COG clinical trial data is archived in NCTN Data Archive. Our algorithm was implemented using the Auto3dSeg
pipeline in Monai (27). The code and models are available in the open-source project: https://github.com/
xtie97/LAS-Net.

3 Results

3.1 Quantitative Performance

Figure 2A shows the comparison of lesion detection performance in PET2 across all evaluated models. LAS-Net
detected residual lymphoma with an F1 score of 0.606 (95%CI, 0.528, 0.674). Applying MPDR to predicted interim
masks increased LAS-Net’s precision (0.615 to 0.667), but at the cost of reduced recall (0.600 to 0.481). This suggests
that MPDR may filter out true positive lesions, including new lesions that are not present in the baseline scan. Overall,
the use of MPDR did not improve the detection performance of LAS-Net (F1 without vs. with MPDR: 0.606 vs.
0.558, P=0.22). Conversely, all comparator models benefited from MPDR, with ST-Trans (with MPDR) achieving the
highest F1 score (0.457, 95%CI, 0.360, 0.547) of the comparator methods. Nevertheless, it was statistically inferior
(P=0.005) to LAS-Net in identifying residual lesions. If requiring SUVmax to be matched (Figure 2B), which is a
stricter criterion, the F1 score of LAS-Net was 0.511 (95%CI, 0.426, 0.592). With this criterion, it still surpassed all
comparator methods. When equivocal lesions were included, LAS-Net’s detection F1 scores were 0.586 (95%CI, 0.510,
0.660) for the overlapping criterion and 0.486 (95%CI, 0.407, 0.560) for the SUVmax matching criterion (detailed
comparison in Appendix S5). In terms of quantitative PET2 metrics, LAS-Net consistently outperformed other methods
(Figure 2C), with Spearman’s ρ correlations of 0.79 (95%CI, 0.70, 0.86) for SUVmax, 0.80 (95%CI, 0.72 0.86) for
∆SUVmax, 0.78 (95%CI, 0.70, 0.85) for qPET and 0.64 (95%CI, 0.54, 0.72) for the number of lesions. ∆SUVmax
and qPET had exact matches in values for 55% (110/200) and 69.5% (139/200) of cases, respectively.

For automatic PET1 analysis (Figure 3), LAS-Net attained a mean Dice score of 0.772 (95%CI, 0.752, 0.791), with
average FNV of 10.80 ml (95%CI, 8.53, 13.46) and FPV of 9.68 ml (95%CI, 7.50, 12.40) per patient. It demonstrated
comparable performance to the best model, DynUNet, which had a Dice score of 0.779 (95%CI, 0.758, 0.797, P=0.32).
Among the PET1 metrics extracted by LAS-Net, MTV, TLG and SUVmax exhibited high correlations with the values
measured by physicians (ρ=0.93 for MTV, 0.96 for TLG, 0.90 for SUVmax). No significant differences were observed
across the four evaluated models for these metrics. For the distance-based metrics, Dmax and Dspleen, LAS-Net showed
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Figure 2: Performance comparison of interim PET lesion detection in the internal cohort. Results are reported with and without
mask propagation through deformable registration (MPDR). Notably, CKD-Trans and ST-Trans utilized baseline lesion masks
predicted by DynUNet for MPDR. (A) and (B) present the results of detection F1 scores, precision, and recall using different criteria
to classify true positives. In (A), a predicted lesion is classified as a true positive if it overlaps with at least one voxel of the reference
lesion. In (B), a predicted lesion is considered a true positive if its SUVmax is matched with the reference lesion’s SUVmax. (C)
quantifies the agreement between model predictions and physician measurements for interim PET metrics. In the plots, actual metric
values and Spearman’s correlation values are marked by circles with error bars indicating 95% confidence intervals. LAS-Net
showed significantly improved performance (P < 0.05) over all comparator methods in F1 scores and interim PET metrics. The
only exception was for qPET where its performance did not significantly surpass SegResNet with MPDR (P = 0.057). SUVmax =
maximum lesion standardized uptake value, ∆SUVmax = percentage difference of SUVmax between the baseline and interim scans.

moderate correlations (ρ=0.62 for Dmax, 0.70 for Dspleen) with physician measurements, indicating the challenges of
detecting individual lesions at the farthest distances.

Scatter plots in Figure 4 visualize the agreement between PET metrics assessed by physicians and those measured by
LAS-Net.

3.2 Qualitative evaluation

Figure 5 displays images from nine sample cases, each comprising baseline and interim lesion masks predicted by
LAS-Net along with physician annotations. In cases A-F, LAS-Net successfully identified the residual lesions, including
the lesions with the highest PET uptake (LDS4 or LDS5) as well as those with lower uptake (LDS3). Notably, in case
B, LAS-Net detected new lesions, not present on PET1, located near the neck and bladder. If MPDR was applied, these
true positive lesions would be excluded, leading to an underestimation of SUVmax and qPET.

In scenarios with multiple dispersed PET2 lesions (cases G-H), LAS-Net had difficulties in accurately identifying all
lesions. Additionally, LAS-Net occasionally identified false positive lesions in negative cases (case I), especially when
the residual SUVs were close to the mediastinum uptake. For baseline lymphoma segmentation, LAS-Net performed
consistently well at delineating bulky diseases. Nonetheless, it was less effective in detecting small lesions situated at a
distance from the primary disease sites, which was true for all comparator methods.
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Figure 3: Performance comparison of baseline PET lesion segmentation in the internal cohort. (A) shows violin plots of evaluation
metrics, where vertical lines represent the interquartile ranges and white circles mark the median values. (B) compares the correlations
between baseline PET metrics assessed by physicians and those measured by deep learning models. Actual Spearman’s correlation
values are marked by circles and their 95% confidence intervals are denoted by error bars. FPV = false positive volume, FNV = false
negative volume, MTV = metabolic tumor volume, TLG = total lesion glycolysis, SUVmax = maximum lesion standardized uptake
value, Dmax = maximum tumor dissemination, Dspleen = maximum distance between the lesion and the spleen.

To assess the benefits of integrating longitudinal awareness into the model architecture, we compared the predictions of
LAS-Net with those of DynUNet in Figure 6. Without applying MPDR, the PET2 false positives predicted by DynUNet
significantly affected the accuracy of automated PET2 metrics. Especially in case D, DynUNet mistakenly identified
brown fat uptake as residual lymphoma.

3.3 Agreement of Model-Extract DS and Physician Assigned DS

Table 3 presents patient-level DS classification results. If grouping cases into two categories – scores of DS 1, 2
vs. DS 3, 4, 5 – LAS-Net attained an F1 score of 0.752 (precision/recall: 0.687/0.836) and Cohen’s kappa of 0.630,
outperforming (P<0.05) the top comparator, ST-Trans (with MPDR), which had 0.660 for F1 and 0.501 for Cohen’s
kappa. If grouping based on DS of 1, 2 and 3 vs. DS 4 and 5, LAS-Net achieved an F1 score of 0.633 (precision/recall:
0.500/0.867) and Cohen’s kappa of 0.549, and was superior to other evaluated methods.

3.4 Ablation Studies

The results of ablation studies are shown in Table 4. We found that both LAWA and LAAG modules for longitudinal
cross-attention improved lesion detection performance in PET2. Also, the inclusion of the PET1 branch and the
combined PET1 and PET2 training enhanced the model’s capability to quantify PET2 scans. The choice of registration
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Figure 4: Comparison of physician-based and automatically extracted PET metrics. Spearman’s ρ correlations are shown in the top
left corner of each plot. Correlation values are presented as mean [2.5th percentile, 97.5th percentile].

methods between PET1 and PET2 did not impact model performance. When input baseline and interim PET/CT images
were co-registered using rigid registration, the performance was slightly worse but not significantly different from that
achieved with deformable registration (P=0.22 for F1 scores).

3.5 External Testing

We applied LAS-Net, trained on all AHOD1331 data, to the external AHOD0831 dataset. The detection F1 score in
PET2 was 0.525 (95%CI, 0.456, 0.582) and the Dice score in PET1 was 0.684 (95%CI, 0.655, 0.711). Regarding
quantitative PET metrics, the Spearman’s ρ correlations between LAS-Net predictions and physician measurements
showed a slight decrease: 0.70 for PET2 ∆SUVmax, 0.69 for PET2 qPET, 0.87 for PET1 MTV and 0.89 for PET1
TLG. Detailed results along with example cases are provided in Appendix S6.
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Figure 5: Nine different examples of longitudinally-aware segmentation network (LAS-Net) output. Each case has maximum
intensity projections (MIPs) of baseline and interim PET images with overlaying MIPs of the reference and predicted lesion masks.
DS = Deauville score.

4 Discussion

In this study, we introduced a novel deep-learning-based method (LAS-Net) for longitudinal analysis of serial PET/CT
images in pediatric HL patients. Our approach was different from prior methods in two aspects. First, it used
longitudinal cross-attention to extract baseline PET information for improved analysis of interim PET. Second, it
adopted a dual-branch architecture to enable automatic quantification of both baseline and interim scans. Through
comparative and ablation studies, we validated the effectiveness of our approach using data from two multi-center
clinical trials, highlighting its potential to deliver rapid and consistent assessment of PET tumor burden and response.

Existing DL algorithms for detecting lymphoma lesions have been limited to analyzing PET1 scans without the ability
to quantify PET2 for response assessment and outcome prediction. This limitation is primarily due to the challenge of
detecting residual lymphoma in PET2, which often has low FDG uptake. It is even a difficult task for expert physicians,
and they usually rely on PET1 (i.e., viewing PET1 and PET2 side-by-side) to identify residual lymphoma. Our method
was intended to fill this gap by integrating longitudinal cross-attention mechanisms into the architecture. While previous
research has leveraged prior PET data for interim image denoising (34) and response classification (35), our work
distinguishes itself by incorporating longitudinal awareness to improve the analysis of multi-time-point imaging datasets.
This design also aligns with the way physicians interpret PET scans over time. While our current study focuses on
quantification, we believe that the principle underlying our method has broader applications. It can potentially be
extended to the DL models aimed at diagnosis, especially for tasks requiring analysis of prior imaging data. It can also
be adapted to accommodate multi-modal inputs by adding cross-attention modules in the intermediate layers. This may
further improve the model’s accuracy but challenges, such as data alignment, increased computational complexity and
the need for data fusion techniques would need to be addressed.

To develop a model for longitudinal response assessment in PET scans, we chose to jointly optimize our model for
PET1 and PET2 analysis. This substantially improved model performance in identifying residual lesions in PET2, as
evidenced by the ablation study. However, our model’s PET1 segmentation performance was no better than other SOTA
models trained on PET1 scans. This was expected, as the PET1 branch should not, in principle, benefit from the PET2
branch.

The quantitative PET metrics that we investigated have been demonstrated to be better than visual criteria at guiding
lymphoma treatment (6,7). For PET1, we found that MTV and TLG were the metrics most accurately quantified by the
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Figure 6: Four examples comparing the proposed longitudinally-aware segmentation network (LAS-Net) with DynUNet, a model
without longitudinal cross-attention. Each case has maximum intensity projections (MIPs) of baseline and interim PET images,
overlaid with MIPs of reference and predicted lesion masks. For both LAS-Net and DynUNet output, results incorporating mask
propagation through deformable registration (MPDR) are also included. DS = Deauville score.

DL model. They are also the most time-consuming metrics for physicians to measure. Newly proposed distance-based
metrics (Dmax, Dspleen) were harder for accurate quantification, because a single false positive or false negative can
have a large impact on the values of these metrics. For PET2, we focused on measuring SUVmax, qPET, and the
response metric ∆SUVmax, as these have been associated with patient outcome in previous studies (23–25). Detecting
residual lymphoma on PET2 was very challenging for models that did not use longitudinal information, and this was
reflected in their poor F1 scores and their performance in PET2 quantification. Even with MPDR, these models were
inferior to LAS-Net.

This study has several limitations. First, despite showing clear advancements, we have not yet evaluated LAS-Net’s
clinical utility, and there is still room for further improvements in its performance. Future work could explore advanced
training strategies, such as pretraining or semi-supervised techniques, or use a larger labeled dataset. Second, we
focused on quantitative PET metrics (MTV, qPET, etc.). Future research will aim to associate these metrics with patient
outcome. Third, the labeling process for our external dataset differed from that used for our internal dataset. It is unclear
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Table 3: Results of binary classification for adequate/inadequate treatment response using model-predicted Deauville
scores.

Table 4: Ablation studies evaluating the effectiveness of each component in LAS-Net for interim lesion detection.
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if the performance drop in external testing is attributed to dataset shift, or different annotation quality. Additionally, this
external cohort may not be large enough to evaluate the model’s real-world performance. Further investigation on a
larger dataset collected from routine clinical practice is needed. Fourth, our current model only operates at two imaging
time points. In future work, we hope to develop a unified framework that can process PET/CT images across all time
points. Fifth, this study did not investigate how the predicted DSs impacted the Lugano classification, which could be
an area of focus for future research. Lastly, we only evaluated our algorithm in the cohorts of pediatric HL patients.
Whether it is applicable to other diseases or populations requires further investigation.

In conclusion, our study introduced a longitudinally-aware segmentation network to address the challenges of automatic
quantification of serial PET scans. The proposed method demonstrated improved lesion detection performance in
interim PET scans compared to other methods, without sacrificing segmentation accuracy in baseline PET scans. This
highlights the critical role of incorporating longitudinal awareness into AI algorithms for tasks involving analyzing
multi-time-point images.
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Supplementary Material

Appendix S1. Labeling Procedures

Details of our labeling approach can be found in the labeling guide available at https://github.com/xtie97/
lymphoma_labeling_guide. In short, lymphoma detection in the internal AHOD1331 cohort was facilitated by a
customized MIM LesionID workflow. A standardized uptake value (SUV) and volume (2 ml) threshold was first used
to pre-identify regions of high FDG uptake based on the PERCIST criteria (1). Then the annotator deleted regions
of interest (ROIs) that did not contain tumors. Any tumor regions that were missed by pre-labelling (such as lesions
< 2 ml) were manually added by the annotator using the PET Edge+ tool in the MIM software. For any liver and
osseous/bone marrow involvement, only focal diseases were identified. Splenic lesions were considered if focal uptake
was present or diffuse uptake was higher than 1.5 of the liver SUV. When it was unclear whether a lesion was lymphoma
or physiological, it was classified as “equivocal”. After the first annotator labeled all cases, the second annotator (one
of two senior nuclear medicine physicians) reviewed and edited the contours as necessary. Given the absence of a
universally-accepted approach for delineation of tumor boundaries (2), we performed an internal calibration study to
evaluate various PET thresholding methods against a set of physician-drawn contours. Consequently, we used a union
of SUV > 2.5 and SUV > 40% of SUVmax within the lesion ROIs to create final segmentation masks. To analyze
interim PET scans, the annotator compared baseline and interim PET side-by-side and used PET Edge+ to add residual
tumors.

In the external AHOD0831 cohort, the annotator placed large ROIs around areas containing disease using Mirada XD
software, excluding diffused osseous/bone marrow involvement and regions with physiological uptake. Then a union of
SUV 2.5 and SUV 40% of SUVmax was applied within each lesion ROI for segmentation of the lymphoma disease.
For interim PET scans, the annotator manually added the residual lesions that had FDG activity above mediastinum
uptake.

Appendix S2. Image Preprocessing

In both internal and external cohorts, we resampled PET and CT images to a voxel size of 3×3×3 mm using trilinear
interpolation. Labels were resampled to the same voxel size via nearest neighbor interpolation. To reduce the spatial
discrepancies across longitudinal imaging data, we registered the baseline scans to the interim CT using deformable
transformation. We used ANTsPy (0.4.2), a python library for medical image registration. Considering that there is a
lot of background information near the edge, we cropped the PET and CT volumes using bounding boxes determined
by a SUV threshold of 0.2. PET SUVs and CT Hounsfield units (HUs) were then linearly scaled from [0,30] to [0,1]
and from [-150, 250] to [0,1], respectively. During training, equivocal and non-equivocal lesions were combined and
used as the ground truth mask.

Appendix S3. Model Training and Inference

We first concatenated the PET and CT images as two channels for model input and then cropped random patches of
112×112×112 centered on the areas of lesion class with a probability of 8/9 (1/9 for background). To alleviate the over-
fitting problem, we applied the data augmentation techniques to training data, including random affine transformation
(rotation between -25 and 25 degrees, axis flip for all dimensions, zoom between 0.8 to 1.2), Gaussian noise and
Gaussian blur. We jointly optimized the baseline and interim PET branches, using the following loss function:

L(y1, y2, x1, x2; g1, g2) =
(
LCE

(
y1, g1(x1)

)
+ LDice

(
y1, g1(x1)

))
+(

LCE

(
y2, g2(x1, x2)

)
+ LDice

(
y2, g2

(
x1, x2)

))
Where x1, x2 denote baseline PET/CT (PET1) and interim PET/CT (PET2). y1, y2 denote reference baseline and
interim lesion masks. g1, g2 denote the PET1 and PET2 branches of the model. Note that g1 solely depends on PET1
while g2 takes inputs from both PET1 and PET2. For each branch, the loss is an unweighted sum of cross-entropy (CE)
loss and Dice loss, which has proven effective in various segmentation tasks (3). To enable the model to learn joint
feature representations from both time points, all components and weights in the model are shared between the two
branches, except for the longitudinal cross-attention (LCA). Specifically, weight sharing is applied at each level between
the PET1 and the PET2 branches. This includes convolutional blocks, multi-head self-attention and self-attention gate
blocks. The LCA mechanism is designed to integrate features from PET1 into the analysis of PET2, but not vice versa.
In this setup, the output features from the self-attention blocks in both branches (denoted as zl−1

1 for PET1 and zl−1
2 for
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PET2) are fed into the LCA mechanism (denoted as fLCA), with its output being added to the PET2 features.

zl2 = zl−1
2 + fLCA(z

l−1
1 , zl−1

2 )

Where zl2 denotes the updated PET2 features. For the PET1 branch, the longitudinal cross-attention does not modify its
features, preventing any reverse information flow from PET2 to PET1. Therefore, the PET1 features remain unchanged:

zl1 = zl−1
1

The models were trained using the AdamW optimizer (4), with an initial learning rate of 10−4, weight decay regular-
ization of 10−5, and a cosine annealing scheduler. We set the batch size to 8 and trained the models for 300 epochs
on NVIDIA A100 GPUs. The learning environment requires the following Python (3.8.8) libraries: PyTorch (1.13.0),
Monai (1.3.0).

During inference, we generated lesion masks for baseline and interim PET scans separately. For baseline mask
prediction, original PET1 scans were used as input for the PET1 branch, while PET2 branch inputs can be set to any
value (e.g., zeros or random noise) since the longitudinal cross-attention in LAS-Net is unidirectional. However, interim
mask predictions require both PET1 and PET2 scans as input, with PET1 being deformable-registered to PET2. We
employed the sliding window method with an overlap rate of 0.625 and blended outputs of overlapping patches using
Gaussian weighting. To generate the binary segmentation mask, we applied a threshold of 0.5 to the model’s output
followed by removing any small region with a volume below 0.2 ml using connected component analysis.

Appendix S4. Quantitative PET metrics

Table E1: Definitions of quantitative PET metrics included in this study.

Appendix S5. Results with Equivocal Lesions Included

Figure E1 presents the comparison results for lesion detection on interim PET scans when equivocal lesions are included.
The F1 scores do not exhibit statistically significant differences with those computed for non-equivocal lesions only.
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Figure E1: Performance comparison of interim PET lesion detection in the internal cohort with the inclusion of equivocal lesions.
Results are reported with and without mask propagation through deformable registration (MPDR). Both (A) and (B) show the results
of detection F1 scores, precision, and recall but they adopt different criteria for classifying true positives. (A) uses the criterion that a
predicted lesion is considered as a true positive if it overlaps with at least one voxel of the reference lesion. (B) uses the criterion that
the predicted lesion’s SUVmax should be matched with the reference lesion’s SUVmax for it to be considered a true positive. In the
plots, actual metric values are marked by circles with error bars indicating 95% confidence intervals.

Appendix S6. External Testing

Figure E2 shows the scatter plots comparing quantitative PET metrics measured by our model and by physicians in the
external AHOD0831 dataset. Figure E3 presents six sample cases from the AHOD0831 dataset, each comprising model
predictions and reference physician annotations.

Appendix S7. Performance of Interim Lesion Detection Using the Criterion of Dice>0.5

To provide a more comprehensive analysis of the model’s detection performance on interim PET scans, we defined an
even more stringent criterion: a predicted lesion was considered as a true positive when this lesion had a Dice coefficient
above 0.5 with a true lesion, otherwise the predicted lesion was classified as a false positive and the true lesion was a
false negative.

With this criterion (results presented in Figure E4), LAS-Net attained an F1 score of 0.412 (95%CI, 0.337, 0.490). All
comparator methods’ F1 scores were also decreased, with ST-Trans (with MPDR) achieving the highest value (0.319,
95%CI, 0.240, 0.403).

Appendix S8. Subgroup Analysis

Figure E5 shows the results of subgroup analyses based on age, sex, patient weight, normalized injected dose (i.e.,
injected dose divided by patient weight) and scanner models (including two most representative manufactures in the
internal and external cohorts, i.e., GE Healthcare and Siemens). We also evaluated model performance on scans from
overlapping scanner models (i.e., present in both internal and external cohorts) versus non-overlapping models (i.e.,
present in only one cohort).

First, we assessed performance differences between subgroups within each cohort. In the internal cohort, no significant
differences were observed for interim PET across any subgroup. For baseline PET, the Dice score was significantly
higher in the group older than 15 years compared to those 15 years and younger (P=0.045). No significant differences
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Figure E2: Comparison of physician-based and automatically extracted PET metrics in the external AHOD0831 cohort. Spearman’s
ρ correlations are shown in the top left corner of each plot. Correlation values are presented as mean [2.5th percentile, 97.5th
percentile].

Figure E3: Six examples of longitudinally-aware segmentation network (LAS-Net) output in the external AHOD0831 cohort. Each
case has maximum intensity projections (MIPs) of baseline and interim PET images with overlaying MIPs of the reference and
predicted lesion masks. Note that lesion-level Deauville scores are not available for the AHOD0831 data. DS = Deauville score
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Figure E4: Performance comparison of interim PET lesion detection in the internal cohort using the criterion that a predicted lesion
is classified as a true positive if the Dice coefficient between the predicted lesion and the reference lesion exceeds 0.5.

were found for other characteristics. In the external cohort, no significant differences were noted between subgroups for
any characteristic.

We then compared the performance between the internal and external cohorts for each subgroup. For interim PET,
statistically significant performance differences between the internal and external cohorts were found in the following
subgroups: age ≤ 15 years, female, weight ≤ 60 kg, normalized injected dose > 5.5 MBq/kg and Siemens. For
baseline PET, the internal performance was consistently higher than the external performance across all subgroups by a
significant margin.

Figure E5: Internal and external performance across subgroups based on age, sex, weight, normalized injected dose, and scanner
models. (A) shows lesion detection performance on interim PET across subgroups, and (B) shows lesion segmentation performance
on baseline PET across subgroups. Each metric value is marked by a circle, with error bars indicating the 95% confidence intervals.
It is important to note that for the external cohort, there were only 6 scans from non-overlapping scanner models (i.e., these models
were only present in the external cohort), which resulted in large error bars.

20



Appendix S9. Comparison between the internal cohort and the full AHOD1331 study cohort

Table E2: Demographics and scan characteristics of our internal and the full AHOD1331 study cohorts.
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