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A P P L I E D  S C I E N C E S  A N D  E N G I N E E R I N G

A variational reformulation of molecular properties in 
electronic-structure theory
Poul Jørgensen1*, Jeppe Olsen1, Magnus Bukhave Johansen2, Theo Juncker von Buchwald2,3, 
Andreas Erbs Hillers-Bendtsen2, Kurt V. Mikkelsen2*, Trygve Helgaker4*

Conventional quantum-mechanical calculations of molecular properties, such as dipole moments and electronic 
excitation energies, give errors that depend linearly on the error in the wave function. An exception is the elec-
tronic energy, whose error depends quadratically on the error in wave function. We here describe how all prop-
erties may be calculated with a quadratic error, by setting up a variational Lagrangian for the property of 
interest. Because the construction of the Lagrangian is less expensive than the calculation of the wave function, 
this approach substantially improves the accuracy of quantum-chemical calculations without increasing cost. As 
illustrated for excitation energies, this approach enables the accurate calculation of molecular properties for 
larger systems, with a short time-to-solution and in a manner well suited for modern computer architectures.

INTRODUCTION
The use of accurate electronic-structure methods to describe the 
properties of molecules has become increasingly important in many 
scientific disciplines. These methods involve the construction of 
approximate wave functions for the electrons of the system at hand 
and the subsequent calculation of energies and other molecular 
properties such as dipole moments and excitation energies from 
the wave function (1–4). Determination of excitation energies 
and molecular properties constitutes a fundamental link between 
quantum chemistry and experimental spectroscopy, underlying a 
wide range of possible applications from photosynthesis to human 
vision, from single-molecule spectroscopy to bioimaging (5–10).

The time-consuming step in the calculation of molecular proper-
ties is typically the calculation of the wave function to the accuracy 
needed for the property of interest, while the calculation of the 
property from the wave function is less expensive. Over the years, 
many techniques have been developed to calculate wave functions to 
high accuracy and at sufficiently low cost. By contrast, less attention 
has focused on how, from a given approximate wave function, we 
may calculate the desired property to the highest accuracy possible.

We here show how the accuracy in the calculated properties 
can be improved markedly, at low cost and without modifying the 
underlying wave function. Specifically, assume that the approximate 
wave function Ψ contains an error δΨ = Ψ − Ψ∗ relative to the exact 
wave function Ψ∗. The corresponding error in a given molecular 
property M is then δM(Ψ) = M(Ψ) − M(Ψ∗). In the standard way 
of calculating properties, this error is linear in the error of the wave 
function, δM(Ψ) = (δΨ) . We shall here show that there exists a 
variational Lagrangian reformulation ℳ of M such that ℳ(Ψ∗) = 
M(Ψ∗) but δℳ(Ψ) = (δΨ2) . 

What can be gained by such a variational reformulation of a mo-
lecular property is illustrated by coupled-cluster (CC) calculations of 

the dipole moment of H2O in Fig. 1. Beginning with the dipole mo-
ment calculated at a chosen truncation level of CC theory, we use 
cluster perturbation theory (CP) to generate a more and more accu-
rate approximation to the dipole moment with increasing truncation 
level. At each order k > 0 in the perturbation expansion, we calculate 
the dipole moment both in a variational manner and in the tradi-
tional, nonvariational manner. As seen in Fig.  1, the variational 
formulation (red curve) provides a marked improvement on the 
corresponding nonvariational formulation (blue curve). The dipole 
moment calculated variationally to order k in the expansion is 
identical to the dipole moment calculated nonvariationally to order 
2k + 1. Because the calculation of an electronic wave function to or-
der 2k + 1 is enormously more complicated and expensive than the 
calculation of the wave function to order k and because the addi-
tional cost of a variational reformulation of the property is low com-
pared with the construction of the wave function itself, the gains 
obtained by this approach are considerable. The variational reformu-
lation may, in many cases, be the only way to achieve a given accu-
racy in the calculations.

Variational Lagrangians have a long history in electronic-structure 
theory and are widely used for the calculation of the molecular elec-
tronic energy (11–14). Our purpose is to describe how the variation-
al reformulation can be accomplished for all molecular properties, 
not just the energy, using the molecular dipole moment and elec-
tronic excitation energies as examples.

RESULTS
In the following, we first discuss in general terms the construction of 
a variational Lagrangian for molecular properties. Next, we review 
the computational framework within which we perform the varia-
tional calculations of molecular properties, namely, CC theory and 
CP theory. Last, we present the calculation of dipole moments and 
excitation energies using variational Lagrangians.

Construction of variational Lagrangians for 
molecular properties
Let us assume that we are interested in the molecular property M(λ) 
where λ is the collection of parameters that determine the many-
electron wave function. Denoting the optimal (exact) wave-function 
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parameters by λ∗ and our current (approximate) wave-function 
parameters by λ0, we have

where δλ is the error in our description. Carrying out a Taylor 
expansion of M(λ) about λ∗ and denoting its derivative with respect 
to λ at λ∗ by M′ (λ∗), we obtain

The error in the property of interest is, therefore, proportional to 
the error in the wave function.

However, if M′ (λ∗) vanishes, then the error in the property be-
comes quadratic in the error of the wave function. As is well-known, 
this situation arises for the ground-state energy E(λ) when the 
wave function is determined by satisfying the stationary condition 
E′ (λ∗) = 0, giving

As we shall now see, quadratic error and improved accuracy can 
be obtained for any property, not just for the energy, by constructing 
a property Lagrangian.

Assume that the wave function is obtained by solving a set of 
(linear or nonlinear) equations, denoted symbolically by

and construct the property Lagrangian

where λ contains the Lagrange multipliers, one for each constraint 
in Eq. 4. The stationary conditions on the Lagrangian are

where the notation ∣∗ indicates that the derivatives are calculated at 
the optimal values λ∗ and λ∗ of λ and λ , respectively. Because the 
stationary Lagrangian satisfies ℳ (λ∗, λ∗) =M(λ∗) , we may calcu-
late properties from the variational Lagrangian ℳ rather than from 
the nonvariational M. The error in the Lagrangian is quadratic in 
the error of the wave function, as seen from the expansion

where Eqs. 6 and 7 make the first derivative vanish.
The construction of the property Lagrangian is typically relatively 

inexpensive—less expensive than the calculation of the wave func-
tion and much less expensive than the calculation of the wave func-
tion to higher accuracy, making the Lagrangian approach the most 
cost-effective way of calculating the property to a given accuracy. 
Note that the Lagrangian is constructed from the same ingredients 
as needed for the evaluation of properties in the traditional manner, 
namely, e(λ) and M(λ).

Let us now assume that we approach the optimal wave-function 
parameters λ∗ perturbatively in the manner

where the λ(k) with k = 1,2, … provide smaller and smaller correc-
tions to the zero-order description λ(0). The corrections are calcu-
lated in succession, each new correction λ(k) depending on all λ(i) 
with i < k. The partial sum λk =

∑k

i=0
λ
(i) is then correct to order k 

relative to λ∗, with an error δλk =
∑∞

i=k+1
λ
(i) of order k + 1. The 

multiplier λk associated with λk is likewise correct to order k relative 

λ0 = λ
∗
+ δλ (1)

M(λ0) =M(λ∗) +M�(λ∗) δλ +(δλ2) (2)

E(λ0) = E(λ∗) +(δλ2) (3)

e(λ) = 0 (4)

ℳ(λ, λ) =M(λ) + λe(λ) (5)

�ℳ(λ, λ)

�λ

|||||∗
= e(λ∗) = 0 (6)

�ℳ(λ, λ)

∂λ

|||||∗
=

�M(λ)

∂λ

||||∗
+λ

�e(λ)

∂λ

||||∗
=0 (7)

ℳ(λ0, λ0) =ℳ(λ∗, λ
∗

) + O(δλ2, δλ
2
, δλδλ) (8)

λ
∗
= λ

(0)
+ λ

(1)
+ λ

(2)
+ ⋯ (9)

Fig. 1. Convergence of the CP series of the dipole moment of H2O calculated variationally (red) and nonvariationally (blue). Errors (atomic units) plotted against 
the order of the perturbation expansion of the equilibrium dipole moment of H2O, calculated variationally (red) and nonvariationally (blue). To the left, the coupled-cluster 
(CC) singles-and-doubles (CCSD) dipole moment is expanded about the CC singles (CCS) dipole moment; to the right, the CC singles-doubles-triples (CCSDT) dipole 
moment is expanded about the CCSD dipole moment. The wave functions that are used to calculate the red and blue curves are order by order the same; the only differ-
ence is how the dipole moment is calculated from these wave functions. All calculations are in the aug-cc-pVTZ basis, in the frozen-core approximation.
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to λ∗ , with an error δλk of order k + 1. From Eqs. 2 and 8, we find 
that M(λk) and ℳ(λk, λ

k
) have errors relative to M(λ∗) =ℳ(λ∗, λ

∗

) 
of orders k + 1 and 2k + 2, respectively. We hence arrive at the 2k + 
1 rule (13), perfectly illustrated in Fig. 1: M(λk) and ℳ(λk, λ

k
) calcu-

lated from the same parameters of order k are correct to orders k and 
2k + 1, respectively.

In practice, the calculation of wave-function corrections is fairly 
straightforward up to second order in terms of floating-point opera-
tions, data flow, and data storage. Beyond second order, the in-
creased interdependence on lower-order terms reduces the overall 
efficiency, making the calculation of third- and higher-order correc-
tions expensive on modern computers and unsuitable for massively 
parallel implementations. It is therefore an important observation 
that the dipole moments calculated variationally from the first- and 
second-order wave functions in Fig. 1 are identical to those calcu-
lated nonvariationally from the third- and fifth-order wave func-
tions, respectively.

CC hierarchy for correlated electronic wave functions
In all calculations presented here, we use CC theory, which was 
developed in nuclear physics in the 1950s (15) and adapted to quan-
tum chemistry in the late 1960s (16, 17), where it has become the 
most accurate approach to molecular electronic-structure theory 
available today (1–4). In CC theory, the wave function ∣CC〉 is 
expressed in terms of an exponential operator working on the 
Hartree-Fock determinant ∣HF〉 in the manner

where the CC operator

is a linear combination of excitation operators θμi multiplied by am-
plitudes tμi. Applied to the Hartree-Fock state, each θμi generates an 
excited determinant ∣μi〉 = θμi∣HF〉 of excitation level i. The ampli-
tudes tμi are determined from the CC amplitude equations

where ⟨μi ∣ = ⟨HF ∣ θ†
μi

 and where Ht = e−T(t)HeT(t) is the similarity-
transformed Hamiltonian.

From the amplitudes included in T(t), the ground-state CC 
energy can be calculated as

However, this energy expression is not variational in the ampli-
tudes, which have been obtained by solving Eq. 12 rather than satis-
fying variational conditions on the energy.

Following the procedure outlined above, we now make the CC 
energy in Eq.  13 variational (i.e., stationary with respect to first-
order variations in its variables) by adding to it the conditions on 
the amplitudes in Eq.  12 multiplied by Lagrange multipliers s, 
yielding (14)

where the bra state is given by

The multipliers sμi are determined to make the energy stationary 
with respect to variations in the amplitudes by solving the equations

An advantage of energy stationarity is that it makes the calcula-
tion of molecular properties such as molecular forces and force con-
stants simpler (13, 14). This is a well-known result and not our main 
concern here. Rather, our purpose is to show that the Lagrangian 
approach is applicable to all molecular properties, not just the en-
ergy, and to illustrate the gains that this approach gives.

Different levels of CC theory differ in which excitation operators 
θ
μi

 are included in the description. In CC singles (CCS) theory, only 
single excitations from occupied to unoccupied Hartree-Fock orbit-
als are included; in CC singles-and-doubles (CCSD) theory, all dou-
ble excitations are added (18); next, in CC singles-doubles-triples 
(CCSDT) theory, we include also all triple excitations (19, 20), and 
so on. As more excitations are included, the description becomes 
more accurate, converging to the exact solution in the orbital basis 
chosen for the calculation.

Perturbation expansion of CC theory
Because high-order CC wave functions are expensive to calculate, a 
perturbational treatment may be preferable. In CP theory (21–24), 
we first construct a zero-order CC wave function in the usual man-
ner, truncating the expansion at some excitation level p to obtain the 
zero-order wave function

whose amplitudes are taken to satisfy the usual CC equations

We next use the zero-order wave function as the starting point 
for a perturbative construction of a more elaborate CC wave func-
tion, truncated at a higher excitation level P > p

using the fluctuation potential ϕ = H − f, where f is the Fock opera-
tor, as the perturbation operator. The perturbation series of the cor-
rection amplitudes δt = δt(1) + δt(2) + ⋯ is obtained by solving the 
CC equations

in orders of the zero-order similarity-transformed fluctuation po-
tential ϕt0, keeping t0 fixed. To ensure that relaxations within the 
zero-order excitation space are treated to zero order, ϕt0 is treated as 
a zero-order rather than first-order operator whenever it works en-
tirely within this excitation space.

In the calculations presented here, we use the CPS(D) expansion 
(targeting the CCSD wave function from the CCS wave function) 
and the CPSD(T) expansion (targeting the CCSDT wave function 
from the CCSD wave function); see (21–24).

Construction and use of CP Lagrangian for dipole moments
Assuming that the CC ground-state energy has been cast in a varia-
tional form (Eq. 14), we can use the Hellmann-Feynman theorem 
(25, 26) and obtain the following expression for a given component 
X of the dipole moment

∣CC(t)⟩ = eT(t) ∣HF⟩ (10)

T(t) =
∑

i

∑

μi

t
μi
θ
μi (11)

⟨μi ∣Ht ∣HF⟩ = 0 (12)

E(t) = ⟨HF ∣Ht ∣HF⟩ (13)

ℰ(t, s) = ⟨HF + s ∣Ht ∣HF⟩ (14)

⟨HF + s ∣ = ⟨HF ∣ +
�

i

�

μi

s
μi
⟨μi ∣ (15)

⟨HF + s∣[Ht , θμ
i
]∣HF⟩ = 0 (16)

∣0⟩ = eT(t0) ∣HF⟩ (17)

⟨μi ∣Ht0
∣HF⟩ = 0, 1 ≤ i ≤ p (18)

∣CC(t0 + δt)⟩ = e
T(t0+δt) ∣HF⟩ (19)

⟨μ
i
∣Ht0+δt

∣HF⟩ = 0, 1 ≤ i ≤ P (20)

X(t, s) = ⟨HF + s∣Xt∣HF⟩ (21)
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where Xt is the similarity-transformed dipole operator. However, this 
expression for the dipole moment is itself not variational since the argu-
ments t and s do not satisfy stationary conditions on the dipole moment 
X(t, s) but rather conditions on the energy in Eqs. 12 and 16, respectively.

Multiplying the conditions in Eqs. 12 and 16 by undetermined 
multipliers t and s , respectively, and adding the resulting expres-
sions to X(t, s), we arrive at the CP dipole Lagrangian

where ⟨ t ∣ =
∑

μi
t
μi

⟨μ
i
∣ and T(s) =

∑
μi
s
μi
θ
μi

 . This Lagrangian is 
by construction stationary with respect to tμi and sμi , independent of 
their values, given that Eqs. 12 and 16 hold. To make it stationary 
also with respect to t and s, we solve the linear equations

where the first equations determine s and the second equations t . 
The dipole moment in Eq. 22 is now stationary in all its variables t, 
s, t , and s.

The usefulness of this variational reformulation is illustrated in 
Fig. 1, where we have plotted the errors in the CPS(D) expansion 
(left) and CPSD(T) expansion (right) of the dipole moment of 
H2O. The expansion of (t, s, t, s) (red curve) converges faster than 
the corresponding expansion of X(t, s) (blue curve), satisfying to 
each order the 2k + 1 rule.

Construction and use of CP Lagrangian for 
excitation energies
In CC theory, electronic excitation energies Wn are the eigenvalues 
of the non-Hermitian CC Jacobian J(t) with left and right eigenvec-
tors Ln and Rn, respectively

The elements of the Jacobian are given by

and depend on the CC amplitudes through the similarity-transformed 
Hamiltonian Ht.

In CP theory, the excitations energies may be obtained by solving 
the right Jacobian eigenvalue equation in Eq. 25 in orders k in the 
fluctuation potential. Introducing order expansions of all ingredients 
involved and assuming intermediate normalization [L(0)

n
]TR(k)

n
= δ0k , 

we obtain

To determine W (k)
n

 , we must thus calculate R(q)
n  to order k − 1 and 

J(q) to order k, which, by Eq. 26, requires the calculation of the am-
plitudes δt = t − t0 to order k − 1. In the special case of the CPS(D) 
model, the second-order excitation energy W (2)

n
 is equivalent to the 

CIS(D) excitation energy introduced by Head-Gordon et al. (27).

Alternatively, we may determine the excitation energy correc-
tions W (k)

n
 from a variational Lagrangian. From Eq. 25, we obtain the 

excitation energy function

which is stationary in the left and right eigenvectors but not in the 
cluster amplitudes. Recalling that the cluster amplitudes satisfy the 
CC conditions in Eq. 12, we arrive at the following CP Lagrangian 
for the excitation energy

which is stationary with respect to the multipliers t
μi

 by construc-
tion and made stationary with respect to the amplitudes tμi by solv-
ing the linear equations

The resulting Lagrangian is thus stationary in all its variables t, t , 
Rn, and Ln.

Using CP theory, we may determine order expansions of t, t  , 
Rn, and Ln from the stationary conditions and insert these in 


n
(t, t,R

n
, L

n
) . The kth-order excitation-energy correction W (k)

n
 in 

Eq. 27 can be determined from the kth-order expansion coefficient 
of the Lagrangian excitation energy  (k)

n
 in Eq. 29 by applying the 

2n + 1 rule for the primary variables Rn, Ln, and t and the 2n + 2 
(13) rule for the multiplier t  . For odd-order excitation energy cor-
rections  (2k+1)

n
, all variables Rn, Ln, t, and t  are needed to order k; 

for even-order excitation-energy corrections  (2k)
n

, the primary 
variables Rn, Ln, and t are needed to order k and the multiplier t  to 
order k − 1. In Fig. 2, we have plotted the errors in the CPS(D) and 
CPSD(T) expansions of the lowest singlet excitation energy of H2O, 
as obtained in the nonvariational formulation (blue curve) and 
variational formulation (red curve). In accordance with the 2k + 
1 rule, the variational expansion of the wave function to first and 
second orders, respectively, gives the same result as the nonvaria-
tional expansion to the third and fifth orders, as also observed for 
the dipole moment in Fig. 1.

We now examine in more detail the performance of the CPS(D) 
series for excitation energies, comparing with the full CCSD model 
for the QUEST#3 dataset (28), consisting of 131 singlet excitation 
energies for 26 organic molecules. We use the notation CPS(D)-qn  
to indicate that the excitation energies have been calculated varia-
tionally from the n-order CPS(D) wave function. All calculations 
were carried out in the aug-cc-pVTZ basis within the frozen-core 
approximation. The statistics in Table 1 are restricted to those (104) 
excitations for which the norm of the second-order singles correc-
tion of the excitation vector is less than 0.3.

For singles corrections larger than 0.3, the perturbation to the 
CCS excitation vector is so large that the resulting excitation energy 
correction cannot be trusted (23).

To the first and second orders, we obtain a mean error compared 
to CCSD excitation energies of 0.03 and −0.017 eV, respectively; the 
corresponding relative errors are 0.6 and 0.28%. These errors are 
much smaller than the typical errors of the CCSD model. If higher 

(t, s, t, s)=X(t, s)+ ⟨t ∣H
t
∣HF⟩+⟨HF+ s ∣ [H

t
,T(s)] ∣HF⟩ (22)

�

�s
μi

= ⟨μ
i
∣X

t
∣HF⟩+⟨μ

i
∣ [H

t
,T(s)] ∣HF⟩=0 (23)

�

�t
μi

= ⟨HF+ s ∣ [X
t
, θ

μi
] ∣HF⟩+⟩t ∣ [H

t
, θ

μi
] ∣HF⟩+

⟨HF+ s ∣ {[H
t
, θ

μi
],T(s)} ∣HF⟩=0

(24)

L
T
n
J(t) =Wn(t)L

T
n

J(t)Rn =Wn(t)Rn (25)

J
μi ,νj

(t) = ⟨μi ∣[Ht , θνj ]∣HF⟩ (26)

W (k)
n

=

k∑

q=1

[L(0)
n
]TJ(q)R

(k−q)
n (27)

W
n
(t,R

n
, L

n
) =

L
T
n
J(t)R

n

L
T
n
Rn

(28)


n
(t, t,R

n
, L

n
)=W

n
(t,R

n
, L

n
)+

�

i

�

μi

t
μi
⟨μ

i
∣H

t
∣HF⟩ (29)

∑

j

∑

νj

t
νj
J
νj ,μi

(t) = −
�Wn(t)

�t
μi

(30)



Jørgensen et al., Sci. Adv. 10, eadn3454 (2024)     24 April 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

5 of 6

accuracy is needed, then the more advanced CPSD(T) model should 
be used instead.

We emphasize that the accuracy of the CPS(D)-qn  models ob-
served in Table 1 is achieved using solely first- and second-order wave-
function and excitation-vector corrections. The first- and second-order 
variational excitation energies are in this formulation expressed in a 
form amenable to efficient implementations on modern computer ar-
chitectures and suitable for large-scale parallelization; a detailed com-
parison of the computational cost of the CCSD and CPS(D)-qn 
methods will be presented elsewhere.

DISCUSSION
The calculation of dipole moments and excitation energies described 
here illustrates what can, in general, be accomplished for molecular 
properties using the variational Lagrangian formulation, whose con-
struction follows the procedure outlined above. From the first- and 

second-order wave-function corrections, respectively, we obtain prop-
erties that are of the same accuracy as those calculated from third- and 
fifth-order wave functions using the traditional procedure. Our proce-
dure is not restricted to CP theory but is applicable in all situations in 
quantum chemistry where molecular properties are calculated from 
hierarchies of electronic wave functions and in nuclear physics, when 
many-body theories including CC theory are used to solve the nuclear 
Schrödinger equation. The variational approach described here has 
been implemented in the LSDalton program (29) and will be available 
in a future release of the Dalton electronic-structure program.

Supplementary Materials
This PDF file includes:
Table S1

Other Supplementary Material for this manuscript includes the following:
Dataset

Fig. 2. Convergence of the CP series for the lowest singlet excitation energy of H2O calculated variationally (red) and nonvariationally (blue). The error in the 
lowest singlet excitation energy of H2O (atomic units) plotted against the order of the CPS(D) expansion of the CCSD excitation energy (left) and the CPSD(T) expansion 
of the CCSDT excitation energy (right), calculated variationally (red) and nonvariationally (blue). All calculations have been performed in the aug-cc-pVDZ basis in the 
frozen-core approximation at the equilibrium geometry of H2O.

Table 1. Performance of variational CPS(D) theory relative to full CCSD theory for singlet electronic excitation energies of organic molecules. For each 
order 0 ≤ n ≤ 2 in the variational CPS(D)-qn expansion, statistical errors in calculated singlet excitation energies relative to full CCSD theory are listed; zero order 
corresponds to CCS theory. The statistics are over the 104 excitations in the QUEST#3 dataset (28) with norm of the second-order singles correction smaller than 
0.3. All calculations have been carried out in the aug-cc-pVTZ basis, in the frozen-core approximation.

CPS(D)-qn 

0 1 2

Mean absolute error (eV) 0.620 0.067 0.027

Maximum absolute error (eV) 2.533 0.729 0.183

Mean error (eV) 0.422 0.035 −0.017

SD (eV) 0.716 0.098 0.044

Mean relative error (%) 8.46 −0.60 0.28

Maximum relative error (%) 39.9 −9.96 2.90
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