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Abstract

A major focus of academia, industry, and global governmental agencies is to develop and apply
artificial intelligence and other advanced analytical tools to transform health care delivery. The
American Heart Association supports the creation of tools and services that would further the

science and practice of precision medicine by enabling more precise approaches to cardiovascular

and stroke research, prevention, and care of individuals and populations. Nevertheless, several
challenges exist, and few artificial intelligence tools have been shown to improve cardiovascular
and stroke care sufficiently to be widely adopted. This scientific statement outlines the current
state of the art on the use of artificial intelligence algorithms and data science in the diagnosis,
classification, and treatment of cardiovascular disease. It also sets out to advance this mission,
focusing on how digital tools and, in particular, artificial intelligence may provide clinical and
mechanistic insights, address bias in clinical studies, and facilitate education and implementation
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science to improve cardiovascular and stroke outcomes. Last, a key objective of this scientific
statement is to further the field by identifying best practices, gaps, and challenges for interested
stakeholders.
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IMAGING

Overview

The objective of this scientific statement is to present the state of the art on the use of
artificial intelligence (Al) or machine learning (ML) to enable precision medicine and
implementation science in cardiovascular research and clinical care. For a primer on Al and
ML, please see the Supplemental Material.

This task has been propelled by academia, industry, and global governmental agencies who
are investing immense resources to transform health care delivery with Al, resulting in a
rapid growth rate of scientific research articles on health care—related Al research in the past
decade, which is likely to accelerate in coming years.

This work has led to several parallel initiatives, including the digitization and analysis of
electronic health records (EHRS), to understand the heterogeneity of treatment effects,2
the comparative effectiveness of tests and interventions,® and, more recently, to build
prediction,? classification,® and optimization® models to inform clinical decision-making
(Figure).”:8

Yet, despite enormous academic interest and industry financing, Al-based tools, algorithms,
and systems of care have yet to improve patient outcomes at scale. Therefore, another
objective of this scientific statement is to identify best practices, gaps, and challenges that
may improve the applicability of Al tools in each domain. For each application, we will
discuss the need to identify and mitigate bias and ensure education and access to Al/ML
technologies by all stakeholders across diverse health care settings.

Imaging has become an essential diagnostic tool in clinical decision-making in
cardiovascular diseases and stroke.? However, expertise in image interpretation takes

years to acquire, and experts are often overburdened with tasks such as image

processing, segmentation, quantitation, and interpretation.10-11 Moreover, expertise in image
interpretation is scarce, exacerbating inequities in access to high-quality patient care in
underresourced areas, between lower and higher income populations, and between low- and
rich-resource countries. Al/ML-based tools for imaging cardiovascular diseases and stroke
address many of these concerns and are therefore of increasing interest.1?
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Al/ML Application on Different Modalities in Cardiac Diagnosis and Prognostication

Current-use cases of AI/ML algorithms in imaging are broad and include referring and
scheduling image acquisition, image analysis including the reduction of image acquisition
and processing times,3 reduction of radiation exposure and contrast dose use, assisting

in diagnosis and reporting, with clinical decision support and with estimation of patient
prognosis.3 These various Al applications broadly apply to multimodal cardiac imaging
and include its use in echocardiography, cardiac CT, cardiac magnetic resonance imaging
(CMR), and nuclear imaging.

With echocardiography, applications include automated segmentation and volumetric
analysis of the cardiac chambers along with ejection fraction (EF) calculation, automated
assessment of valvular structures, including valve geometry and associated flow gradient
and measuring longitudinal strain and cardiac wall motion abnormalities.24 Al/ML
applications in echocardiography have also been used for automated disease detection. Some
examples include its use in automated diagnosis of myocardial infarction, differentiating
hypertrophic cardiomyopathy from physiological hypertrophy, and in detecting heart failure
and pulmonary artery hypertension automatically. These applications, when potentially
combined with handheld echocardiography, can provide high-quality cardiac diagnosis

in many places around the world that lack such capabilities, thereby democratizing the
expertise gap that currently exists in cardiac diagnosis.

Cardiac CT (including CT angiography) is another modality with increasing use of Al.

Uses include automated quantification of coronary artery plaques and blood flow and
increasingly in cardiovascular risk assessment using coronary artery calcium scoring.
Automated quantification of coronary plaque (both calcified and noncalcified) and of
coronary lumen on cardiac CT compares favorably with manual measurements in multiple
studies. In addition, cardiac CT is being used to compute fractional flow reserve and
myocardial perfusion.1> With cardiovascular risk assessment using coronary artery calcium
scoring gaining increasing importance, Al applications are now capable of automating the
computing of coronary artery calcium scoring from low-dose chest CT or even from nuclear
imaging studies, such as positron emission tomography CTs.

CMR applications of AI/ML include use in structural and volumetric analysis of cardiac
chambers and in estimation of ventricular and myocardial blood flow and perfusion
reserve.18 CMR is also being used for myocardial tissue characterization and prediction

of risk of sudden cardiac death from ventricular late gadolinium CMR and to help plan
treatment strategies, such as guiding ablation for ventricular tachycardia (VT) by analyzing
patterns of late gadolinium CMR indicative of fibrosis that may indicate critical isthmuses
for reentrant VT circuits.17-18 CMR is also being used to assess ischemic stroke risk from
automated atrial chamber morphology and fibrosis burden measurements.10

Nuclear imaging applications of Al are also increasing with use in myocardial blood flow
and flow reserve quantification and associated prognostication of cardiovascular mortality.
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Al/ML in Cardiac Treatment Planning

Structural interventions are increasingly assisted by Al/ML by using fast automated
coronary vessel centerline extractions or measuring stenosis for coronary interventions, or
by assessing dynamic mitral annulus, left ventricular outflow tract, sinus of Valsalva, and
sinotubular measurements for transcatheter aortic valvel® or mitral valve replacement or
patent foramen ovale closure.

AI/ML in Stroke Diagnosis, Prognostication, and Treatment Planning

Al/ML has recently been used to facilitate the diagnosis of acute stroke,1° by automatically
detecting intracranial hemorrhage on noncontrast CT of the head.2? AI/ML applied to
baseline CT angiography images of the head are able to automatically detect large vessel
occlusions, reducing the time to successful neurovascular intervention by =30 minutes.2
AI/ML applications on CT of the head can automatically detect early ischemic changes of
the brain, without the need for diffusion-weighted MRI.22 AI/ML algorithms have improved
quantitation of CT or MR brain perfusion imaging and enhanced their ability to predict
recovery of cerebral function during the time taken to transport patients for reperfusion
therapies.23 Other applications include neurointerventional planning for the management of
acute ischemic stroke and cerebral aneurysms, and for patient recruitment in clinical trials
for acute stroke.

Challenges in Applying AI/ML in Imaging
Key limitations specific to imaging include appropriate data sourcing, curating, and sharing
(Table 1). Imaging data from clinical repositories are difficult to obtain and, when available,
are often unstructured and unlabeled. Using appropriate learning techniques (eg, supervised
learning when labeled data are available during training versus unsupervised learning when
labeled data are difficult to come by or expensive to procure) is important. Additional
techniques, such as transfer learning where pretrained models are applied to a new
classification task, weak supervision when available data are imprecisely labeled, and a
hybrid semisupervised learning approach when some data are appropriately labeled while
the majority of data are not, may be considered in applying the appropriate Al/ML approach
to the available data. A recently published 11-point framework/checklist provides guidance
that includes defining the research question, choosing an appropriate ML/deep learning
model for each type of problem, defining a priori sample size and study design, including
the nature and type of training, validation, and test datasets, reporting on the reliability of
data labeling and annotations especially in the reference datasets, and appropriate reporting
of results using accepted statistical measures.11

Tools such as the recently developed medical imaging data readiness scale can help

to structure imaging data for developing ML/deep learning algorithms.24 Applying the
Findability, Accessibility, Interoperability, and Reuse of digital assets (FAIR) framework
to curate imaging data and storing it using formats like the Neuroimaging Informatics
Technology Initiative data format for segmentations will help with reuse of this scarce
resource among multiple research groups.2®
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For issues pertaining to data privacy, and ethical and legal challenges, techniques such as
“federated learning” may accelerate algorithm development by enabling a collaborator to
download a developed AI/ML tool for use on their local data.

ELECTROCARDIOGRAPHY

Overview

The application of Al/ML to the ECG has already dramatically affected
electrocardiography.26-29 First, by automating interpretation, human capabilities can be
massively scaled, enabling interpretation of an exponentially growing number of ECGs.26
Second, AI/ML algorithms can identify subtle and interrelated nonlinear patterns in the ECG
often not recognizable to experts, enhancing disease phenotyping.3 Third, because cardiac
electrical activity may be affected before mechanical or structural abnormalities are evident
on imaging, such algorithms may enable the identification of occult disease and prediction
of impending disease. By segregating subtypes of similar conditions, AI/ML of the ECG
may reveal novel phenotypes.

Al/ML to Scale Current Expert Capabilities

Several studies have shown that AI/ML can scale current expert capabilities. The growing
need for ECG interpretation, coupled with the limited skills and availability of human
experts,3! motivates efforts for automated and accurate interpretation of ECGs. Rules-based
interpretation of the ECG is widely used in existing devices, yet has known limitations32
that may adversely affect medical decision-making.33 In early studies, Al/ML algorithms
may better mimic expert interpretation,34 yet their widespread adoption and clinical data are
currently lacking.

Al/ML to Read ECGs Beyond Trained Experts

Application of Al/ML on the ECG appears effective in detecting occult structural heart
disease up to 1 to 2 years earlier than traditional testing. In retrospective studies,
independent groups report that Al of the ECG can identify left ventricular dysfunction

in diverse populations?”:35 irrespective of sex, race, or ethnicity,36 from diverse causes,
including peripartum cardiomyopathy.2”-37 A prospective, pragmatic trial of Al/ML applied
to the ECG in >20 000 patients without previous heart failure in primary care clinics

in Minnesota and Wisconsin improved first detection of ventricular dysfunction by 32%
over usual care (area under the curve [AUC]=0.92; £<0.007).38 Similar results were
reported in the United Kingdom by a stethoscope-based ECG with a similar algorithm
compared prospectively with usual care.3% AI/ML of the ECG can identify other structural
heart disease, including hypertrophic cardiomyopathy,*? amyloid heart disease,*! aortic
stenosis,*! and pulmonary hypertension.#2 Detecting hypertrophic cardiomyopathy by
Al/ML of the ECG can also guide strategies to improve outcomes.*3

In 36 280 patients in sinus rhythm (of whom 8.4% had known paroxysmal atrial fibrillation
[AF]), Attia et al?’ reported that a single-lead ECG had an AUC for identifying silent AF
of 0.87 (95% ClI, 0.86-0.88). Other studies support these findings.#44> It remains to be
determined if such Al/ML tools can be combined with other P-wave metrics that predict
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AF.%6 The role of the AI/ML in predicting stroke from ECGs in sinus rhythm is less well
defined.2’

AI/ML on Electrocardiographic Phenotyping

Attia et al*” applied AlI/ML on ECG to predict sex and biological age (an indicator

of health) in 275 056 patients (52% male). The AI/ML algorithm provided 90.4%
accuracy for identifying sex, with AUC 0.97. Age estimates fell within 6.945.6 years

of chronological age and, intriguingly, patients in whom Al/ML-based prediction of age
exceeded chronological age by >7 years had factors of “advanced biological age,” such as
low ejection fraction (left ventricular EF), hypertension, and coronary disease.*8

Challenges in the Clinical Application of AI/ML on ECG

Robust clinical validation in large diverse populations that minimizes bias is essential

to address uncertainties,* such as automation bias, vulnerability to adversarial attacks
(ie, imperceptible data may cause Al/ML misclassification), and overfitting (ie, poor
generalizability), which reduce clinical acceptance and adoption*? (Table 2). Hybrid
approaches during model development that combine domain- and data-driven knowledge,
clinician familiarity with AI/ML, and “stress testing” of electrocardiographic algorithms
may also increase adoption.?021 L ast, the limited availability of digitized and well-labeled
electrocardiographic data and open-source datasets may limit research and development
of AI/ML algorithms.52 The AUC is frequently reported to describe Al/ML model
performance, but the optimal statistical metrics or combination of metrics to assess the
performance of this new class of tests is not yet defined.

IN-HOSPITAL MONITORING

Overview

False Alarm

Bedside monitoring has been a standard of care for decades. Traditional systems apply
expert static rules to generate an alarm once a vital sign exceeds a given threshold. However,
assigning scores to individual vital signs heuristically and ignoring potential covariance
between different physiological signals®® has contributed to the modest accuracy of these
systems. Application of Al/ML on streaming physiological signals from bedside monitors3!
provides tools to harvest subtle signatures across simultaneously acquired vital sign signals,
which holds significant promise in improving outcomes.

Reduction

Only 5% to 13% of alarms from bedside monitors are actionable, whereas the remaining
87% to 95% may actually distract clinicians and compromise patient safety.>* Applications
of AI/ML on in-hospital monitors has been shown to increase the accuracy of alarms,
improving patient outcomes and allocation of resources.>> Convolutional neural networks
(CNNSs) applied on intensive care unit (ICU) vital-sign data could differentiate true from
false monitor alarms,32 thus reducing alarm fatigue.
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Clinical Deterioration

Al/ML models applied to bedside monitors can detect worsening of heart failure® and
decompensation,>”+28 in ICU and emergency department settings. These models can detect
subtle physiological signatures before clinical deterioration, broadening the diagnostic
and therapeutic window for early intervention.>® AI/ML systems have been shown to
improve accuracy over traditional diagnostic systems, although with a broad range of
accuracy.®0 Prospective studies on the clinical validation of Al models for forecasting
clinical deterioration are important, yet are relatively sparse.

Sepsis and Hypotension

Several studies have used Al/ML algorithms for the early detection of sepsis®1-63 and
hypotension,84.65 with high accuracy, 3 to 40 hours ahead of traditional approaches.

In a meta-analysis of 36 studies including 6 randomized controlled trials, Al/ML-based
prediction of sepsis coupled with early intervention may reduce mortality rate (relative

risk, 0.56 [95% CI, 0.39-0.80]) more effectively than alternative strategies.%6 The beneficial
effect of AI/ML predictions was higher in the emergency department and general wards,
where patients are less frequently monitored, than in the ICU. This has important
implications for deploying such systems in clinical practice.

Cardiac Arrest

AI/ML tools may predict impending in-hospital cardiac arrest and enable early intervention.
However, at the present time, most proof-of-concept studies have been retrospective. An
Extreme Gradient Boosting—based model using heart rate and respiratory rate data predicted
VT 1 hour before its onset with sensitivity and specificity >0.80,67 using ECG, noninvasive
blood pressure, and percutaneous oxygen saturation (Pao,),68 Hidden Markov and Gaussian
mixture models predicted imminent ventricular fibrillation (VF), from x5 minutes to 6 hours
before onset with accuracies of 0.83 to 0.94.68-71 |n the pediatric ICU, AI/ML predicted
cardiac arrest up to 50 minutes before onset in 91% of patients, compared with only 6%

by clinicians, albeit with modest positive predictive value (0.11).72 Thus, although Al/ML
algorithms may predict imminent ventricular arrhythmias in reference datasets, prospective
validation and testing are urgently required.

Atrial Fibrillation

Several Al/ML applications can detect AF in the acute care setting.”3 In 6040 patients

in the well-described MIMIC-111 (Medical Information Mart for Intensive Care) database

of patients undergoing cardiac surgery, Al/ML tools predicted postoperative AF, a major
cause of delayed discharge and morbidity, with AUCs of 0.59 to 0.74 that were better than
standard clinical scores. In this study, saliency analysis was used to provide personalized risk
profiles for each patient,”* which may improve management and shed mechanistic insights.
AI/ML has been shown to predict in-hospital stroke/transient ischemic attack and major
bleeding in critically ill patients with preexisting AF from EHRs with an AUC of 0.931 for
stroke/transient ischemic attack, and 0.93 for major bleeding.”®
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Drug-Related Proarrhythmia

A common cause for admission to acute care settings is to monitor risk of proarrhythmia
from medications. Several studies now report that QTc duration is accurately estimated by
AI/ML of the ECG, including electrocardiographic data from smartphone-based systems
(some with US Food and Drug Administration [FDA] approval for QT measurement’6),
although clinical experience is limited.”’ For drug discovery, an AlI/ML model termed
deepHerg predicted if a specific agent blocks the hERG potassium channel and provided

a c-statistic of 0.967 for torsades de pointes, while it revealed that 29.6% of 1824 of the
FDA-approved drugs may inhibit hERG.”8 Other AI/ML systems can predict 70.3% of
drugs that are known to cause torsades.’® A computational “atom to rhythm” pipeline that
combines AI/ML with computer models of drug structure was able to infer channel binding
and hERG block from drugs such as dofetilide and moxifloxacin.&® Several Al/ML models
have been reported to predict proarrhythmia from drugs that block the delayed rectifier,
L-type calcium, and late sodium channels.8%:81 Nevertheless, the clinical actionability of
such approaches remains undetermined.

Perioperative Risk Assessment

Application of AlI/ML on large numbers of discrete variables or physiological inputs
may be superior to clinical risk scores for assessing perioperative risk.82 In patients
undergoing valve or bypass surgery, application of CNNs to the ECG to screen for
ventricular dysfunction predicted long-term mortality of inpatients (with EF>35%).83
Intraoperatively, AI/ML applied to the electroencephalogram revealed spectral features
that can assess the depth of anesthesia, guide anesthetic drug dosing, and potentially
mitigate postoperative delirium.8485 AI/ML of other intraoperative variables may also
predict hypotension, arrhythmias, and hypoxemia minutes before occurrence,86 whereas
reinforcement learning algorithms have been used to manage complex control rules to
enable continuous anesthetic dosing in synthetic models.8” Al/ML systems able to reliably
predict perioperative complications and mortality from various surgical procedures could
dramatically improve patient selection, clinical trial design, and informed consent.

Challenges on the Use of AI/ML in In-Hospital Monitoring

A major challenge to current AI/ML-based monitoring systems is the lack of rigorous
prospective evaluation. Moreover, few studies have been shown to affect clinical end points
such as mortality,38-90 or make predictions that could directly inform clinical decision-
making. Although some studies reported dramatic reductions in mortality,9:92 such effects
could reflect altered behavior in individuals being monitored (the Hawthorne effect), as
revealed from the algorithm use during the COVID-19 pandemic.93:94 AI/ML tools may
also be limited in practice by the a lack of standardized platforms to report predictions

to clinicians®® and noise in ambulatory data,® with some studies reporting that valid data
are present for as little as half of the monitoring time.% Solutions may involve deriving
more informative time-varying metrics for longer periods of time,” and the adoption of best
practices for designing trial protocols, as well (Table 3).
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IMPLANTABLE AND WEARABLE TECHNOLOGIES

Overview

The ability to interpret physiological data on a near continuous basis may provide
unprecedented data on disease progression, new time points for intervention, and redefine
the boundary between inpatient and outpatient care. This technology also has the potential
to reduce disparities of care.%® An important unaddressed theme is to identify those patients
and disease types most amenable for Al/ML-enabled monitoring, and to develop and
validate practical pathways of care for each.

Device Types

Consumer wearables may or may not contain FDA-cleared components,*® and may differ

in the types of signal captured, signal processing, data security and governance, level of
clinical validation, and data integration into medical records. There are several forms of
FDA-cleared implanted devices.#%98 The efficacy and utility of each device depends on its
form factor, sensor type, anatomical placement, and analytics, including noise reduction and
interpretation algorithms.

Motion detection is important because inactivity is associated with adverse cardiovascular
outcomes and mortality and because activity provides a context for physiological signals.
Motion sensors use piezoresistive, piezoelectric, or differential capacitive accelerometers to
record linear acceleration in 3 planes and process it on the basis of anatomical locations

to identify motion,190 corresponding to sleep, steps, or activity.101 The wristwatch is
commonly used, but ankle recordings are superior for step counting. Global positioning
system data can augment analysis for outdoor activities, and micro-electromechanical
barometers can sense changes in elevation to detect activities such as stairs climbed or

a fall.98 Other form factors include chest patches, chest straps, wearable garments with
embedded sensors, smart phones, and head-mounted devices. 98

Photoplethysmography (PPG) or ECG-based devices can both detect heart rate or rhythm.
ECG-based devices are considered the gold standard for rhythm diagnosis. Chest strap
devices can record the ECG but are less well-tolerated than watches that typically record a
pseudo lead | between 1 finger on the crown and the watch base.102 Smart watches have
been used in small and large studies with >400 000 participantsl3 to screen for AF with
positive predictive values from 84% to 99%. PPGs require good skin contact and may

be adversely affected by tattoos and darker skin tones.194 PPG-based devices can detect
arrhythmias such as AF but may be sensitive to movement artifacts.10

Additional sensors in wearables include acoustic sensors to provide a phonocardiogram
and skin-impedance sensors for use in garments.8 Sensors in implantable devices can
detect impedance to electrical current to quantify pulmonary congestion (which reduces
thoracic impedance) and direct pressure sensors (eg, pulmonary artery) for heart failure
management.98
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Detection of Near-Term Atrial Fibrillation

There is a substantial literature that AF can be detected by Al-enabled PPG-based devices
including the Apple Heart study (Assessment of Wristwatch-Based Photoplethysmography
to Identify Cardiac Arrhythmias),193 WATCH-AF trial (Smartwatches for Detection of
Atrial Fibrillation),196 and others.195 In 91 232 annotated ambulatory patch ECGs from

53 549 patients, Hannun et al'%7 used Al/ML to ECG-based devices to detect 12 rhythm
classes with an F1 score superior to cardiologists (0.837 versus 0.78). Adding smartphone
accelerometry98 or gyroscopel®7 data (to measure chest micromovements of cardiac
motion) may push the accuracy for AF detection >90%. Mobile devices can also detect
VT/VF. AI/ML applied to 3 public ECG databases provided an accuracy of 96.3%.109 As
described above, Al/ML applied to electrocardiographic and other vital sign data can predict
imminent ventricular arrhythmias.88-71

Blood pressure can be estimated from PPG devices?8:110 by using AI/ML. Key indices are
the pulse transit time, which is the time that the pulse takes to travel between 2 arterial
sites, and pulse arrival time, which refers to the time between the ECG R wave and the peak
of the PPG signal (the pulse wave). The pulse transit time can be found either by using a
single-source PPG and the electrocardiographic signal, or using PPG signals from 2 sensors
at different locations. Pulse arrival time requires both the PPG and electrocardiographic
signals.

Monitors can increasingly measure numerous indices of cardiovascular disease and
health.110 To guide management of patients with heart failure (HF), the multicenter LINK-
HF study (Multisensor Non-Invasive Telemonitoring System for Prediction of Heart Failure
Exacerbation)111 applied AI/ML to a smartphone-accessed wearable multisensor chest patch
and detected HF exacerbation and impending rehospitalization with sensitivities of up to
88% and specificities of up to 85%. Although some studies show improved clinical utility
over conventional care, others show no improvement.112

Implantable devices provide monitoring data that can also improve cardiovascular care. This
includes AF management using data from implanted arrhythmia monitors, pacemakers, or
defibrillators,% and management of HF using data from implanted pressure monitoring (but
not impedance monitoring).113

In general, prospective studies are needed not only to further establish the accuracy and
generalizability of such approaches, but also their translation to actionable care pathways
that can demonstrate clinical utility.

Challenges in Applying AI/ML in Mobile and Wearable Technologies

The form factor of wearables affects signal quality or patient comfort, and this must be taken
into account when comparing devices. AI/ML of mobile device data opens specific ethical
issues, because data are owned by patients, yet data privacy, operability, and integrityl14
must be maintained among all stakeholders!1> (Table 4). Regulatory pathways must be
developed for Al/ML-enabled wearable and implantable devices in the United States.116
However, a greater scientific knowledge base is also required. Prospectively collected data,
clinical trials, and development of workflows are urgently needed. For example, a notable
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recent study showed that AF diagnosed by wearables could be confirmed by cardiologists
in only 34% to 65% of cases,}17 and >90% of alerts did not lead to clinically actionable
diagnoses.118 In terms of acceptance, 35% of clinicians in a recent survey stated that they
would refuse to integrate Al/ML-enabled wearables in their care and 11% considered them
“a great danger.”119 Heterogeneity exists in how AF is labeled in various Al/ML-based
systems. It remains to be determined if acceptance will improve as clinicians and patients
become more familiar with such technology.

GENETICS

Overview

The development of high-throughput DNA-sequencing technologies over the past decade
has provided the means to generate large-scale genomic data well suited for AI/ML. The
ability to generate 3 billion nucleotides uniquely arranged in a single individual in just 24
hours, coupled with the generation of these data collectively from >1 million individuals
involved in government-funded DNA-sequencing projects,120 has made available large
volumes of human genomic data that is ~4% non-European.1?! These initiatives, integrated
with longitudinal phenotypic information and lifestyle behaviors, provide the training
datasets necessary to robustly predict future risk of disease in individuals of European
ancestry and open a new era of surveillance and potential intervention for both rare and
common diseases, redefining cardiovascular prevention.

AI/ML in Genome-Wide Association Studies

Genome-wide association studies (GWAS) seek to find statistical associations between
genetic variants and health-related traits in populations.122 GWAS use relatively common
(>1% minor allele frequency) single-nucleotide polymorphisms (SNPs) at up to >4 million
loci in the genome to identify health-related associations.123 The NHGRI-EBI GWAS study
catalog (a collaboration between the National Human Genome Research Institute [NHGRI]
and the European Bioinformatics Institute [EBI] to create a publicly available resource of
GWAS studies and their results) contains findings from nearly 6000 publications reporting
~420 000 genotype-phenotype associations that met some nominal level of significance.124
GWAS data have been used in meta-analyses, pathway analyses, and in the construction

of polygenic risk scores; these approaches have sometimes offered insights into disease
biology, prompted drug development, and improved risk stratification,125.126

AI/ML using GWAS data to identify variants for risk classification of cardiovascular disease
is in its developmental phase. As an illustrative proof of concept, Jo et al'26 used CNNs

to identify SNPs associated with Alzheimer disease in a 3-step process. First, they divided
the whole genome into nonoverlapping, optimally sized fragments, then applied CNNs

to each fragment to identify Alzheimer disease—associated fragments. Second, they used
deep learning to generate a “phenotype influence score” for each SNP in the most highly
associated fragments to identify Alzheimer disease—associated SNPs. Third, they used deep
learning with the most highly associated SNPs from step 2 to develop a classification model.
This approach identified significant SNPs that differed from those identified using a standard
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GWAS method,127 although both approaches implicated similar regions of the genome
(coding Apoprotein E).

Extending Polygenic Risk Scores

GWAS data are most frequently used to characterize univariate associations between traits
of interest and individual variants, which can be used to construct polygenic risk scores
(PRS). However, PRS often explain only a small percentage of the variance in a phenotype,
potentially because they do not account for interactions among SNPs or for nonlinearities

in variant trait associations. Elgart et al'27 sought to overcome these limitations by using
data from a multiethnic genomic dataset of ~29 000 individuals with an ensemble method
of SNP selection followed by a gradient-boosting AlI/ML technique (XGBoost) to identify

9 complex phenotypes. Compared with the standard, linear PRS, the AI/ML approach
resulted in relative increases in explained variance in phenotypes ranging from 22% (height)
to 100% (diastolic blood pressure). The multiancestry-trained Al/ML models performed

as well as racial and ethnic group—trained models and better than standard linear PRS
models. Leveraging AI/ML (such as from XGBoost) to integrate enhanced PRS with clinical
information from EHR holds promise to advance the application and implementation of
precision medicine in cardiovascular disease.

Ancestry Characterization

Stratification may be necessary to produce meaningful genotype-phenotype associations.
Panels of autosomal ancestry-informative SNPs historically have been used for this purpose
but sometimes with crude resolution. For example, some methods create a single East Asian
racial group despite known genetic differences in subgroups. AI/ML approaches may enable
the creation of ancestry-informative SNP panels with higher-resolution ancestry inferences.
Gu et al'28 applied ML methods (Softmax, Random Forest) to screen a candidate panel of
1185 ancestry-informative SNPs (collected from 13 previously published panels) to develop
an optimized classification model that used 272 SNPs to distinguish Northern Han, Southern
Han, Korean, and Japanese individuals. Their ancestry-informative SNP panel correctly
classified individuals to the 4 East Asian groups with >90% accuracy.

Phenotype to Gene Identification

There is an emerging use of AlI/ML in a “reverse direction,” applied to phenotypes to predict
genetic conditions. DeepGestalt, an Al/ML-based facial image analysis algorithm, has been
shown to be superior to experts in identifying monogenic genetic syndromes with facial
anomalies, including several cardiovascular diseases and correctly prioritizing pathogenic
genetic variants.12% This deep learning model can accurately distinguish distinct genetic
subtypes of Noonan syndrome.130 Likewise, deep learning models have been suggested to
outperform cardiologists in detecting long QT syndrome from electrocardiographic analysis,
and potentially distinguish between the common genetic causes of long QT syndrome
(LQT1-KCNQ1, LQT2-KCNH2, LQT3-SCN5A) 131
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Determining the Clinical Relevance of Genetic Variants

More than 6000 genetic variants are now implicated as Mendelian causes of human

disease, yet the vast majority of observed genetic changes are classified as variants of
uncertain significance. AI/ML has been applied to assist in more confidently classifying

the benign or deleterious nature of variants of uncertain significance. The Combined
Annotation Dependent Depletion approach uses Al/ML that integrates multiple data sources
to predict variant pathogenicity (eg, evolutionary conservation and functional predictions
from the variant). Deep learning that builds on Combined Annotation Dependent Depletion
can enhance classification accuracy compared with non-Al/ML models.132 PrimateAl, a
uniquely trained deep CNN based merely on DNA or protein sequence from data of >100
000 human sequence alignments, has shown promise in accurately classifying variants

of uncertain significance.133 Extensions of such Al/ML-based models may improve the
prioritization of variants and candidate genes identified through unbiased gene discovery
methods such as whole exome sequencing, whole genomic sequencing, or GWAS in patients
and cohorts with gene-elusive disease.134

Challenges in Applying AI/ML in Genetics

It is important to note that, although AI/ML models are making significant progress in
enhancing variant interpretation, their use as a definitive classification tool still requires
caution (Table 5). As with all deep learning models, those used in genomics require

training on human-derived data which itself is prone to errors and inaccuracies. Although
optimism remains high that AI/ML will accelerate the discoveries of complex interactions
that will inform future prevention and treatment efforts, in the cardiovascular domain, we are
currently at the bottom of a steep hill with many steps to make to reach the summit. Step

by step, AI/ML will evolve to affect our understanding of human genomic data in relation to
cardiovascular disease prevention and treatment.

AI/ML IN INTERPRETING EHRs

Overview

In principle, appropriate analysis of the EHR could improve disease detection, stratify
patients into treatable disease types (novel “phenotypes™), and identify novel clinical
workflows. Randomized controlled trials evaluate 1 treatment at a time and at a single time
point, typically at the time of enrollment, and provide an average treatment effect across a
heterogeneous cohort of patients. On the other hand, AI/ML applied to EHR could simulate
sequential decision-making at different time points, enrolling every patient who has been
treated or not treated, with little exclusion criteria and with less patient dropout. Several
EHR-based applications have been described, although most have not been generalized
outside their development cohorts.

Predicting In-Hospital Mortality

In a review of 21 studies using elements from the EHR, Al/ML achieved an accuracy of
~0.86 for predicting mortality in the ICU.135 The Super ICU Learner Algorithm (SICULA)
used 17 static variables to achieve an AUC of 0.94 (95% CI, 0.90-0.98) for predicting
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mortality in a test population.138 Al/ML applied to clinical features in 217 289 ICU
patients predicted 30-day mortality with an AUC of 0.89, improving on the Simplified Acute
Physiology Score-3 with AUC 0.85.137

Predicting General Cardiovascular Outcomes

Several models have been trained on large numbers of variables from the EHR. Zhao et
al138 reported better prediction of cardiovascular events at 10 years in 109 490 individuals
from their HER-based AI/ML tool than from the American College of Cardiology/American
Heart Association pooled cohort risk equation. In 7686 patients, analysis of 1000 variables,
from the EHR, predicted major adverse cardiovascular and cerebrovascular events with an
AUC of 0.81 (95% Cl, 0.80-0.83).

Predicting Specific Cardiovascular Disease

AI/ML applied to EHR chart data has been reported to predict impending HF
rehospitalization better than individual cardiologists.112 Ye et al13° developed an XGBoost-
based Al/ML risk prediction model for incident hypertension in 823 627 patients, which
provided an AUC of 0.870 for incident primary hypertension within 1 year in 680 810
patients studied prospectively. Guan et al40 used EHR to define features of ischemic
stroke in 1598 patients from the Massachusetts General Hospital Ischemic Stroke Registry
and found that the best model had 92.2% accuracy with AUC of 0.911 (95% Cl, 87.5—
93.9). Predictors were AF, age, cardiomyopathy, HF, patent foramen ovale, mitral annulus
calcification, and recent myocardial infarction.

Disease Classification

Although existing disease phenotypes have often been based on readily available data
using traditional grouping elements, AI/ML provides an opportunity to better characterize
disease types by integrating several, often complex data categories. In addition to nuanced
definitions of HF beyond conventional classification of HF with reduced EF and HF with
preserved EF, Al/ML-based phenotypes are increasingly reported to integrate multimodal
data to identify patients at risk for adverse outcomes from HF,138 at heightened risk for
sudden cardiac arrest,16:141 or with AF who are more likely to respond to ablation.142:143

Challenges in Applying AI/ML in EHR

EHR data are only as good as their curation and consistency. Raw EHR data are extracted
from different information systems and must be linked and prepared for analysis by
individuals familiar with local practice patterns (Table 6). This may introduce variation

in data collection compared with centralized clinical trials.244 EHR analysis introduces
several potential biases. For example, the likelihood of an abnormal measure correlates
strongly with frequency of measurement, which in turn reflects the severity of illness
because clinicians order more tests in unstable patients. Hence, “routinely” collected data
implicitly encode clinician judgment that may be highly variable across clinicians.14°
Sampling biases may lead to spurious associations unless input is obtained from domain
experts.146 For example, when analyzing EHR data from the hospital, modeling is affected
by the criteria for admission, which vary from 1 facility to another, and even within the same

Circulation. Author manuscript; available in PMC 2024 April 24.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Armoundas et al.

Page 15

hospital at different times.24” Treatment administration is subject to differences in inter- and
intraclinician decision-making. EHRs often lack relevant social determinants for treatment
and other confounding variables. In addition, differences between institutions and regions
vary over time so that results may not generalize beyond the original data source.148 With
the advent of generative Al/ML, there are opportunities to leverage these technologies to
assist clinicians and researchers using EHR. Generative Al/ML develops new content by
applying advanced algorithms to existing data from sources such as the internet. Generative
pretrained transformer language models have demonstrated the ability to answer complex,
context-specific medical knowledge questions accurately, and to structure and summarize
clinical data, as well.24° However, the accuracy of such systems has not been widely

tested, particularly for guiding health care decisions. It is thus imperative that data scientists
discuss design choices and study assumptions with clinicians or other clinicians who are
knowledgeable of local clinical protocols, and researchers adopt causal frameworks where
possible to avoid introducing bias by indication. A causal diagram can be helpful to infer the
generalizability of models by making explicit which relationships in the data are likely to
differ between institutions and across time.1%0 Last, model evaluation should be tailored to
the intended use of the system, for example, screening versus triage recommendation.15

A FRAMEWORK FOR THE SUCCESSFUL IMPLEMENTATION OF AI/ML IN
CARDIOVASCULAR MEDICINE

Implementation Science for Al/ML-Based Precision Medicine

Implementation science is defined as the study and use of methods aiming to promote

the systematic uptake of research findings and other evidence-based practices into routine
practice, thereby improving the quality and effectiveness of health services among all
people.28 Implementation science for Al/ML is essential to ensure that personal and public
data are integrated appropriately to address core unmet clinical needs to achieve precision
cardiovascular medicine (Table 7).152

Clinical Utility and Integration in Patient Care

Robustly designed Al/ML systems can identify informative and hidden patterns in complex
clinical data to personalize cardiovascular medicine from screening and diagnosis, to find
novel classification and phenotypes, to predict adverse outcomes, to guide therapy, and to
guide trial design.5!

AI/ML should augment and support clinical decision-making, rather than replace clinical
judgment needed for evidence-based practice.49 However, to realize this potential, AlI/ML
analytics must be presented to clinicians through intuitive and interpretable human—
computer interfaces that enhance user trust and integrate with existing clinical workflows.%>
Interpretability in AI/ML, however, is an imprecise and controversial science. Moreover, it
is not clear that complete understanding of a complex algorithm is essential for its robust
use, given that algorithms in some instances have already outperformed the expert annotator.
For instance, it is not necessary to understand the complex mechanisms of action of a

drug to use it according to its labeling on the basis of clinical evidence. As a result, the
efficacy of AlI/ML algorithms should be FDA “labeled” with precise descriptions of the
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subject population and intended clinical scenarios for use.*? As new patient groups are
studied, their details should be added to labeling. A unique hazard to Al/ML-based systems
is that algorithm performance may degrade over time as a consequence of such changes

in patient demographics, clinical context, or other factors, and may have to be updated

and reevaluated as part of clinical practice evidence.153 Reimbursement models for Al/ML
in cardiovascular disease must be developed to ensure wide access and avoid the risk of
inadvertently widening health care disparities.

At present, there remains a paucity of evidence that AlI/ML can positively affect patient
outcomes compared with current standards of care.1> The future adoption of Al in
cardiovascular medicine will ultimately require such evidence that Al/ML applications
measurably improve patient outcomes. 195

Clinician Education and Decision-Making

With the avalanche of reported Al/ML applications in medical practice, there is pressure

for clinicians to understand Al/ML to at least the same level they apply for any technology
that influences decision-making.156 A useful model may be one where, first, clinicians must
be able to identify when a technology is appropriate for a given clinical scenario, and what
inputs are required; and, second, clinicians should be able to interpret results in the context
of errors and biases that may limit applicability for specific patient groups. In a model for
the future, clinicians’ progressively incremental data science training may take the form

of progressively adding statistical courses during training, or as continuing education for
current practitioners. It is critical that all stakeholders appreciate the context-specific nature
of AI/ML and that performance of a given application may not always be transferable.157

Data Handling

Ethics

Issues pertaining to detailed descriptions of data handling (preprocessing),1°8 such as which
and how features are extracted and excluded,'>® and how final model predictions are
validated, are required to ensure transparency and clinical acceptability of Al/ML-derived
decision support systems, and may be of a different level of interest among stakeholders.
Furthermore, details such as recoding, newly derived variables, data reduction techniques
or transformations may substantially affect the interpretation and accuracy of models, yet
may differ from conventional statistical approaches and require advanced training. It is
essential to assess the gain from using an AI/ML decision support system over conventional
methods. There are emerging reporting guidelines that aim to enhance both the rigor and
reproducibility in the design of Al/ML-derived decision support systems.160

Those who contribute their data to Al/ML databases to improve the care of others should
be treated with thoughtfulness and respect. Individuals likely have differing views on how
their data should be used in the future. Many contributors are not comfortable with their
data being sold to third parties for commercial purposes, without notice or consent,161.162
Individuals generally want to be informed about the commercial use of their data regardless
of whether it is identified or deidentified (as is typical for AI/ML databases). Self-identified
race and ethnicity can also be associated with data sharing preferences.163.164
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Stakeholders must also assess which communities are contributing to Al models and which
are benefiting from those advances to balance equity considerations.16°

Equitable Distribution of Benefits and Burdens

Bias

AI/ML offers the means for implementing precision medicine and personalized care, yet the
increasing extraction of personal data by public and private stakeholders may negatively
affect health and well-being through many effects pertaining to environmental, social,
political, and commercial determinants of health,166.167

The World Health Organization defines equity as the absence of avoidable, unfair,

or remediable differences among groups of people defined socially, economically,
demographically, or geographically.1>2 For health equity to be achieved, every citizen
should have a reasonable opportunity to fully access all available health care. Therefore,

to reach the aspirational goal of health care equity, population-representative datasets must
be included in Al/ML algorithm development. On the other hand, the scaling inherent in
Al/ML may further exacerbate existing inequities.168 Therefore, prioritizing in equity should
be a noticeably articulated goal in health care Al/ML algorithm development.*®

Al models can perform differently across subpopulations which may reflect societal

and statistical bias. Societal bias is due to systemic forms of discrimination that

drive disproportionate cardiovascular health outcomes and differential data quality across
historically and contemporarily oppressed and excluded populations.18% These biases can
manifest at the structural level, the institutional level, or interpersonally. Statistical bias
comes from nonrepresentative samples in the training data, for instance, undersampling or
excluding certain populations. Exclusion may be due to certain subpopulations not being
represented in the data or have incomplete data due to inadequate health care access, and
other socioeconomic factors that prevent robust integration into health care systems.170
Model bias relates to the specific mechanics of most AI/ML and statistical models whereby
the tools work by minimizing overall prediction error without attention to performance
among underrepresented racial and ethnic groups. As a consequence, Al models can
exhibit overall strong performance (low error) while still performing poorly for people of
underrepresented races and ethnicities who exhibit the worst health outcomes. 171

Attention to Those Historically Excluded by Medical Advances

Fairness

Digital technologies and AlI/ML raise important issues about the way we perceive

and represent sexuality, race, ethnicity, gender, class, geography, age, underlying health
condition, and ability. Therefore, in the context of Al/ML-driven digital health, a new
understanding of inclusion will involve forms of context-aware technical development, and
innovative, local- and community-led approaches aiming the redesign, deployment, and
validation of digital technologies.

AI/ML models will not be completely fair until the various forms of discrimination that
drive health inequities, and thus data bias, are removed. The current status quo is such
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that populations most harmed by algorithmic bias are not centered in the development of
algorithms or the processes to make them more just.172

Therefore, to mitigate societal bias at the institutional level, individuals from people of
underrepresented races and ethnicities must be incorporated into the Al/ML model building
process with community-based participatory frameworks on more diverse research teams to
make sure that the model-building process, from defining the question, to outcome selection,
and feature engineering, are applicable to all populations or designed specifically for
historically excluded ones. Such evaluations will need to be tailored to the specific disease
context and model task and may include consideration of which subgroups have the highest
incidence of disease, greatest risk of adverse events, or least access to treatment.173.174

The intersection of social identities should consider, when necessary, debiasing techniques
to decrease variation in performance across subgroups.173:175 Although debiasing provides
an opportunity to incorporate social determinants of health to better identify populations for
Al/ML models,176 some clinicians have called for a reevaluation of this practice. In some
cases, race correction may exacerbate inequities in disease outcomes and treatments among
groups that already experience disparities. The American Heart Association is committed to
assessing current algorithms with race correction.

Consideration to Community Input

Law

For Al/ML technologies to earn the trust of the public, a continuous effort will be required
by all stakeholders. Public engagement and dialogue are means that will ensure that use
of AI/ML technologies in health care meets certain core societal expectations and values,
and builds and maintains broad trust and acceptance, as well. Public dialogue will also
ensure that societal views on Al/ML-based tools are incorporated across the digital health
ecosystem.

Approaches that promote inclusivity include concepts such as: (1) open-source software,
which improves transparency and participation in the design of an AI/ML technology; (2)
citizen science, which refers to the direct involvement and contribution of nonprofessional
scientists to scientific research; (3) increased diversity, of the data on which Al/ML
algorithms are based, by promoting greater involvement of people who are familiar with
the nature of potential bias, context, and regulations throughout the process of the algorithm
development, including the labeling of the data, and the algorithm design, testing, and
deployment, as well.177

In general, the law can be applied to AI/ML in 2 ways: (1) regulatory attempts to mitigate
AI/ML harms before they happen, and (2) through medical malpractice/case law system to
attempt to rectify harms already allegedly caused by AI/ML. A new challenge that AI/ML
presents in case law is the lack of transparency in how Al/ML mechanisms formulate
clinical recommendations.168 Al/ML generated by a “black box” can make it difficult to
establish both how the standard of care was defined and whether that care “caused” the
injury in question. Although clinicians should use an AlI/ML algorithm as labeled,*° it
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remains to be seen whether clinicians will be held liable for injuries associated with the use
of AI/ML tools, and whether such tools will shift the standard of care.178

The FDA regulates Al/ML as a medical device, and they recently reaffirmed their
commitment to improvement of Al/ML algorithms, mitigating against bias and improving
robustness.169 Today, FDA’s list of cardiovascular medical devices incorporating Al/ML
functionality includes 50 technologies that have received 510(k) clearance, and 5 that they
were granted De Novo request.

Al/ML Governing Architectures

Liability

Because the health care sector is expected to be the fastest growing data-producing
industry,29 the uptake of AI/ML in health care will rely heavily on the trust of patients,
doctors, and other health professionals.121 However, trust can be eroded by several personal,
technological, and institutional factors, including fear of data exploitation, lack of digital
skills, paucity of accessibility, and poor reputation of clinicians.163

There is a need to build governing architectures that create trust in AI/ML and digital

health. Such approaches may accelerate innovation in task-focused directions, protecting the
collection and use of digital data to protect individual rights, promoting the public benefit
of using such data, and building a culture of equity.142 Governing architectures for Al/ML
digital health would have the goals of empowering patients, people of underrepresented
races and ethnicities, and disenfranchised groups, as well, ensuring affordable digital

health, ensuring digital rights, and regulating business in the digital-health ecosystem.
Country or regional policymakers could promote digital-health strategies that prioritize such
technologies through investment roadmaps.

Digital models of governance must be adapted in different societal contexts and account
for implications on an individual’s health and well-being.164 As such, digital-health
technologies that create value for the general public will require mission-oriented
innovation, 169 such that these technologies are not developed or inadvertently repurposed
in ways that threaten human rights, or reinforce discrimination.179 At the institutional level,
AI/ML technologies that rely on data that are both accurate and representative may help
reduce inefficiency and errors and ensure more appropriate allocation of resources.1?”

Development of algorithm “auditing” processes that can recognize a group (or even an
individual) for which a decision may not be reliable, can reduce the implications of such

a decision, for example, due to bias.187 As a result, health care-related AI/ML algorithms
have the capacity to influence confidence in a health care system, particularly if these tools
result for some groups in worse outcomes or increased inequities.*8

Assessing the liability of AI/ML algorithms is crucial to balance their risks and benefits.
Thus, Al/ML governing architectures need to engage all stakeholders (developers, clinicians,
and researchers) to continuously evaluate the safety and effectiveness of these algorithms.
Companies should file an application with the FDA to allow marketing of an algorithm.
After approval, there should be postmarket safety monitoring similar to phase IV drug
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development evaluation. In this ongoing phase, if the use of the algorithm results in potential
adverse events/system failure, it would be the responsibility of the Al/ML algorithm
developers to report and investigate such outcomes. Therefore, the critical issue of a
physician’s professional liability in case of an incorrect decision and a potentially harmful
outcome, 168 as with any other medical product, narrows down to a responsibility to use such
algorithm as “labeled,” which minimizes liability concerns.#8

Adverse Event Reporting

From a quality and safety perspective, institutional metrics designed to evaluate patient
safety and subsequently mechanisms targeted to reduce adverse events may have to be
modified for Al/ML-based applications.

The digitization of EHR facilitates the automation of many aspects of patient safety, but
efficacy is contingent on reliable data. Even if we can ensure that future algorithms are
trained on more representative patient populations, there remain certain components of data
collection that invariably involve a human element (eg, bias of the reporter).180 Patient
safety is of paramount importance and the use of decision support systems in clinical
settings must be monitored long term to avoid hidden stratification!8! or other unintended
consequences. 182

System Upgrading

Because data quality, population characteristics, and clinical practice will all change over
time, decision support systems need to be regularly updated® to mitigate the effect of these
changes on their reliability, validity and clinical utility.183 It may also be necessary to update
outcome definitions to retrain models as scientific understanding of disease progresses (eg,
better phenotyping of subtypes), or the demographics of the areas in which the Al/ML
algorithms are used change.

The system-upgrading process ideally should be streamlined in some way to allow the
decision support system to be upgraded in a timely manner, but this can be costly and can
lead to unintended consequences if prespecified processes are not in place.*®

Some AI/ML algorithms may be designed to continue to learn (train) continuously, refine
their internal model, and improve performance (refinement/adaptation).#8:166 In particular,
the algorithm learns how to update from the addition of new cases (inputs) resulting in
different outputs with the same inputs (compared with the outputs before the update).

Such algorithms require frequent real-world performance monitoring, although the ongoing
development of these systems increases the difficulty of applying a regulatory framework.166

Cybersecurity

Although questions remain with respect to privacy and patient control over their data,184
subtle approaches to reidentification of (potentially improperly) anonymized health data
stand in stark contrast to the illegal, forcible acquisition of personal health data by means of
a data breach (eg, illegal disclosure, attainment, or use of information without authorization).
Theft of medical records allows access to financial services and health care for criminals.18°
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Although the risks to patient privacy should be minimized, an acceptable risk threshold
needs to be decided by all stakeholders, below which data sharing can occur, for the benefit
of a global medical knowledge system, by placing appropriate firewalls and other key
cybersecurity measures that are regularly updated.186

CONCLUSIONS

The American Heart Association aims to advance cardiovascular health for all, including
identifying and removing barriers to health access and quality.

At this dawn in the era of precision medicine, scientists and clinicians, computer and

data scientists, patient advocacy groups, health care organizations, and policymakers must
develop principles and guidance for the development and application of Al/ML-based digital
health. Numerous applications already exist where Al/ML-based digital tools can improve
disease screening, extract insights into what makes individual patients healthy, and develop
precision treatments for complex diseases.

There is an urgent need to develop implementation science for Al/ML tools to create
tractable cost-effective workflows for AI/ML-based precision medicine that address core
unmet clinical (or translational) needs, the evidence of which can be robustly tested in
trials. This process must organically incorporate the need to avoid bias and maximize
generalizability of findings to avoid perpetuating existing health care inequalities.
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